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Abstract
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this case, a firm’s cross-sectionally demeaned fluctuations (a) are a poor proxy for mea-

suring true idiosyncratic shocks and (b) have negligible cross-firm correlation by con-

struction, regardless of true correlation. This paper proposes a way to calculate a range

of the contribution of idiosyncratic comovements across firms within industries to aggre-

gate fluctuations, “clustered origins”, from observed data. In the US, clustered origins

can explain GDP volatility and its evolution. The contribution of clustered origins to

GDP volatility increased from around 10% to 25% over the past two decades. These

findings suggest networks and interconnections between firms deserve a central place in
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1. Introduction

Can idiosyncratic micro shocks to individual firms drive sectoral or economy-wide fluc-

tuations? When there are numerous firms, negative shocks to some firms offset positive

shocks to others, and vice versa. Thus, idiosyncratic shocks cannot affect aggregates. How-

ever, this averaging out argument collapses if the idiosyncratic shocks correlate across

firms. The shocks comove leading to short-run departures from their long-run level (av-

erage). The averaging out argument also fails in the presence of extremely large firms.

Idiosyncratic shocks to these firms do not disappear in aggregation. Pairwise correlated id-

iosyncratic shocks and the presence of mega-size firms allow macro fluctuations can arise

from micro shocks.

Micro origins of macro volatility have received increasing interest in recent years.1 Start-

ing with the seminal work of Jovanovic (1987) and Gabaix (2011), important literature in-

vestigates “granularity” how micro shocks generate macro fluctuations when the firm size

distribution is fat-tailed (e.g., di Givonanni and Levchenko, 2012, Carvalho and Gabaix,

2013, Carvalho, 2014, among many others). Compared with these studies, there is cur-

rently a lack of research on the role of another second moment, pairwise correlation across

firms, in the business cycle.

This paper attempts to offer an additional microfoundation for aggregate shocks in the

business cycle literature by proposing and implementing a way to quantify the aggregate

volatility derived from cross-firm comovements of idiosyncratic shocks within an industry,

referred to as “clustered origins”. The evolution of US GDP volatility can increasingly be

accounted for by clustered origins. These findings indicate the importance of a growing

literature on networks and interactions between firms in macroeconomics.

To measure clustered origins, I begin with a simple and flexible framework where a

firm’s business cycle component of productivity or sales consists of a common and idiosyn-

cratic shocks that are additively separable and uncorrelated. The common and idiosyncratic

shocks are not directly observable. One easy and widely used way to identify common

1For example, Comin and Philippon (2005), Comin and Mulani (2006), Carvalho and Gabaix (2013), and many

others study the evolution of firm- and aggregate-level volatility as well as their relationships.
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and idiosyncratic shocks is by cross-sectionally demeaning variables. Unfortunately, this

method does not work well when idiosyncratic shocks are mutually dependent.

When there exists pairwise correlation of idiosyncratic shocks, a cross-sectional sample

mean of firm fluctuations and deviations from it are a poor proxy for a common and idiosyn-

cratic shocks, respectively. The sample mean and demeaned fluctuations do not converge

to the true shocks in mean square. Notably, their average cross-firm correlation is asymp-

totically zero by construction, regardless of true idiosyncratic shocks’ correlation. Also, a

firm’s demeaned fluctuations correlate with the sample mean even if its true idiosyncratic

shock is independent of the common shock. Thus, the sample mean and deviations from it

tend to ignore clustered origins, by construction. Consequently, I need to recover the true

common and idiosyncratic shocks and compute their variance and covariance in order to

get a correct understanding of the business cycle and its micro origins.

I introduce a simple tool that allows us to organize the micro-foundations of the busi-

ness cycle volatility both quantitatively and systematically. Instead of estimating a point

value of firms’ common and idiosyncratic shocks’ variance and covariance, I compute

their upper- and lower-bounds from the observed variance and covariance of firm’s busi-

ness cycle fluctuations for each industry. The method relies on two basic statistical facts

from Cauchy–Schwarz inequality: (1) variances are non-negative, and (2) correlation coef-

ficients lie between negative and positive one. The next step is to aggregate the idiosyncratic

shocks’ variance and covariance ranges with sales weights in each industry to compute the

ranges of industry-level clustered and granular origins, respectively. Then, I aggregate the

industries’ ranges of micro origins in the whole economy with adjusting for the Domar

weight. The main advantage is that my approach avoids misspecification issues after mea-

suring an individual firm’s business cycle components.

Using panel data on publicly traded firms in the US economy, I compute the evolution

of clustered and granular origins of aggregate fluctuations based on business cycle compo-

nents of labor productivity.2 Both micro origins are essential to understand “great modera-

2As an alternative, I also consider business cycle components of real sales. The choice of business cycle com-

ponents does not affect my main results.



