The Payday Loan Puzzle: A Credit Scoring Explanation

Tsung-Hsien Li* Uni Mannheim and EUI Jan Sun Oxford Economics

EEA-ESEM 2022

August 24, 2022

Introduction

Payday Loan

Payday Loan

Unsecured, small amount (\$300), short-term (2 weeks), and high-cost (400% vs. 20% on credit cards)

Payday Loan

- Unsecured, small amount (\$300), short-term (2 weeks), and high-cost (400% vs. 20% on credit cards)
- Per year 12 million user and \$50 billion volume

Payday Loan

- Unsecured, small amount (\$300), short-term (2 weeks), and high-cost (400% vs. 20% on credit cards)
- Per year 12 million user and \$50 billion volume
- Hotly debated regulatory topic

Payday Loan

- Unsecured, small amount (\$300), short-term (2 weeks), and high-cost (400% vs. 20% on credit cards)
- Per year 12 million user and \$50 billion volume
- Hotly debated regulatory topic

Payday Loan Puzzle in U.S. (Agarwal et al, 2009)

2/3 of payday loan borrowers with liquidity left on credit cards

Payday Loan

- Unsecured, small amount (\$300), short-term (2 weeks), and high-cost (400% vs. 20% on credit cards)
- Per year 12 million user and \$50 billion volume
- Hotly debated regulatory topic

Payday Loan Puzzle in U.S. (Agarwal et al, 2009)

- **2/3** of payday loan borrowers with liquidity left on credit cards
- Significant extra monetary costs about **\$200** over a year

Payday Loan

- Unsecured, small amount (\$300), short-term (2 weeks), and high-cost (400% vs. 20% on credit cards)
- Per year 12 million user and \$50 billion volume
- Hotly debated regulatory topic

Payday Loan Puzzle in U.S. (Agarwal et al, 2009)

- **2/3** of payday loan borrowers with liquidity left on credit cards
- Significant extra monetary costs about **\$200** over a year

"Why are people taking out [payday] loans instead of using their cards?" [...] 'They're protecting the card!' I told him. [...]" Whereas failure to repay a payday loan won't affect a consumer's credit score, failure to repay a credit card will.

- Lisa Servon (2017): The Unbanking of America

"Why are people taking out [payday] loans instead of using their cards?" [...] 'They're protecting the card!' I told him. [...]" Whereas failure to repay a payday loan won't affect a consumer's credit score, failure to repay a credit card will.

— Lisa Servon (2017): The Unbanking of America

• Credit score is a statistic to measure default risk/credit worthiness

"Why are people taking out [payday] loans instead of using their cards?" [...] 'They're protecting the card!' I told him. [...]" Whereas failure to repay a payday loan won't affect a consumer's credit score, failure to repay a credit card will.

— Lisa Servon (2017): The Unbanking of America

Credit score is a statistic to measure default risk/credit worthinessDepends on payment history and debt burden

Our Hypothesis: Reputation Protection

Our Hypothesis: Reputation Protection

■ Payday lenders do not report to credit bureaus in U.S.

Our Hypothesis: Reputation Protection

- Payday lenders do not report to credit bureaus in U.S.
- Households use payday loans to protect credit scores

Our Hypothesis: Reputation Protection

- Payday lenders do not report to credit bureaus in U.S.
- Households use payday loans to protect credit scores
- Credit scores very important in U.S. Credit Scores

Our Hypothesis: Reputation Protection

- Payday lenders do not report to credit bureaus in U.S.
- Households use payday loans to protect credit scores
- Credit scores very important in U.S. Credit Scores

Our Hypothesis: Reputation Protection

- Payday lenders do not report to credit bureaus in U.S.
- Households use payday loans to protect credit scores
- Credit scores very important in U.S. Credit Scores

Our Approach

 Build a Huggett-type model of two assets, two default options, both hidden information and hidden actions

Our Hypothesis: Reputation Protection

- Payday lenders do not report to credit bureaus in U.S.
- Households use payday loans to protect credit scores
- Credit scores very important in U.S. Credit Scores

- Build a Huggett-type model of two assets, two default options, both hidden information and hidden actions
- Use calibrated model to understand payday loan puzzle

Our Hypothesis: Reputation Protection

- Payday lenders do not report to credit bureaus in U.S.
- Households use payday loans to protect credit scores
- Credit scores very important in U.S. Credit Scores

- Build a Huggett-type model of two assets, two default options, both hidden information and hidden actions
- Use calibrated model to understand payday loan puzzle
- Policy experiments: Quantity caps, full ban

Our Hypothesis: Reputation Protection

- Payday lenders do not report to credit bureaus in U.S.
- Households use payday loans to protect credit scores
- Credit scores very important in U.S. Credit Scores

- Build a Huggett-type model of two assets, two default options, both hidden information and hidden actions
- Use calibrated model to understand payday loan puzzle
- Policy experiments: Quantity caps, full ban

Related Literature/Contributions

• HHs' patience (discount factors) β are unobservable

- HHs' patience (discount factors) β are unobservable
- Two types of HHs: Impatient β_L and patient β_H

- HHs' patience (discount factors) β are unobservable
- Two types of HHs: Impatient β_L and patient β_H
- Types score: Probability of being patient (good type)

- HHs' patience (discount factors) β are unobservable
- Two types of HHs: Impatient β_L and patient β_H
- Types score: Probability of being patient (good type)
- Posterior score = Prior score + Observable bank loan and default choice

- HHs' patience (discount factors) β are unobservable
- Two types of HHs: Impatient β_L and patient β_H
- Types score: Probability of being patient (good type)
- Posterior score = Prior score + Observable bank loan and default choice
- Borrowing costs condition on type scores

- HHs' patience (discount factors) β are unobservable
- Two types of HHs: Impatient β_L and patient β_H
- Types score: Probability of being patient (good type)
- Posterior score = Prior score + Observable bank loan and default choice
- Borrowing costs condition on type scores
- Income $\downarrow \implies$ Borrowing a bank loan \implies Type score \downarrow (today)

- HHs' patience (discount factors) β are unobservable
- Two types of HHs: Impatient β_L and patient β_H
- Types score: Probability of being patient (good type)
- Posterior score = Prior score + Observable bank loan and default choice
- Borrowing costs condition on type scores
- Income $\downarrow \implies$ Borrowing a bank loan \implies Type score \downarrow (today)
 - \implies Fail to repay a bank loan \implies Type score \downarrow (tomorrow)

- HHs' patience (discount factors) β are unobservable
- Two types of HHs: Impatient β_L and patient β_H
- Types score: Probability of being patient (good type)
- Posterior score = Prior score + Observable bank loan and default choice
- Borrowing costs condition on type scores
- Income $\downarrow \implies$ Borrowing a bank loan \implies Type score \downarrow (today) \implies Fail to repay a bank loan \implies Type score \downarrow (tomorrow)
- Payday loans and payday default are unobservable "to banks"

- HHs' patience (discount factors) β are unobservable
- Two types of HHs: Impatient β_L and patient β_H
- Types score: Probability of being patient (good type)
- Posterior score = Prior score + Observable bank loan and default choice
- Borrowing costs condition on type scores
- Income $\downarrow \implies$ Borrowing a bank loan \implies Type score \downarrow (today) \implies Fail to repay a bank loan \implies Type score \downarrow (tomorrow)
- Payday loans and payday default are unobservable "to banks"
- HHs might use more expensive payday loans to "protect" type scores

Key Findings

Payday Loan Puzzle

Key Findings

Payday Loan Puzzle

 Dynamic trade-off emerges b/w "short-run costs of payday loans" v.s. "long-run reputational gains"

Payday Loan Puzzle

- Dynamic trade-off emerges b/w "short-run costs of payday loans" v.s. "long-run reputational gains"
- Quantify to what extent reputation protection explains the puzzle