3

tion”. After the early 1980s recession, the micro origins contribute to the decline of the US

GDP volatility. Also, the recent rise of the GDP volatility in the 21st century is associated

with two types of micro origins, especially the clustered origins. In the early 2000s, the

clustered origins’ ratio to the GDP volatility was below 10%; however, it increased to 20%

in recent times. These results contribute to the literature on the great moderation, for exam-

ple, Kim and Nelson (1999), Stock and Watson (2002), Comin and Mulani (2006), Davis,

Haltiwanger, Jarmin, Miranda, Foote and Nagypal (2006), and many others. My findings

closely relate to the results of Carvalho and Gabaix (2013) in which the fundamental volatil-

ity — sectoral or firm-level shocks’ volatility — account for the great moderation.

This paper’s work complements recent efforts in the literature on micro origins of macro

fluctuations, in particular granularity introduced by Gabaix (2011).3 Acemoglu, Carvalho,

Ozdaglar and Tahbaz-Salehi (2012), Carvalho (2014), Oberfield (2018), Herskovic, Kelly,

Lustig and Van Nieuwerburgh (2020) and many others have investigated network ori-

gins. Networks (supply chains and input-output linkages) shape the size distribution or/and

firm volatility, amplifying the granular origins. Carvalho and Gabaix (2013), di Giovanni,

Levchenko and Mejean (2014) consider cross-sector correlations and correlation of the

shocks from different levels of aggregation. di Givonanni and Levchenko (2012), di Gio-

vanni, Levchenko and Mejean (2014), Gaubert and Itoskhoki (2018) study micro origins

of business cycle fluctuations in an open economy context. In contrast to these studies, my

paper focuses on correlated idiosyncratic shocks across firms within a cluster itself. Corre-

lated idiosyncratic shocks across firms at the industry and national level are an additional

source of the aggregate business cycle.

Besides granular origins, I introduce clustered origins by relaxing the zero cross-firm

correlation assumption. This is a key contribution of this paper to the existing literature.

Predominantly, macroeconomics has assumed zero pairwise correlation across firms’ id-

iosyncratic shocks and thus ignored clustered origins. As I discussed, the average pairwise

correlations of deviations from the sample mean is asymptotically zero. Thus, the newly de-

3See in particular, but not only, Buch and Neugebauer (2011), Amiti and Weinstein (2018), Bremus, Buch,

Russ and Schnitzer (2018) for granular issues related to financial sectors.
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fined shocks from the cross-sectional mean yield that the aggregate business cycle volatility

comprises the macro and granular origins with negligible clustered origins, by construction.

Zero correlation assumption can rationalize this assumption and result when the cross-

sectional sample mean and deviations from the mean can be used as a newly defined

common and idiosyncratic shocks. The next step is to answer the question of what con-

dition makes the sample mean and deviations to be well-defined common and idiosyncratic

shocks. An individual firm’s demeaned fluctuations are always uncorrelated with the mean

when variance and covariance of idiosyncratic shocks are identical across firms. In this

case, constructing newly defined shocks by demeaning is appropriate.

However, this rationalization relying on identical variance-covariance assumption cannot

be applied to the US economy. Not surprisingly, the US firms’ business cycle fluctuations

and their idiosyncratic shoks have significant cross-firm heterogeneity in their statistical

moments, including variance and covariance, even within a narrowly defined industry. A

wide range of literature has documented evidence casting doubt on identical variance or/and

covariance of idiosyncratic productivity, output, and financial performance (e.g., Stanley,

Amaral, Buldyrev, Havlin, Leschhorn, Maass, Salinger and Stanley, 1996, Xu and Malkiel,

2003, Comin and Philippon, 2005, Comin and Mulani, 2006, Chun, Kim, Morck and Ye-

ung, 2008, Castro, Clementi and Lee, 2015, Tweedle, 2018, Kalnina and Tewou, 2020). Un-

der heterogeneous variance and covariance structure across firms, a cross-sectional sample

mean and deviations from it are (1) a poor measure of the common and idiosyncratic shocks

and (2) not well-defined macro and micro shocks because they correlate. Researchers need

to be careful using cross-sectionally demeaned variables and imposing zero pairwise cor-

relation in order to get a better understanding of the business cycle and its origins.

This paper complements the literature addressing the sectoral origins of macro fluctua-

tions, starting with the seminal research of Long and Plosser (1983). Even if there exist nu-

merous disaggregated sectors, sectoral comovements (arising from supply chains) prevent

sector specific shocks from being diversified. This generates substantial aggregate fluctua-

tions. See Bak, Chen, Scheinkman and Woodford (1993), Horvath (1998), Dupor (1999),

Foerster, Sarte and Watson (2011), Atalay (2017), among many others. These studies on
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between-industry comovements and propagations of sectoral shocks are complementary to

my works on within-industry comovements at the firm level in the business cycle research.

The rest of the paper is organized as follows. Section 2 illustrates the main idea and

motivation. Section 3 shows that the sample mean and variance are a poor proxy for shocks

in the presence of pairwise correlation of idiosyncratic shocks. Section 4 demonstrates how

to quantify clustered and granular origins from data without demeaning. Section 5 presents

data, measurements, and their statistics. Section 6 explores the evolution of clustered and

granular origins in the US economy. Section 7 provides an alternative interpretation of

the previous sections’ results based on a factor model widely used in macroeconometrics.

Section 8 concludes.

2. Framework and Motivation

This section introduces a framework with clustered micro shocks to illustrate the basic

ideas and motivation. In a cluster, there are Nt firms. Let yit and ŷit denote firm i’s variable

(e.g., productivity, sales, output, employment, and so on) in the log and its fluctuation (i.e.,

its business cycle component), respectively. Firm i’s fluctuations come from two uncorre-

lated random variables with zero mean:

ŷit = εA,t + εF,it, (1)

where εA,t and εF,it are the (true) common and idiosyncratic shocks, and their standard

deviations are σA,t and σF,it, respectively. I allow the pairwise correlation of idiosyncratic

shocks between firms i and i′ to be non-zero: ρFF,ii′t ∈ (−1,1) for i ̸= i′. In addition to the

common shock, the correlated idiosyncratic shock can lead to aggregate-level movements

as well as comovements across firms in the cluster.4 This is why I use the terminology

“cluster” instead of “industry”, emphasizing pairwise correlations within industries. For

convenience, Sections 2 and 3 focus on within a cluster. After Section 4, the whole economy

will consist of many clusters.

4The pairwise correlation can lead aggregates to short-run departure from the long-run level, i.e.,

N−1
t

∑
i ŷit ̸= 0 or

∑
iwitŷit ̸= 0. It, however, does not affect the long-run level, i.e., E[ŷit] = 0.
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The aggregate volatility comes from the volatility of common and idiosyncratic shocks

as well as the pairwise correlation of idiosyncratic shocks. The aggregate business cycle

component is the weighted sum of ŷit:

Ŷt =
∑
i

witŷit, (2)

where wit is the within-cluster share of firm size and satisfies
∑

iwit = 1.5 Denote its

standard deviation by σ2
Ŷ ,t

:

σ2
Ŷ ,t

= σ2A,t +
∑
i

w2
itσ

2
F,it +

∑
i

wit

∑
i′ ̸=i

wi′tρFF,ii′tσF,itσF,i′t, (3)

in which the second and third terms are micro origins of macro fluctuations through the

volatility and comovements of idiosyncratic shocks, respectively. Define macro, granular,

and clustered origins as

DEFINITION 1—Macro origins: σ2A,t.

DEFINITION 2—Granular origins: Γt =
∑

iw
2
itσ

2
F,it.

DEFINITION 3—Clustered origins: χt =
∑

iwit
∑

i′ ̸=iwi′tρFF,ii′tσF,itσF,i′t.

To illustrate the core idea, consider a simple economy where all firms are ex-ante iden-

tical, i.e., the variance and covariance of idiosyncratic shocks are identical across firms.

Then, equation (3) can be rewritten as follows.

σ2
Ŷ ,t

= σ2A,t + h2tσ
2
F,t + (1− h2t )ρF,tσ

2
F,t, (4)

where ht = (
∑

iw
2
it)

1/2 is the Herfindahl–Hirschman index (HHI) within cluster. There

exist micro origins as a convex combination of variance and covariance (σ2F,t and ρF,tσ2F,t)

with weight h2t . The second term represents granular origins. Lucas (1977) argues that

this term is negligible because of diversification: ht → 0 as Nt →∞. Thus, the aggregate

5The business cycle research uses the Domar weight (Domar, 1961, Hulten, 1978). Sections 4 will consider

this issue.
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shock mainly derives the business cycle. Gabaix (2011), however, shows that a fat-tailed

distribution of firms causes HHI not to converge to zero as the number of firms goes to

infinity, which is empirically supported. In that case, idiosyncratic shocks are not diversified

and contribute to macroeconomic fluctuations.