Payday Loan Puzzle

- Dynamic trade-off emerges b/w "short-run costs of payday loans" v.s. "long-run reputational gains"
- Quantify to what extent reputation protection explains the puzzle
 - Account for 40% of the puzzle occurrence in data

Payday Loan Puzzle

- Dynamic trade-off emerges b/w "short-run costs of payday loans" v.s. "long-run reputational gains"
- Quantify to what extent reputation protection explains the puzzle
 - Account for 40% of the puzzle occurrence in data
 - Match the magnitude of monetary costs

Policy Implications

Payday Loan Puzzle

- Dynamic trade-off emerges b/w "short-run costs of payday loans" v.s. "long-run reputational gains"
- Quantify to what extent reputation protection explains the puzzle
 - Account for 40% of the puzzle occurrence in data
 - Match the magnitude of monetary costs

Policy Implications

Restricting the size of or banning payday loans are welfare-reducing

Payday Loan Puzzle

- Dynamic trade-off emerges b/w "short-run costs of payday loans" v.s. "long-run reputational gains"
- Quantify to what extent reputation protection explains the puzzle
 - Account for 40% of the puzzle occurrence in data
 - Match the magnitude of monetary costs

Policy Implications

- Restricting the size of or banning payday loans are welfare-reducing
 - Heterogeneity across types
 - Cross-Subsidization vs. Insurance of payday loans

Model

Model Environment

Model Environment

Time is discrete

- Time is discrete
- Endowment economy with idiosyncratic earnings shocks

- Time is discrete
- Endowment economy with idiosyncratic earnings shocks
- Incomplete market: Bank assets, payday loans

- Time is discrete
- Endowment economy with idiosyncratic earnings shocks
- Incomplete market: Bank assets, payday loans
- Banks, payday lenders, and households

- Time is discrete
- Endowment economy with idiosyncratic earnings shocks
- Incomplete market: Bank assets, payday loans
- Banks, payday lenders, and households
- Household's type (discount factor) is unobservable \implies Type score

- Time is discrete
- Endowment economy with idiosyncratic earnings shocks
- Incomplete market: Bank assets, payday loans
- Banks, payday lenders, and households
- Household's type (discount factor) is unobservable \implies Type score
- Banks cannot see payday loan choices

- Time is discrete
- Endowment economy with idiosyncratic earnings shocks
- Incomplete market: Bank assets, payday loans
- Banks, payday lenders, and households
- Household's type (discount factor) is unobservable \implies Type score
- Banks cannot see payday loan choices
- Cross-sectional household distribution μ

■ Infinitely-lived with survival rate ρ , risk-averse, and consume c

- Infinitely-lived with survival rate ρ , risk-averse, and consume c
- Two types of HHs: β_L and β_H (stochastic persistent)

- Infinitely-lived with survival rate ρ , risk-averse, and consume c
- Two types of HHs: β_L and β_H (stochastic persistent)
- Receive stochastic earnings *z* (transitory) and *e* (persistent)

- Infinitely-lived with survival rate ρ , risk-averse, and consume c
- Two types of HHs: β_L and β_H (stochastic persistent)
- Receive stochastic earnings *z* (transitory) and *e* (persistent)
- Have bank assets *b*, payday debts *p*, type score *s* (Prob. of β_H)

- Infinitely-lived with survival rate ρ , risk-averse, and consume c
- Two types of HHs: β_L and β_H (stochastic persistent)
- Receive stochastic earnings *z* (transitory) and *e* (persistent)
- Have bank assets *b*, payday debts *p*, type score *s* (Prob. of β_H)
- Repay or default *d*

- Infinitely-lived with survival rate ρ , risk-averse, and consume c
- Two types of HHs: β_L and β_H (stochastic persistent)
- Receive stochastic earnings *z* (transitory) and *e* (persistent)
- Have bank assets *b*, payday debts *p*, type score *s* (Prob. of β_H)
- Repay or default *d*
 - Formal default (both), payday default (payday loan only)

- Infinitely-lived with survival rate ρ , risk-averse, and consume c
- Two types of HHs: β_L and β_H (stochastic persistent)
- Receive stochastic earnings *z* (transitory) and *e* (persistent)
- Have bank assets *b*, payday debts *p*, type score *s* (Prob. of β_H)
- Repay or default *d*
 - Formal default (both), payday default (payday loan only)
 - Filing costs, stigma costs, exclusion in the filing period

- Infinitely-lived with survival rate ρ , risk-averse, and consume c
- Two types of HHs: β_L and β_H (stochastic persistent)
- Receive stochastic earnings *z* (transitory) and *e* (persistent)
- Have bank assets *b*, payday debts *p*, type score *s* (Prob. of β_H)
- Repay or default *d*
 - Formal default (both), payday default (payday loan only)
 - Filing costs, stigma costs, exclusion in the filing period
- Can borrow/save **b'** in banking sector

- Infinitely-lived with survival rate ρ , risk-averse, and consume c
- Two types of HHs: β_L and β_H (stochastic persistent)
- Receive stochastic earnings *z* (transitory) and *e* (persistent)
- Have bank assets *b*, payday debts *p*, type score *s* (Prob. of β_H)
- Repay or default *d*
 - Formal default (both), payday default (payday loan only)
 - Filing costs, stigma costs, exclusion in the filing period
- Can borrow/save **b'** in banking sector
- Can borrow p' in payday lending sector (if $b' \leq 0$)

- Infinitely-lived with survival rate ρ , risk-averse, and consume c
- Two types of HHs: β_L and β_H (stochastic persistent)
- Receive stochastic earnings *z* (transitory) and *e* (persistent)
- Have bank assets *b*, payday debts *p*, type score *s* (Prob. of β_H)
- Repay or default *d*
 - Formal default (both), payday default (payday loan only)
 - Filing costs, stigma costs, exclusion in the filing period
- Can borrow/save **b'** in banking sector
- Can borrow p' in payday lending sector (if $b' \leq 0$)
- Subject to action-specific utility shocks $\epsilon \implies \sigma^{(d,b',p')}(\beta, z, e, b, s, p)$

- Infinitely-lived with survival rate ρ , risk-averse, and consume c
- Two types of HHs: β_L and β_H (stochastic persistent)
- Receive stochastic earnings *z* (transitory) and *e* (persistent)
- Have bank assets *b*, payday debts *p*, type score *s* (Prob. of β_H)
- Repay or default *d*
 - Formal default (both), payday default (payday loan only)
 - Filing costs, stigma costs, exclusion in the filing period
- Can borrow/save **b'** in banking sector
- Can borrow p' in payday lending sector (if $b' \leq 0$)
- Subject to action-specific utility shocks $\epsilon \implies \sigma^{(d,b',p')}(\beta, z, e, b, s, p)$

Risk-neutral

- Risk-neutral
- Different information set

- Risk-neutral
- Different information set
 - Banks cannot observe payday variables (*p*, *p*', and *PD*)

- Risk-neutral
- Different information set
 - Banks cannot observe payday variables (*p*, *p*', and *PD*)
- **Different operating costs**: $r_p \gg r_f$

- Risk-neutral
- Different information set
 - Banks cannot observe payday variables (*p*, *p*', and *PD*)
- **Different operating costs**: $r_p \gg r_f$
- Different default probabilities

- Risk-neutral
- Different information set
 - Banks cannot observe payday variables (*p*, *p*', and *PD*)
- **Different operating costs**: $r_p \gg r_f$
- Different default probabilities
 - Banks: Formal default

- Risk-neutral
- Different information set
 - Banks cannot observe payday variables (*p*, *p*', and *PD*)
- **Different operating costs**: $r_p \gg r_f$
- Different default probabilities
 - Banks: Formal default
 - Payday lenders: Formal default, payday default