This paper focuses on the last term in equation (4) called clustered origins. Aggre-

gate volatility increases when idiosyncratic shocks are positively correlated across firms,

ρF,t > 0. The clustered origins decrease with concentration (HHI) in contrast to the granu-

lar origins. To illustrate how the clustered origins can be important in macro fluctuations,

consider a ratio of the clustered origins to the granular origins. From equation (4), the ratio

is

χt
Γt

=

(
1

h2t
− 1

)
ρF,t, (5)

when all firms have the same variance and covariance of idiosyncratic factors. As in Gabaix

(2011)’s example, set a size distribution to have ht = 0.12.6 Small positive pairwise corre-

lations from 1% to 5% imply that the range of cluster origins is between 68% and 342% of

granular origins from equation (5). A 1.46% correlation coefficient results in an equal con-

tribution of idiosyncratic comovements across firms and granularity to aggregate volatility.

These simple exercises show that the clustered origins potentially contribute to a sizable

part of aggregate business cycle fluctuations.

3. Unpleasant Properties of the Sample Mean and Deviations from It

In equation (1), a firm’s business cycle component is observable, but its true common and

idiosyncratic shocks are not. Many previous business cycle studies use a cross-sectional

sample mean as a proxy for the common shock and measure the idiosyncratic shocks by

demeaning observations. Define the pseudo common and idiosyncratic shocks by the cross-

sectional sample mean and the deviations from it, and denote them by eA,t and eF,it, re-

6In my US public firm-level data, ht is around 0.085. In that case, 1% correlation implies clustered origins are

around 137% of granular origins in equation (5).
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Figure 1. True vs Pseudo Idiosyncratic Shocks and Their Aggregate Fluctuationsa
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aThe figure plots the aggregate fluctuations based on the average true pseudo idiosyncratic shocks in each period (orange solid

line, N−1
t

∑5,000
i=1 εF,it, and blue dashed line, N−1

t

∑5,000
i=1 eF,it, respectively.

Figure 2. Sample Pairwise Correlations: True vs Pseudo Idiosyncratic Shocksa
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a The figure plots histograms for sample correlations of true and pseudo variables (orange bars, corr(εF,it, εF,i′t), and blue

bars, corr(eF,it, eF,i′t), respectively) from 3,000 simulations.

spectively.

ŷit =
(
ŷt
)
+
(
ŷit − ŷt

)
≡ eA,t + eF,it, (6)

where ŷt =Nt
−1∑

i ŷit denotes the cross-sectional sample mean.

3.1. A Simple Simulation Exercise

The reason I call the sample mean and deviations from it “pseudo” is that they can ob-

fuscate the origins of business cycle fluctuations when idiosyncratic shocks correlate with

each other. Figures 1 and 2 provide a simple example of this. I randomly generate 5,000
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firms’ true idiosyncratic shocks during 50 periods from a multi-normal distribution with

mean zero and 12% standard deviation for two cases: zero or 2.5% correlation.7 To focus

on pairwise correlations, a firm’s share is identical across firms, and there is no common

shock, εA,t = 0. Also, I redo this exercise 3,000 times and calculate the sample statistics of

true and pseudo idiosyncratic shocks.

Figure 1’ Panels A and B plot the aggregate fluctuations of two economies with zero

and positive correlations based on the true and pseudo shocks, respectively. The average

true idiosyncratic shocks with positive correlation (orange solid line in Panel B) fluctuate

more than that with zero correlation (orange solid line in Panel A). However, the average

pseudo idiosyncratic shocks (blue dashed line, i.e., firms’ demeaned fluctuations) are zero

by construction, as shown in Panels A and B.

Figure 2 reports the sample correlations of zero and 2.5% correlation cases based on

3,000 simulations. In Panel B, the pseudo idiosyncratic shocks have almost zero (slightly

negative) sample pairwise correlations regardless of true shocks’ positive correlations,

2.5%. The figures indicate that positive comovements potentially generate the aggregate

business cycle, which can be ignored when I use the deviations from the sample mean.

3.2. Non-Negligible Difference between True and Pseudo Variables

When the true idiosyncratic shocks move together, the pseudo shocks are a poor proxy

for the true shocks. Consider the absolute value of difference between true and pseudo

shocks: ∣∣eA,t − εA,t

∣∣= ∣∣eF,it − εF,it
∣∣= εF,t, (7)

where εF,t = N−1
t

∑
i εF,it is the average of the true idiosyncratic shocks. Pairwise co-

movements of idiosyncratic shocks lead to non-negligible differences. Define σ2F,t =

N−1
t

∑
i σ

2
F,it as the average of idiosyncratic shock variances. Also, denote the aver-

age variance of idiosyncratic shocks by covFF,t = N−1
t

∑
i covFF,it where covFF,it =

7See Appendix B for details and other results of simulations with unequal weights.
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(Nt − 1)−1
∑

i′ ̸=i ρFF,ii′tσF,itσF,i′t is the average covariance of firm i with all other firms.