- Risk-neutral
- Different information set
 - Banks cannot observe payday variables (*p*, *p*['], and *PD*)
- **Different operating costs**: $r_p \gg r_f$
- Different default probabilities
 - Banks: Formal default
 - Payday lenders: Formal default, payday default
- Both can't see *z* (i.i.d.) and β (persistent) \rightarrow Type score *s*

- Risk-neutral
- Different information set
 - Banks cannot observe payday variables (*p*, *p*['], and *PD*)
- **Different operating costs**: $r_p \gg r_f$
- Different default probabilities
 - Banks: Formal default
 - Payday lenders: Formal default, payday default
- Both can't see *z* (i.i.d.) and β (persistent) \rightarrow Type score *s*
- Perfect competition: Risk-based discount loan prices q_b and q_p

Banks and Payday Lenders

- Risk-neutral
- Different information set
 - Banks cannot observe payday variables (p, p', and PD)
- **Different operating costs**: $r_p \gg r_f$
- Different default probabilities
 - Banks: Formal default
 - Pavday lenders: Formal default, pavday default
- Both can't see *z* (i.i.d.) and β (persistent) \rightarrow Type score *s*
- Perfect competition: Risk-based discount loan prices q_b and q_p

Bank-specific choice probabilities $\omega_b \equiv (e, b, s)$:

■ Bank-specific choice probabilities $\omega_b \equiv (e, b, s)$:

$$\sigma^{(d,b',p')}(\beta,z,\omega_b,\boldsymbol{p}) \xrightarrow{\boldsymbol{\tilde{\mu}}(\boldsymbol{p})} \sigma^{(d,b',\boldsymbol{p'})}(\beta,z,\omega_b) \xrightarrow{\boldsymbol{p'},\boldsymbol{\tilde{d}}=\boldsymbol{R}\vee\boldsymbol{P}\boldsymbol{D}} \tilde{\sigma}_b^{(\boldsymbol{\tilde{d}},b')}(\beta,z,\omega_b)$$

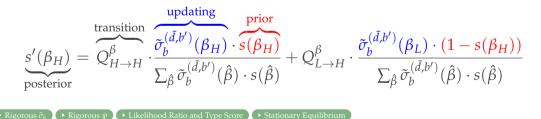
■ Bank-specific choice probabilities $\omega_b \equiv (e, b, s)$:

$$\sigma^{(d,b',p')}(\beta,z,\omega_b,\boldsymbol{p}) \xrightarrow{\boldsymbol{\tilde{\mu}}(\boldsymbol{p})} \sigma^{(d,b',\boldsymbol{p'})}(\beta,z,\omega_b) \xrightarrow{\boldsymbol{p'},\boldsymbol{\tilde{d}}=\boldsymbol{R}\vee\boldsymbol{P}\boldsymbol{D}} \tilde{\sigma}_b^{(\boldsymbol{\tilde{d}},b')}(\beta,z,\omega_b)$$

Type score *s* (Prob. of β_H) updated via Bayes rule:

■ Bank-specific choice probabilities $\omega_b \equiv (e, b, s)$:

$$\sigma^{(d,b',p')}(\beta,z,\omega_b,\boldsymbol{p}) \xrightarrow{\boldsymbol{\tilde{\mu}}(\boldsymbol{p})} \sigma^{(d,b',\boldsymbol{p'})}(\beta,z,\omega_b) \xrightarrow{\boldsymbol{p'},\boldsymbol{\tilde{d}}=\boldsymbol{R}\vee\boldsymbol{P}\boldsymbol{D}} \tilde{\sigma}_b^{(\boldsymbol{\tilde{d}},b')}(\beta,z,\omega_b)$$


Type score *s* (Prob. of β_H) updated via Bayes rule:

$$\underbrace{s'(\beta_H)}_{\text{posterior}} = \underbrace{\widetilde{Q}_{H \to H}^{\beta}}_{\widehat{Q}_{B \to H}} \cdot \underbrace{\frac{\widetilde{\sigma}_{b}^{(\tilde{d}, b')}(\beta_H)}{\widetilde{\sigma}_{b}^{(\tilde{d}, b')}(\hat{\beta}) \cdot s(\hat{\beta})}}_{\sum_{\hat{\beta}} \widetilde{\sigma}_{b}^{(\tilde{d}, b')}(\hat{\beta}) \cdot s(\hat{\beta})} + Q_{L \to H}^{\beta} \cdot \frac{\widetilde{\sigma}_{b}^{(\tilde{d}, b')}(\beta_L) \cdot (1 - s(\beta_H))}{\sum_{\hat{\beta}} \widetilde{\sigma}_{b}^{(\tilde{d}, b')}(\hat{\beta}) \cdot s(\hat{\beta})}$$

■ Bank-specific choice probabilities $\omega_b \equiv (e, b, s)$:

$$\sigma^{(\boldsymbol{d},\boldsymbol{b}',\boldsymbol{p}')}(\boldsymbol{\beta},\boldsymbol{z},\boldsymbol{\omega}_{b},\boldsymbol{p}) \xrightarrow{\tilde{\boldsymbol{\mu}}(\boldsymbol{p})} \sigma^{(\boldsymbol{d},\boldsymbol{b}',\boldsymbol{p}')}(\boldsymbol{\beta},\boldsymbol{z},\boldsymbol{\omega}_{b}) \xrightarrow{\boldsymbol{p}',\tilde{\boldsymbol{d}}=\boldsymbol{R}\vee\boldsymbol{P}\boldsymbol{D}} \tilde{\sigma}_{b}^{(\tilde{\boldsymbol{d}},\boldsymbol{b}')}(\boldsymbol{\beta},\boldsymbol{z},\boldsymbol{\omega}_{b})$$

Type score *s* (Prob. of β_H) updated via Bayes rule:

Calibration

Model period is a yearU.S. households in 2004

- Model period is a year
- U.S. households in 2004
- Two sets of parameters
 - Exogenously calibrated
 - ► Discount factors from Chatterjee et al. (2020)
 - Earnings processes from Floden and Linde (2001)
 - Standard values or direct empirical evidence
 - Internally calibrate stigma costs to match formal and payday default rates

- Model period is a year
- U.S. households in 2004
- Two sets of parameters
 - Exogenouslly calibrated
 - Discount factors from Chatterjee et al. (2020)
 - Earnings processes from Floden and Linde (2001)
 - Standard values or direct empirical evidence
 - Internally calibrate stigma costs to match formal and payday default rates

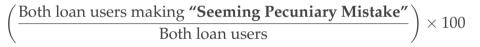
Exogenous Calibration
 Internal Calibration

Untargeted Moments Aligned with Data

Moment (in %)	Data	Model
Households in Debt		
Fraction of bank loan borrowers	20.9	24.26
Fraction of payday loan borrowers	5.61	9.46
Bank debt-to-earnings (cond. on borr.)	11.75	6.48
Interest Rate		
Avg. interest rate for bank loans	9.26	8.56
Avg. interest rate for payday loans	447.88	410.85

Source: SCF (2004, 2010), Skiba and Tobacman (2018)

Payday Loan Puzzle


Payday loan puzzle: Using payday loans before maxing out credit cards

- Payday loan puzzle: Using payday loans before maxing out credit cards
- In data $\approx 66\%$ (Agarwal et al., 2009)

- Payday loan puzzle: Using payday loans before maxing out credit cards
- In data \approx 66% (Agarwal et al., 2009)
- Define **"Rate of Puzzle Occurrence"** as:

 $\left(\frac{\text{Both loan users making "Seeming Pecuniary Mistake"}}{\text{Both loan users}}\right) \times 100$

- Payday loan puzzle: Using payday loans before maxing out credit cards
- In data $\approx 66\%$ (Agarwal et al., 2009)
- Define **"Rate of Puzzle Occurrence"** as:

■ In model = 26.44%

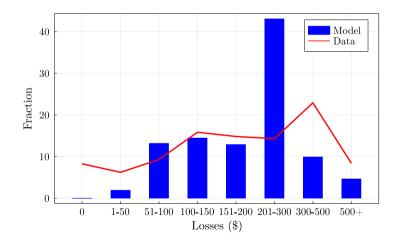
- Payday loan puzzle: Using payday loans before maxing out credit cards
- In data $\approx 66\%$ (Agarwal et al., 2009)
- Define **"Rate of Puzzle Occurrence"** as:

 $\left(\frac{\text{Both loan users making "Seeming Pecuniary Mistake"}}{\text{Both loan users}}\right) \times 100$

• In model = $26.44\% \implies 40\%$ of puzzle occurrence

- Payday loan puzzle: Using payday loans before maxing out credit cards
- In data $\approx 66\%$ (Agarwal et al., 2009)
- Define "Rate of Puzzle Occurrence" as:

 $\left(\frac{\text{Both loan users making "Seeming Pecuniary Mistake"}}{\text{Both loan users}}\right) \times 100$


• In model = $26.44\% \implies 40\%$ of puzzle occurrence

Rigorous Puzzle Definition T + Type Score Protection T + Reputation Gain vs. Interest Cost

Match Magnitude of Monetary Costs

Source: Agarwal et al. (2009)

Match Magnitude of Monetary Costs

Source: Agarwal et al. (2009)

Quantity Caps

Hotly debated policy topic

- Hotly debated policy topic
 - Advocates: Help with consumption smoothing

- Hotly debated policy topic
 - Advocates: Help with consumption smoothing
 - Opponents: High interest costs harm payday loan borrowers

Hotly debated policy topic

- Advocates: Help with consumption smoothing
- Opponents: High interest costs harm payday loan borrowers
- Benchmark: $p \in [0, $6000]$

- Hotly debated policy topic
 - Advocates: Help with consumption smoothing
 - Opponents: High interest costs harm payday loan borrowers
- Benchmark: $p \in [0, $6000]$
- Two counterfactuals

- Hotly debated policy topic
 - Advocates: Help with consumption smoothing
 - Opponents: High interest costs harm payday loan borrowers
- Benchmark: $p \in [0, $6000]$
- Two counterfactuals
 - Quantity Cap: $p \in [0, \$300]$

- Hotly debated policy topic
 - Advocates: Help with consumption smoothing
 - Opponents: High interest costs harm payday loan borrowers
- Benchmark: $p \in [0, $6000]$
- Two counterfactuals
 - Quantity Cap: $p \in [0, \$300]$
 - Full Ban: p = 0

Pooling vs. Insurance of Payday Loans

Variables	Benchmark	Quantity Cap	Full Ban
		0.00100/	0.00010/
Welfare (CEV)	—	-0.0012%	-0.0291%
Welfare (CEV) – Impatient	_	-0.0029%	-0.0331%
Welfare (CEV) – Patient	_	0.0013%	-0.0233%
Avg. Cross-Sub. of Bank Loans (β_L)	1	0.89	0.85

Pooling vs. Insurance of Payday Loans

Variables	Benchmark	Quantity Cap	Full Ban
Welfare (CEV)	_	-0.0012%	-0.0291%
Welfare (CEV) – Impatient	_	-0.0029%	-0.0331%
Welfare (CEV) – Patient	_	0.0013%	-0.0233%
Avg. Cross-Sub. of Bank Loans (β_L)	1	0.89	0.85

• Quantity cap \rightarrow Less pooling \rightarrow Good: Patient / Bad: Impatient

Pooling vs. Insurance of Payday Loans

Variables	Benchmark	Quantity Cap	Full Ban
Welfare (CEV)	_	-0.0012%	-0.0291%
Welfare (CEV) – Impatient	_	-0.0029%	-0.0331%
Welfare (CEV) – Patient	-	0.0013%	-0.0233%
Avg. Cross-Sub. of Bank Loans (β_L)	1	0.89	0.85

- Quantity cap \rightarrow Less pooling \rightarrow Good: Patient / Bad: Impatient
- Full ban \rightarrow Insurance of payday loans \rightarrow Smoothing bad shocks

Conclusion

Conclusion

Payday Loan Puzzle

Payday Loan Puzzle

■ Payday loan puzzle can be rationalized by "credit scoring protection"

Payday Loan Puzzle

- Payday loan puzzle can be rationalized by "credit scoring protection"
- Using a quantitative macro model, we show:
 People might rationally take up expensive payday loans over cheaper bank loans to "protect" credit

Payday Loan Puzzle

- Payday loan puzzle can be rationalized by "credit scoring protection"
- Using a quantitative macro model, we show:
 People might rationally take up expensive payday loans over cheaper bank loans to "protect" credit scores!

Payday Loan Puzzle

- Payday loan puzzle can be rationalized by "credit scoring protection"
- Using a quantitative macro model, we show:
 People might rationally take up expensive payday loans over cheaper bank loans to "protect" credit scores!

Policy Implications

 Restricting the size of payday loans affects (im)patient HHs differently: Impatient, worse off while patient, better off

Payday Loan Puzzle

- Payday loan puzzle can be rationalized by "credit scoring protection"
- Using a quantitative macro model, we show:
 People might rationally take up expensive payday loans over cheaper bank loans to "protect" credit scores!

- Restricting the size of payday loans affects (im)patient HHs differently: Impatient, worse off while patient, better off
 - Less cross-subsidization in bank loan market (less pooling)

Payday Loan Puzzle

- Payday loan puzzle can be rationalized by "credit scoring protection"
- Using a quantitative macro model, we show:
 People might rationally take up expensive payday loans over cheaper bank loans to "protect" credit scores!

- Restricting the size of payday loans affects (im)patient HHs differently: Impatient, worse off while patient, better off
 - Less cross-subsidization in bank loan market (less pooling)
- Eliminating payday loans is overall welfare-reducing

Payday Loan Puzzle

- Payday loan puzzle can be rationalized by "credit scoring protection"
- Using a quantitative macro model, we show:
 People might rationally take up expensive payday loans over cheaper bank loans to "protect" credit scores!

- Restricting the size of payday loans affects (im)patient HHs differently: Impatient, worse off while patient, better off
 - Less cross-subsidization in bank loan market (less pooling)
- Eliminating payday loans is overall welfare-reducing
 - Even patient HHs use payday loans to smooth out bad shocks (insurance)

Thank you and find me on Twitter **9 @Li_Econ**

Appendix

Facts

- Cash vs. card payments in U.S.: 20% v.s. 65% (SCPC)
- Revolving consumer debt (essentially credit card debts) ≈ 800 billion in 2004 (Federal Reserve Board of Governors series G.19)
- Elliehausen and Lawrence (2001): 56.5% having credit cards (nation-wide representative sample of 1,000 payday loan customers) / Io Data Corporation (2002): 55% (2,600 payday borrowers)
- Payday lending regulations: Max loan amount, term, APR, charges, number of outstanding (state by state)
- Why don't payday lenders report? Small fees and use Teletrack
- Could borrowing and repaying regularly build up the score? No

Bankruptcy Regimes in the U.S.