Introduction of these terms yields the following lemma.

LEMMA 1: The difference between the true and pseudo shocks does not converge to zero

in mean square when the number of firms goes infinity. For any firm i,

E
[
|eA,t − εA,t|2

]
= E

[
|eF,it − εF,it|2

]
=

1

Nt
σ2F,t +

(
1− 1

Nt

)
covFF,t. (8)

PROOF: From equation (7), E
[
|εF,t|2

]
= var(εF,t) yields the result. ■

When there are numerous firms, the first term is close to zero with finite variances on the

right-hand side of equation (8). However, the second term is not negligible when pairwise

covariances are not zero on average. Thus, the squared difference does not converge to

zero in mean square. The sample mean and the deviations from it would be undesirable

measurements in business cycle research.

3.3. Inconsistent Estimator of Variance and Covariance

From the above result, it is not surprising that variance and covariance of pseudo shocks

are an inconsistent estimator of variance and covariance of true shocks in an economy with

the non-negligible comovments, covFF,t ̸= 0. First, the pseudo common and idiosyncratic

shocks’ variance systemically mis-measures that of the true common and idiosyncratic

shocks. Respectively, these values are

var(eA,t) = σ2A,t +
1

Nt
σ2F,t +

(
1− 1

Nt

)
covFF,t, (9)

and

var(eF,it) =

(
1− 1

Nt

)(
σ2F,it − covFF,it

)
−
[
1

Nt

(
σ2F,it − σ2F,t

)
+

(
1− 1

Nt

)(
covFF,it − covFF,t

)]
. (10)

When a firm does not correlate with other firms on average, covFF,it = 0, the pseudo vari-

ables’ variances are consistent estimators. However, they tend to overstate the true common
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shock’s volatility and understate the idiosyncratic shocks’ volatility when firms’ idiosyn-

cratic shocks comove in the same direction.

More importantly, the pseudo variables yield a misunderstanding of comovements by

construction. The covariance between the pseudo common shock and firm i’s idiosyncratic

shock is

cov(eF,it, eA,t) =
1

Nt

(
σ2F,it − σ2F,t

)
+

(
1− 1

Nt

)(
covFF,it − covFF,t

)
, (11)

which is zero on average, i.e., N−1
t

∑
i cov(eF,it, eA,t) = 0. The second term, covFF,it −

covFF,t, causes an individual firm to have a non-negligible value when covariances differ

across firms even if the true common and idiosyncratic shocks are by definition uncorre-

lated. The pseudo idiosyncratic shocks’ covariance between firm i and i′ is

cov(eF,it, eF,i′t) = ρFF,ii′tσF,itσF,i′t −
1

2

(
1− 1

Nt

)(
covFF,it + covFF,i′t

)
− 1

2Nt

(
σ2F,it + σ2F,i′t

)
− 1

2
cov(eF,it + eF,i′t, eA,t). (12)

The cross-sectional average is negligible by construction, whatever the true idiosyncratic

shocks’ pairwise correlations are. The following proposition states it formally.

PROPOSITION 1: The cross-sectional average of pairwise covariances of pseudo id-

iosyncratic shocks (cross-sectionally demeaned fluctuations) is

1

Nt

∑
i

1

Nt − 1

∑
i′ ̸=i

cov(eF,it, eF,i′t) =
1

Nt

(
covFF,t − σ2F,t

)
, (13)

which converges to zero when the number of firms goes to infinity.

PROOF: Combining equation (11) into equation (12) yields equation (13). ■

Such asymptotically zero average covariance of the pseudo idiosyncratic shocks implies

that using deviations from a sample mean as micro shocks potentially rule out the impacts

of correlated idiosyncratic shocks on aggregate fluctuations, i.e., clustered origins.



12

3.4. Homogeneous Variance-Covariance

Even though the correlated idiosyncratic shocks are able to generate notable aggregate

fluctuations, most existing business cycle studies have implicitly assumed zero or negligible

cross-firm correlations. This subsection shows such assumption can be rationalized when

true idiosyncratic shocks have identical variance and covariance regardless of their pairwise

correlation. However, Section 5 will show that the variance and covariance notably differ

across firms in the US. In that case, this subsection’s argument breaks down.