- Chapter 7
 - Most unsecured debts are discharged in exchange for non-exempt assets
 - Filers do not have to use future income to repay debts
 - Filers must pay filing and legal fees
 - Such record stays on credit report for 10 years
 - In 2017 the percentage of non-business bankruptcy filings under Chapter $7\approx 60\%$
- Chapter 13
 - It involves reorganization
 - Filers have to make a plan to repay debtors over 3 to 5 years
 - Filers can keep property
 - Such record stays on credit report for 7 years

Credit Scores

- Most well-known in U.S.—FICO score
 - Based on credit history from Experian, Equifax, and TransUnion
 - 35% payment history (e.g. bankruptcy, late payments)
 - 30% debt burden (e.g. debt-to-limit ratio on credit card)
 - Other
- Influences
 - Credit access, limit, interest rate
 - Mortgages
 - Job application (Corbae and Glover, 2020)

■ Consumer finance and default: Chatterjee et al. (2007), Livshits et al. (2007), Chatterjee et al. (2020), Exler (2020), Saldain (2021)

Consumer finance and default: Chatterjee et al. (2007), Livshits et al. (2007), Chatterjee et al. (2020), Exler (2020), Saldain (2021)
 First to model defaultable bank and payday loans with hidden information and actions

- Consumer finance and default: Chatterjee et al. (2007), Livshits et al. (2007), Chatterjee et al. (2020), Exler (2020), Saldain (2021)
 First to model defaultable bank and payday loans with hidden information and actions
- **Pecuniary mistakes**: Agarwal et al. (2009), Cartel et al. (2011)

- Consumer finance and default: Chatterjee et al. (2007), Livshits et al. (2007), Chatterjee et al. (2020), Exler (2020), Saldain (2021)
 First to model defaultable bank and payday loans with hidden information and actions
- Pecuniary mistakes: Agarwal et al. (2009), Cartel et al. (2011)
 First to endogenously generate and rationalize the payday loan puzzle

- Consumer finance and default: Chatterjee et al. (2007), Livshits et al. (2007), Chatterjee et al. (2020), Exler (2020), Saldain (2021)
 First to model defaultable bank and payday loans with hidden information and actions
- Pecuniary mistakes: Agarwal et al. (2009), Cartel et al. (2011)
 First to endogenously generate and rationalize the payday loan puzzle
- Payday loan policy debate: Zinman (2010), Morgan et al. (2012), Skiba and Tobacman (2019), Melzer (2011)

- Consumer finance and default: Chatterjee et al. (2007), Livshits et al. (2007), Chatterjee et al. (2020), Exler (2020), Saldain (2021)
 First to model defaultable bank and payday loans with hidden information and actions
- Pecuniary mistakes: Agarwal et al. (2009), Cartel et al. (2011)
 First to endogenously generate and rationalize the payday loan puzzle
- Payday loan policy debate: Zinman (2010), Morgan et al. (2012), Skiba and Tobacman (2019), Melzer (2011)

First to analyze welfare implications of policies in a richer framework

Back

[HH] Consumption $c^{(d,b',p')}(z,\omega_b,p)$

• If choosing to repay
$$(d, b', p') = (R, b', p')$$
,

$$c = e \cdot z + b + p - q_b^{(NFD,b')}(\omega_b) \cdot b' - q_p^{(R,b',p')}(\omega_b) \cdot p'$$

■ If choosing to default on payday loans only (d, b', p') = (PD, b', 0),

$$c = e \cdot z - \kappa_{PD} + b - q_b^{(NFD,b')}(\omega_b) \cdot b'$$

■ If choosing to formally default on both loans (d, b', p') = (FD, 0, 0),

$$c = e \cdot z - \kappa_{FD}$$

[HH] Value Functions *V*, *v*, and *W*

Recursive decision problem:

$$V(\epsilon,\beta,z,\omega_B,p) = \max_{(d,b',p')} v^{(d,b',p')}(\beta,z,\omega_B,p) + \epsilon^{(d,b',p')}$$

■ Conditional value function is:

$$v^{(d,b',p')}(\beta, z, \omega_b, p) = u\left(c^{(d,b',p')}(z, \omega_b, p)\right) - \xi_{PD} \cdot \mathbb{I}_{[d=PD]} - \xi_{FD} \cdot \mathbb{I}_{[d=FD]} + \beta \rho \cdot \sum_{(\beta', z', e', s')} Q^{\beta}(\beta'|\beta) Q^{z}(z') Q^{e}(e'|e) \psi^{(\tilde{d},b')}_{\beta'_{H}}(\omega_b) W(\beta', z', \omega'_{b}, p')$$

Unconditional value function:

$$W(\beta, z, \omega_B, p) = \int V(\epsilon, z, \beta, \omega_B, p) d E V(\epsilon)$$

Choice probability for a particular action is computed as its associated value relative to sum of values over all feasible actions:

$$\sigma^{(d,b',p')}(\beta,z,\omega_b,p) = \frac{\exp\left\{v^{(d,b',p')}(\beta,z,\omega_b,p)/\alpha\right\}}{\sum_{(\hat{d},\hat{b}',\hat{p}')}\exp\left\{v^{(\hat{d},\hat{b}',\hat{p}')}(\beta,z,\omega_b,p)/\alpha\right\}}$$

• Note: Well-defined, higher v with higher σ , α controls dispersion

[Bank] Type Scoring Updating ψ

• s' is updated as:

$$\psi_{\beta'_{H}}^{(\tilde{d},b')}(\omega_{b}) = \begin{cases} \sum_{z} Q^{z}(z) \cdot \sum_{\beta} Q^{\beta}(\beta'|\beta) \cdot \frac{\tilde{\sigma}_{b}^{(\tilde{d},b')}(\beta,z,\omega_{b}) \cdot s(\beta)}{\sum_{\hat{\beta}} \tilde{\sigma}_{b}^{(\tilde{d},b')}(\hat{\beta},z,\omega_{b}) \cdot s(\hat{\beta})} \\ \sum_{\beta} Q^{\beta}(\beta'|\beta) \cdot s(\beta) \end{cases}$$

■ Lower case for infeasible actions

▲ Back

[Bank] Bank-Observable Choice Probability

■ As **banks cannot observe the payday loan usage**, they use aggregate information *µ* to weight out *p* and sum out *p*':

$$\sigma_b^{(d,b')}(\beta, z, \omega_b) = \sum_{p'} \left[\sum_p \sigma^{(d,b',p')}(\beta, z, \omega_b, p) \cdot \frac{\mu(\beta, z, \omega_b, p)}{\sum_{\hat{p}} \mu(\beta, z, \omega_b, \hat{p})} \right]$$

• As **banks cannot distinguish** *R* **and** *PD*, they form *FD*/*NFD* actions:

$$\tilde{\sigma}_{b}^{(\tilde{d},b')}(\beta,z,\omega_{b}) = \begin{cases} \sigma_{b}^{(d,b')}(\beta,z,\omega_{b}) & \text{if } \tilde{d} = FD\\ \sum_{d \in \{R,PD\}} \sigma_{b}^{(d,b')}(\beta,z,\omega_{b}) & \text{if } \tilde{d} = NFD \end{cases}$$

◀ Back

[Bank] Repayment Probability and Price

Bank asset discounted price is given by:

$$q_b^{(NFD,b')}(\omega_b) = \begin{cases} \rho \cdot \frac{\mathbb{P}_b^{(NFD,b')}(\omega_b)}{1+r_f} & \text{if } b' < 0\\ \frac{\rho}{1+r_f} & \text{if } b' \ge 0 \end{cases}$$

• Expected repayment probability is calculated as:

$$\mathbb{P}_{b}^{(NFD,b')}(\omega_{b}) = \sum_{(\beta',z',e',s')} s'(\beta') \cdot Q^{z}(z') \cdot Q^{e}(e'|e) \cdot Q^{s}\left(s'(\beta') \left| \psi_{\beta'}^{(NFD,b')}(\omega_{b}) \right. \right) \\ \left[\mathcal{W}_{PD}^{b'}(\omega_{b}) \cdot \left(1 - \sigma^{(FD,0,0)}(\beta',z',\omega_{b}',p'=0)\right) + \left(1 - \mathcal{W}_{PD}^{b'}(\omega_{b})\right) \cdot \sum_{p'} \mathcal{W}_{p'}^{(R,b')}(\omega_{b}) \cdot \left(1 - \sigma^{(FD,0,0)}(\beta',z',\omega_{b}',p')\right) \right]$$

[Bank] Weighting Factors

• W_{PD} denotes the probability that a household in bank-observable state ω_b and bank loan choice b' will choose to partially default d = PD