Suppose that all firm have the identical variance and covariance of idiosyncratic shcoks,

i.e., σ2F,it = σ2F,t and ρFF,ii′t = ρF,t for all i ̸= i′. From equations (9) and (10), their vari-

ances are

var(eA,t) = σ2A,t +
1

Nt
σ2F,it +

(
1− 1

Nt

)
ρF,tσ

2
F,t, (14)

and

var(eF,it) =

(
1− 1

Nt

)
(1− ρF,t)σ

2
F,t. (15)

Equations (14) and (15) show that the pseudo variables tend to overstate the true common

shock’s volatility and understate the idiosyncratic shocks’ volatility when the actual pair-

wise correlation is positive. Despite the above systemic over-and under-measurement prob-

lem, the pseudo common and idiosyncratic shocks are still useful in investigating aggregate

fluctuations. First, the pseudo common and idiosyncratic shocks are uncorrelated. This zero

correlation implies the pseudo variables are well-defined macro and micro shocks. Second,

the cross-firm correlation of pseudo idiosyncratic shocks does not depend on the true id-

iosyncratic shocks and is close to zero where there are many firms. This property allows us

to ignore comovements of idiosyncratic shocks.

From equations (11) and (12), firm i’s pseudo idiosyncratic shocks are uncorrelated with

that of another firm and the pseudo common shock. For ∀i ̸= i′, I obtain the following
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results.8

corr(eF,it, eA,t) = 0, (16)

and

corr(eF,it, eF,i′t) =−(Nt − 1)−1. (17)

Equation (16) implies that the pseudo shocks (eF,it, eA,t) are well defined macro and mi-

cro shocks. The newly defined common and idiosyncratic shocks (the sample mean and

deviations from the mean) are asymptotically uncorrelated with each other as shown in

equation (17). Regardless of pairwise correlations of actual idiosyncratic shocks, the newly-

defined idiosyncratic shocks (i.e., firms’ demeaned fluctuations) are asymptotically uncor-

related across firms, which implies their negligible contributions to aggregate volatility.

In this homogeneous variance-covariance case, the aggregate fluctuations can be ex-

plained by the direct contribution of pseudo common shocks and the conventional granular

origins of pseudo idiosyncratic shocks when there are many firms. The conventional de-

composition of aggregate volatility into the macro and granular origins without clustered

origins works. Using equations (4), (14) and (15), the aggregate volatility is

σ2
Ŷ ,t

= var(eA,t) + h2t var(eF,it)−
1− h2t
Nt − 1

var(eF,it), (18)

where the variance of aggregate fluctuations can be decomposed into the pseudo common

and idiosyncratic shocks’ variances asymptotically. Therefore, when variance-covariance

of true idiosyncratic shocks is identical across firms, business cycle studies do not need to

worry about comovements of idiosyncratic shocks across firms by using the pseudo com-

mon and idiosyncratic shocks constructed from the observed sample mean and deviation.

8Note that the results in equations (16) and (17) hold when the pseudo factors are constructed from the un-

weighted mean. If the weights are unequal, i.e., consider weighted mean, then the pseudo common and idiosyn-

cratic shocks are correlated, while the pairwise correlation of pseudo idiosyncratic shocks is independent of the

true idiosyncratic shocks’ pairwise correlation. See Appendix A for the related results with the weighted mean.
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In contrast to the previous assumption, a wide range of literature has documented evi-

dence that casts doubt on identical variance or/and covariance of idiosyncratic productiv-

ity, output, and financial performance (e.g., Stanley, Amaral, Buldyrev, Havlin, Leschhorn,

Maass, Salinger and Stanley, 1996, Xu and Malkiel, 2003, Comin and Philippon, 2005,

Comin and Mulani, 2006, Chun, Kim, Morck and Yeung, 2008, Castro, Clementi and Lee,

2015, Tweedle, 2018, Kalnina and Tewou, 2020). Consistent with this, section 5 shows that

the US individual firms’ business cycle fluctuations and idiosyncratic parts have significant

cross-firm variations of their properties including variance and covariance, even within a

narrowly defined industry.

Under heterogeneous variance and covariance structure across firms, a cross-sectional

sample mean and deviations from it are a poor measure of the common and idiosyncratic

parts. Also, pseudo idiosyncratic shocks cannot be justified and used properly. Thus, that

environment forces us to recover the true common and idiosyncratic shocks and compute

their variance and covariance in order to get a correct investigation of the business cycle and

its origins. The next section attempts to identify them to understand aggregate fluctuations’

micro origins.

4. Identifying Cluster and Granular Origins of Macro Fluctuations

This paper’s primary goal is to quantify the micro origins of aggregate fluctuations. This

is complicated by the fact that I observe a firm’s business cycle component (ŷit), but its

true common and idiosyncratic parts (εA,t and εF,it) are nobservable. Without the help of

additional information/structure, it is impossible to decompose one component into two

parts.