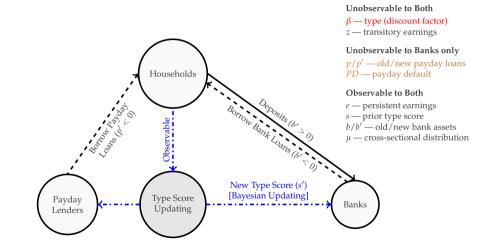
$$\mathcal{W}_{PD}^{b'}(\omega_b) = \sum_{z} Q^{z}(z) \cdot \frac{\sum_{\beta} s(\beta) \cdot \sigma_b^{(PD,b')}(\beta, z, \omega_b)}{\sum_{\hat{d} \in \{PD,R\}} \sum_{\beta} s(\beta) \cdot \sigma_b^{(\hat{d},b')}(\beta, z, \omega_b)}$$

 Conditional on full repayment, W_{p'} denotes the probability of the household choosing a certain payday loan p'

$$\mathcal{W}_{p'}^{(R,b')}(\omega_b) = \sum_{z} Q^z(z) \cdot \frac{\sum_{\beta} s(\beta) \cdot \hat{\sigma}_b^{(R,b',p')}(\beta, z, \omega_b)}{\sum_{\hat{p}'} \sum_{\beta} s(\beta) \cdot \hat{\sigma}_b^{(R,b',\hat{p}')}(\beta, z, \omega_b)}$$

[Payday] Repayment Probability and Price

Payday loan discounted price is given by:


$$q_p^{(R,b',p')}(\omega_b) = \rho \cdot \frac{\mathbb{P}_p^{(R,b',p')}(\omega_b)}{1+r_p}$$

• Expected repayment probability is calculated as:

$$\mathbb{P}_{p}^{(R,b',p')}(\omega_{b}) = \sum_{(\beta',z',e',s')} s(\beta') \cdot Q^{z}(z') \cdot Q^{e}(e'|e) \cdot Q^{s}\left(s'(\beta')|\psi_{\beta'}^{(NFD,b')}(\omega_{b})\right)$$
$$\left(1 - \sum_{d' \in \{FD,PD\}} \sum_{b'' < 0} \sigma^{(d',b'',0)}(\beta',z',\omega_{b}',p')\right)$$

Information Structure

Evolution of Distribution

The probability for an individual to move from state (β, z, e, b, s, p) to (β', z', e', b', s', p') is governed by the following mapping:

$$T^{*}(\beta', z', \omega'_{b}, p'|\beta, z, \omega_{b}, p)$$

= $\rho \cdot Q^{\beta}(\beta'|\beta) \cdot Q^{z}(z') \cdot Q^{e}(e'|e) \cdot \sigma^{(d,b',p')}(\beta, z, \omega_{b}, p) \cdot \psi^{(\tilde{d},b')}_{\beta'}(\omega_{b})$
+ $(1-\rho) \cdot G_{\beta}(\beta') \cdot G_{z}(z') \cdot G_{e}(e') \cdot \mathbb{1}_{b'=0} \cdot \mathbb{1}_{s'=G_{\beta}} \cdot \mathbb{1}_{p'=0}$

• Then, the cross-sectional distribution μ evolves according to:

$$\mu'(\beta', z', \omega'_b, p') = \sum_{(\beta, z, \omega_b, p)} T^*(\beta', z', \omega'_b, p'|\beta, z, \omega_b, p) \cdot \mu(\beta, z, \omega_b, p)$$

Stationary Recursive Competitive Equilibrium

[...] is a set of (un)conditional value functions v^* and W^* , bank loan pricing functions q_b^* and repayment probability \mathbb{P}_b^* , payday loan pricing functions q_p^* and repayment probability \mathbb{P}_p^* , a type scoring function ψ^* , choice probability functions σ^* and $\tilde{\sigma}_b^*$, and a steady state distribution $\overline{\mu}^*$ such that:

- HH Optimality: $v^{*(d,b',p')}(\beta, z, \omega_b, p), W^*(\beta, z, \omega_b, p), \sigma^{(d,b',p')*}(\beta, z, \omega_b, p)$
- Zero Profits for Bank Lenders: $q_b^{*(NFD,b')}$, $\mathbb{P}_b^{*(NFD,b')}(\omega_b)$
- Zero Profits for Payday Lenders: $q_p^{*(R,b',p')}$, $\mathbb{P}_p^{*(R,b',p')}(\omega_b)$
- **Bayesian Updating:** $\psi_{\beta'}^{*(\tilde{d},b')}(\omega_b), \tilde{\sigma}_b^{*(\tilde{d},b')}(\beta,\omega_b)$
- Stationary Distribution: $\overline{\mu}^*(\beta, z, \omega_b, p)$

▲ Back

Mapping for μ \rightarrow Grid Specification

Exogenous Calibration

Parameter		Value	Source
Low discount factor	β_L	0.886	Chatterjee et al. (2020)
High discount factor	β_H	0.915	Chatterjee et al. (2020)
Transition from low to high	$Q^{\beta}(\beta_L \beta_H)$	0.013	Chatterjee et al. (2020)
Transition from high to low	$Q^{\beta}(\beta_H \beta_L)$	0.011	Chatterjee et al. (2020)
Discount factor at birth	G_{β}	(0.72,0.28)	Chatterjee et al. (2020)
AR(1) of persistent earnings	$ ho_e$	0.9136	Floden and Linde (2001)
S.D. of persistent earnings		0.0426	Floden and Linde (2001)
S.D. of transitory earnings	$\sigma_e^2 \ \sigma_z^2$	0.0421	Floden and Linde (2001)
Persistent earnings at birth	$\tilde{G_e}$	(1,0,0)	Upward earnings profile
Transitory earnings at birth	G_z	(1/3,1/3,1/3)	Upward earnings profile

Exogenous Calibration (cont.)

Parameter		Value	Source
CRRA	γ	2	Standard
Survival probability	ρ	0.975	40 years
Risk-free rate	\dot{r}_{f}	0.014	Effective interest rate = 4%
Formal default cost	κ_{FD}	0.02	Albanesi and Nosal (2020)
Payday default cost	κ_{PD}	0.002	Montezemolo and Wolff (2015)
Operating cost for payday lenders	r_p	1.925	Flannery and Samolyk (2005)
Dispersion of extreme value shocks	α	0.005	

◀ Back

Parameter	Value		Target	Data	Model
Formal stigma cost	ξ_{FD}	0.02235	Formal default rate	0.99%	0.99%
Payday stigma cost	ξ_{PD}	0.00704	Payday default rate (cond.)	29.7%	29.7%

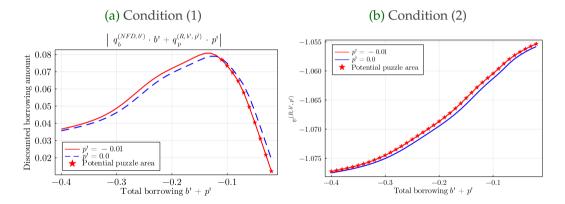
◀ Back

Source: ABI, CPS, Skiba and Tobacman (2018)

Identification of Payday Loan Puzzle

• For each state (β, z, ω_b, p) , (R, b' < 0, p' < 0) such that:

$$q_b^{(NFD,b')}(\omega_b) \cdot b' + q_p^{(R,b',p')}(\omega_b) \cdot p' \Big| < \Big| q_b^{(NFD,\hat{b}')}(\omega_b) \cdot \hat{b}' \Big|$$
(1)


$$v^{(R,b',p')}(\beta, z, \omega_b, p) > v^{(R,\hat{b}',p=0)}(\beta, z, \omega_b, p)$$
 (2)

where $b' + p' = \hat{b}'$ denotes total borrowing

 The choices satisfying (1) and (2) are choices that we classify as the payday loan puzzle, denoted as P(β, z, ω_b, p)

✓ Back

Example

◀ Back

• The rate of the payday loan puzzle occurrence is defined as:

$$\mathcal{R} \equiv \frac{\sum_{\beta, z, \omega_b, p} \mu(\beta, z, \omega_b, p) \cdot \sum_{(d, b', p') \in \mathcal{P}(\beta, z, \omega_b, p)} \sigma^{(d, b', p')}(\beta, z, \omega_b, p)}{\sum_{\beta, z, \omega_b, p} \mu(\beta, z, \omega_b, p) \cdot \sum_{(d, b', p') \in \mathcal{F}_{both}(z, \omega_b, p)} \sigma^{(d, b', p')}(\beta, z, \omega_b, p)}$$

where $\mathcal{F}_{both}^{-}(z, \omega_b, p)$, the set of borrowing choices with both loans

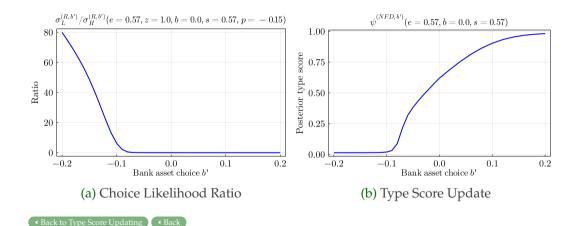
Grids Used in Computation

Variable	Symbol	# Grid points	Range
Persistent earnings	е	3	{0.57, 1.00, 1.74}
Transitory earnings	Z	3	{0.78, 1.00, 1.29}
Bank assets	b	191	[-0.40, 15.00]
Payday loans	р	16	[-0.15, 0.00]
Type score	S	8	[0.013, 0.989]

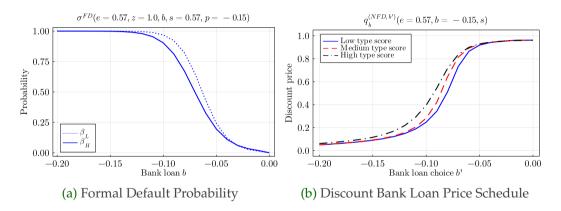
• E.g., $\sigma^{(d,b',p')}(\beta, z, e, b, s, p)$

- Actions: $1 + 191 + 16 \times 41 + 150 = 998$
- States: $2 \times 3 \times 3 \times 8 \times (16 \times 41 + 150) = 116,064$
- Total: $998 \times 116,064 = 115,831,872 \approx 116$ million points

External Validation: Credit Ranking Age Profile


Moment	Data	Model	Chatterjee et al. (2020)
Intercept (mean credit ranking)	0.281	0.278	0.355
Slope (mean credit ranking)	0.037	0.004	0.029
Intercept (S.D. credit ranking)	0.216	0.219	0.255
Slope (S.D. credit ranking)	0.011	0.002	0.004
Ave. autocor. credit ranking	-0.202		-0.109

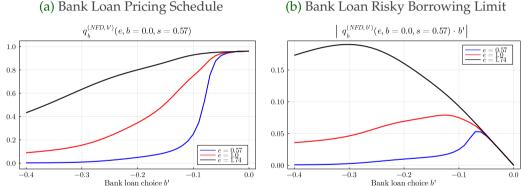
We then compute the means and standard deviations of credit rankings within each age bin. With these age bin data values, we estimate affine age profiles for means, standard deviations, and autocorrelations of year-to-year changes in credit rankings (2004Q1, 2005Q1 and 2006Q1)


Type Score Protection via Payday Loans

- Proposed "rational" explanation: Households use payday loans to protect their credit scores
- How does it work in the model?
 - More bank loans \implies Worse type score
 - Worse type score \implies Higher interest rates
- Incentive to use payday loans to obtain lower interest costs in future

More Bank Loans \implies Worse Type Score

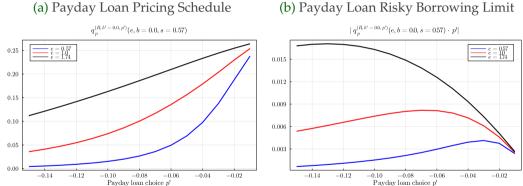
Worse Type Score \implies Higher Bank Interest Rates

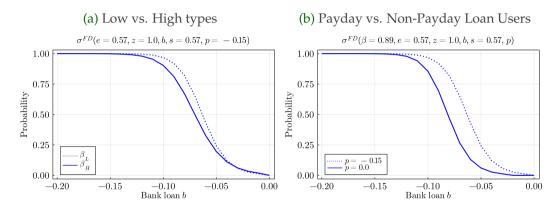


◀ Back

Impatient HHs Borrow and Default More

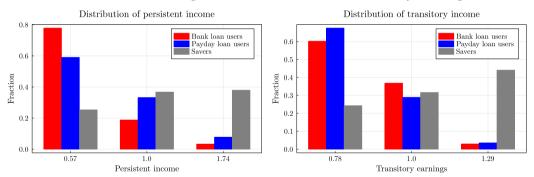
Moment	Aggregate	Impatient	Patient
Default			
Formal default rate	0.99	1.27	0.57
Payday default rate (cond.)	29.7	30.56	27.84
Households in debt			
Fraction of bank loan users	24.26	27.5	19.55
Fraction of payday loan users	9.46	10.7	7.65
Bank debt-to-earnings (cond.)	6.48	6.54	6.36
Interest rate			
Ave. interest rate for bank loans	8.56	8.79	8.06
Ave. interest rate for payday loans	410.85	433.89	362.74


Bank Loan Pricing Schedule across Earnings


(b) Bank Loan Risky Borrowing Limit

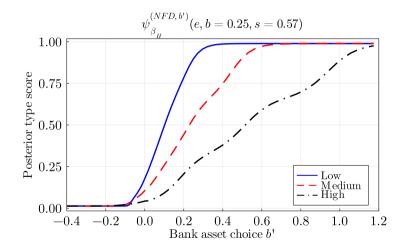
◀ Back

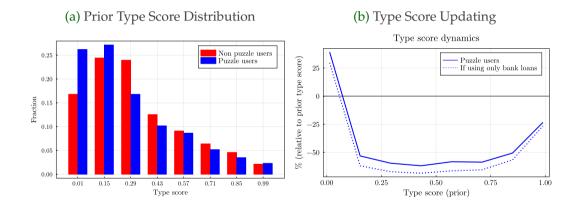
Payday Loan Pricing Schedule across Earnings


Formal Default Prob. across Types and Payday Users

◀ Back

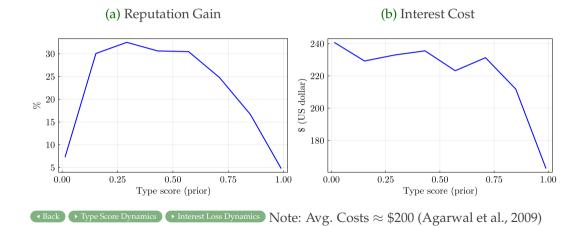
Payday Loan Users Across Earnings


(a) Persistent Earnings


(b) Transitory Earnings

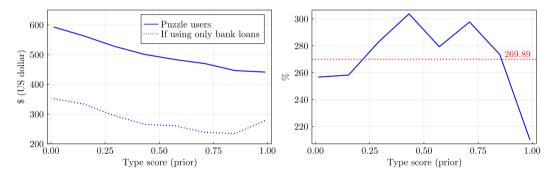
◀ Back

High Earner Suffer More from Borrowing



Puzzle Users: Lower Prior Score

33 / 54


Reputation Gain vs. Interest Cost

Puzzle Users: Interest Loss

(a) Interest Loss Dynamics

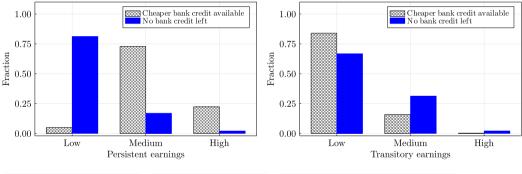
(b) Interest Loss (in %)