Instead of estimating the point value of true common and idiosyncratic shocks, and their

moments, I derive an individual firm’s upper and lower bound of the common shock’s

variance from the variance and covariance of the observed {ŷit}Nt
i=1. Then, I calculate the

upper and lower bound of cluster and granular origins by aggregating them within a cluster.

This straightforward approach does not require additional assumptions and variables.



15

Let’s begin with observations, {ŷit}Nt
i=1. By definition in equation (1), firms’ variance

and covariance of business cycle components are as follows.

var(ŷit) = σ2A,t + σ2F,it (19)

cov(ŷit, ŷi′t) = σ2A,t + ρFF,ii′tσF,itσF,i′t (20)

Using equations (19) and (20), clustered and granular origins in equation (3) can be rewrit-

ten as follows.

χt =
∑
i

wit

∑
i′ ̸=i

wi′tcov(ŷit, ŷi′t)− (1− h2t )σ
2
A,t (21)

Γt =
∑
i

w2
itvar(ŷit)− h2tσ

2
A,t (22)

In the above equations, all terms are observable except for σ2A,t. The following proposition

provides its range.

PROPOSITION 2: In a cluster, the common shocks’ variance should not be larger than

σ∗2A,t.

0≤ σ2A,t ≤ σ∗2A,t =min
i,i′

{
var(ŷit),

[
1 + corr(ŷit, ŷi′t)

]
sd(ŷit)sd(ŷi′t)

}
(23)

PROOF: First, non-negative variance implies var(ŷit) ≥ σ2A,t in equation (19). Thus, I

obtain mini{var(ŷit)} ≥ σ2A,t. Second, Cauchy–Schwarz inequality yields ρFF,ii′tσF,itσF,i′t ≥
−σF,itσF,i′t. From equation (20), I obtain cov(ŷit, ŷi′t) + σF,itσF,i′t ≥ σ2A,t. Because non-

negative σ2A,t implies var(ŷit)≥ σ2F,it for all i, I obtain that [1+corr(ŷit, ŷi′t)]sd(ŷit)sd(ŷi′t)≥
σ2A,t for any i and i′. Thus, mini,i′{[1 + corr(ŷit, ŷi′t)]sd(ŷit)sd(ŷi′t)} ≥ σ2A,t. Hence, I ob-

tain equation (23). ■

Using the range of σ2A,t, I obtain ranges of clustered and granular origins in equa-

tions (21) and (22). A small HHI implies a wide range of clustered origins but a narrow

range of granular origins.
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COROLLARY 1: The clustered and granular origins are bounded as follows.∑
i

wit

∑
i′ ̸=i

wi′tcov(ŷit, ŷi′t)− (1− h2t )σ
∗2
A,t ≤ χt ≤

∑
i

wit

∑
i′ ̸=i

wi′tcov(ŷit, ŷi′t) (24)

∑
i

witvar(ŷit)− h2tσ
∗2
A,t ≤ Γt ≤

∑
i

witvar(ŷit) (25)

PROOF: This is directly from Equations (21) and (22) with Proposition 2. ■

The above corollary guides the following section in quantifying clustered and granular

origins without any additional assumptions and measurements. Using equations (24) and

(25), it is straightforward to calculate the upper and lower bounds of micro origins from

data directly.

5. Data and Summary Statistics

I correct the annual firm-level sales and employments data from Compustat North Amer-

ica: Fundamental Annuals during 1975–2018. The measure of productivity is real revenue

per worker in logs, on which I use the appropriate industry-level deflators from the US

Bureau of Economic Analysis (BEA) database. The data set comprises 53 clusters; dis-

aggregated as much as BEA deflator and Compustat data allow. See Table C.1 for the list

of clusters.

Using a panel regression, I compute the business cycle component of firm labor produc-

tivity (or real sales) as

ŷit = yit − βsyit−1 − ψage
s × ln aget − ψemp

s × ln empt − ψtime
s × t− δi, (26)

where δi is firm fixed effect.9 As in Castro, Clementi and Lee (2015), the regression equa-

tion controls the employment size and age in log because both were shown to be negatively

correlated with the dependent variable.10 The regression allows all coefficients to differ

9The firm fixed effect controls the unobserved time-invariant characteristics, including its location and cohort.
10See Evans (1987), Hall (1987) for the detailed discussion and empirical evidence in the US manufacturing

industries. Models with technology adoption and vintage capital can generate endogenous comovments of aggre-
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Table 1. Summary Statisticsa