◀ Back

Why? Smooth Out Temporary Shortfall in Earnings

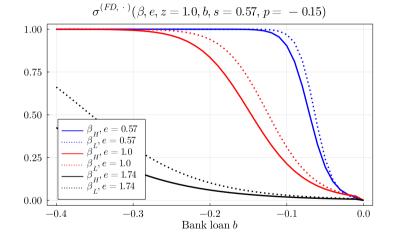
(a) Persistent Earnings (Observable)


(b) Transitory Earnings (Unobservable)

Why? Smooth Out Temporary Shortfall in Earnings

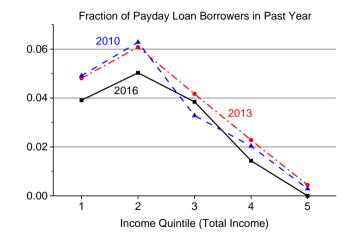
(a) Persistent Earnings (Observable)

(b) Transitory Earnings (Unobservable)



Payday Loan Users Across Earning

pe Score Updating Across *e*


▶ Fraction of Payday Users Across Income in SCF

Impatient and Poor HHs Default More Formally

Payday Loan Users Not Extremely Poor

Bins: 23K/40K/65K/109K • Back

U.S. Median Household Earnings

- Source: Current Population Survey (CPS)
- 2004: \$638 × 52 = \$33, 176 (current dollars)
- Among full-time employed, wage and salary workers
- Wage and salary workers for earnings purposes are workers age 16 and older who receive wages, salaries, commissions, tips, payments in kind, or piece rates
- Earnings before taxes and other deductions

Quantity Caps: Moments

Variables (in %)	Benchmark	Quantity Cap	Full Ban
Formal Default Rate	0.99	0.96	0.89
Payday Default Rate	2.81	2.19	_
Eff. Cond. Payday Default Rate	34.68	31.24	—
Fraction of Bank Loan Users	24.26	24.06	23.15
Fraction of Payday loan Users	9.46	8.22	_
Bank Debt-to-Earnings (cond.)	6.48	6.61	6.84
Ave. Bank Interest Rate	8.56	8.53	8.46
Ave. Payday Interest Rate	410.85	341.88	—

◀ Back

Alternative for U.S. Median Household Earnings

- Median wage income: \$30,000 (among HH aged 20-60: \$41,000)
- Median wage income + transfers : \$38,000 (among HH aged 20-60: \$44,000)
- Median total income: \$42,000 (among HH aged 20-60: \$46,000)

Calibrating Payday Lending Cost Exogenously

- Source: Flannery and Samolyk (2005)
- Average loan amount: \$227.54
- Average payday loan duration: 15.28 days
- Average store operation costs per loan: \$19.08
- Implied annual risk-free rate for (mature) payday lenders:

$$\frac{\$19.08}{\$227.54} \times \frac{365}{15.28} \approx 200\%$$

■ It follows that $r_b = \rho \times (2.0 + 1) - 1 = 1.925$

Calibrating Formal Default Costs Exogenously

- Source: Albanesi and Nosal (2020)
- Out-of-pocket cost of filing for bankruptcy for Ch.7 pre-reform: \$697
- U.S. Median Household Earnings in 2004: \$33,176
- Formal (out-of-pocket) default cost:

$$\kappa_{FD} = \frac{\$697}{\$33,176} \approx 0.02$$

Calibrating Payday Default Costs Exogenously

- Source: Montezemolo and Wolff (2015)
- Bounced check and overdraft (NSF) fees: \$35 each
- Payday (out-of-pocket) default cost:

$$\kappa_{PD} = \frac{\$70}{\$33,176} \approx 0.002$$

Formal Default Rate

- Source: American Bankruptcy Institute (ABI)
- Total number of non-business Chapter 7 filings in 2004: 285,787 + 302,803 + 274,196 + 254,518 = 1,117,304
- Use 2004 in order to avoid effects of 2005 BAPCPA reform
- Total number of U.S. households in 2004: 112,000,000
- Formal bankruptcy rate:

$$\frac{1,117,304}{112,000,000} = 0.00998 = 0.99\%$$

- Source: Skiba and Tobacman (2018)
- Same payday loan dataset
- 29.7% of payday loan users defaults (write-off) during the course of a year since the first loan was taken

- Source: SCF 2004
- Net worth (Herkenhoff's definition: liquid assets minus unsecured debt)
- Negative net worth: 18.3% (for HHs aged 20-60: 20.9%)

▶ Alternative

Fraction of Payday Loan Users

Source: SCF 2010 (payday loan data first available in 2010 wave)
For households between 20 and 60: 4.8% (uncond.: 3.9%)

Average Debt-to-Income Ratio

- Total income (before taxes) = Wage income + government transfers (unemployment, childcare, ...) + interest income + dividends + realized capital gains + ...
- Using liquid net worth definition (following Herkenhoff)
 - Total income (cond. on borrowing): 14.8% (for HHs aged 20-60: 14.2%)

Average Credit Card Interest Rate

- Source: SCF 2004
- For households aged 20-60
- Exclude observations with 0 interest rate
- Average CC rate: 12.73% (cond. on borrowing: 12.96%)
- Adjusted by one-year ahead CPI inflation:
 - U.S. CPI Growth Rate in 2005: 3.388%
 - Real average CC rate (cond. on borrowing):

$$\frac{1 + \frac{12.96}{100}}{1 + \frac{3.388}{100}} - 1 = 0.0926 = 9.26\%$$

Average Payday Loan Interest Rate

- 391% (Source: St. Louis FED)
- 390 780% (Source: Consumer Federation of America)
- 400% (Source: CFPB)
- 400 1000% (Source: Stegman (2007, J Econ Perspective))
- Adjusted by one-year ahead CPI inflation:
 - U.S. CPI Growth Rate in 2005: 3.388%
 - Real average payday loan rate (cond. on borrowing):

$$\frac{1 + \frac{400}{100}}{1 + \frac{3.388}{100}} - 1 = 3.84 = 384\%$$

Alternative for Fraction of Bank Loan Users

- Using gross unsecured debt: Balances on general purpose credit cards, e.g. Visa, Mastercard (follows Herkenhoff JMP): 40.14%
- Using net worth (SCF-defined): $\approx 10\%$ (negative net worth)
- Using net worth (Herkenhoff's definition: liquid assets minus unsecured debt): 18.3% (20.9% for HH age between 20 and 60)

Alternative for Average Credit Card Interest Rates

- Average CC rate: 11.49% (conditional on borrowing: 11.81%)
- Among households aged 20-60: 11.64% (cond. on borrowing: 11.94%)
- Source: FED Board of Governors, G.19 (Consumer Credit)
 - Commercial bank interest rates in 2004
 - ► All credit card amounts: 12.72%
 - ► Credit card accounts assessed interest: 13.22%
 - ► 24-month personal loans: 11.89%

Alternative for Debt-to-Income Ratio

- Using gross unsecured debt (credit cards only)
 - ► Total income (cond. on borrowing): 4.4% (11%)
 - ► Wage income + transfers (cond. on borrowing): 5% (12.4%)
 - ▶ Wage income (cond.): 6.4% (14%)
 - ► For households aged 20-60: total income (cond.): 4.8% (10.5%)
 - ► For households aged 20-60: Wage income + transfers (cond.): 5.3% (11.8%)
 - ► For households aged 20-60: Wage income (cond.): 5.6% (11.9%)
- Using liquid net worth definition (following Herkenhoff) [conditional]
 - ▶ Wage income + transfers: 16.4% (for HHs aged 20-60: 15.5%)
 - ► Wage income: 20.8% (for HHs aged 20-60: 16.3%)
- Source: FoF and NIPA table 2.1
 - Using aggregate number (Revolving Consumer Debt/Personal Disposable Income): 8.7%