Variable Full sample 1980–1985 1986–2000 2001–2013

Within-firm standard deviation of labor productivity: var(ŷit)

Mean 0.199 0.174 0.205 0.203

Standard deviation 0.226 0.171 0.232 0.238

Quantile 10% 0.058 0.056 0.058 0.059

50% 0.133 0.126 0.137 0.132

90% 0.378 0.324 0.396 0.385

Observations (firms) 82,670 13,480 35,750 33,440

Pairwise within-cluster correlation of labor productivity: corr(ŷit, ŷi′t)

Mean 0.106 0.086 0.060 0.150

Standard deviation 0.340 0.341 0.328 0.344

Quantile 10% −0.353 −0.366 −0.380 −0.321

50% 0.112 0.084 0.064 0.164

90% 0.559 0.544 0.496 0.602

Observations (pairs) 9,424,466 1,203,324 3,759,910 4,461,232

aI calculate the firm i’s standard deviation and pair of i and i′’s correlation at time t with a rolling window of 10 years,

[t− 4, t+ 5]. The correlations are only for the pairs in the same cluster. There are 53 clusters.

across clusters indexed by s. Lastly, I compute each firm’s (time-series) variance and co-

variance — var(ŷit) and cov(ŷit, ŷi′t) — for each year in a rolling window of 10 years,

[t− 4, t+ 5]. As an alternative, I use the growth rate, ŷit = yit − yit−1, instead of the re-

gression residual described in equation (26). The choice of construction of business cycle

components does not affect the main results of this paper.

Table 1 presents summary statistics for within-firm volatility and pairwise correlations

of labor productivity’s business cycle components. Consistent with the results of Comin

and Philippon (2005) and Comin and Mulani (2006) with firm sales growths, an individ-

ual firm’s volatility is larger during the great moderation (1986–2000) compared to earlier

periods (1980–1985), even if the macroeconomic fluctuation becomes milder in that era.

gate and firm total factor productivities (e.g., Schaal and Taschereau-Dumouchel, 2018, Mullen, 2020, Fiori and

Scoccianti, 2021). The fixed effects, trends, size, and age attempt to control for these endogenous comovments.
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Figure 3. Volatility and Cross-Firm Comovements of Labor Productivity’s Business Cycle Components
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In contrast, the pairwise correlation of labor productivity falls during 1980 and 2000. Re-

cently, the correlation has almost doubled compared to before. Note that these patterns

do not represent the evolution of idiosyncratic shock’s standard deviation and correlations

directly. As shown in equations (19) and (20), they contain the standard deviation of com-

mon shocks which I need to recover and isolate to understand the micro origins of aggregate

fluctuations.

Related to issues in section 3.4, the rest of this section will provide evidence on the firm

heterogeneity of true idiosyncratic shocks’ variance and covariance (within a cluster) from

the publicly traded US firms’ observed firm fluctuations.

To do that, I use firms’ variance and covariance of business cycle components, var(ŷit) =

σ2A,t+ σ2F,it and cov(ŷit, ŷi′t) = σ2A,t+ ρFF,ii′tσF,itσF,i′t in equations (19) and (20), respec-

tively. These values should be identical across firms if their variance and covariance of un-

derlying true idiosyncratic shocks are homogeneous. Thus, large cross-sectional variations

of var(ŷit) and cov(ŷit, ŷi′t) in data cast doubt on the homogeneous variance-covariance

assumption for true idiosyncratic shocks.

Figure 3 plots the within-cluster demeaned standard deviations and pairwise correlation

coefficients of ŷit in 1995, which examines the hypothesis that firms’ true idiosyncratic

shocks have identical variance and covariance in their cluster. Panels A and B demonstrate

significant heterogeneity. These results are robust over-time and across clusters.
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6. The Evolution of Micro Origins in the US

This section presents an account of the evolution of clustered as well as granular origins

of the US economy’s aggregate GDP volatility in the last three decades. I extend section 4’s

within-cluster framework to the whole US economy with 53 clusters; dis-aggregated as

much as BEA deflator data allow.

To aggregate clusters (industries), I introduce the following variables and notations. An

individual firm i ∈ Ist ⊂ It = ∪s′∈SIs′t is established in one cluster indexed by s ∈ S. Its

shares in the whole economy and in cluster s are wit and wsit, respectively. Also, the share

of cluster s in the whole economy is wst satisfying wit = wstwsit. Then, the whole econ-

omy’s business cycle component of GDP is ĜDPt = dt
∑

i∈It witŷit, equivalently, ĜDPt =

dt
∑

s∈S wstŶst where dt is the Domar weight adjustment, and Ŷst =
∑

i∈Ist wsitŷit is the

cluster’s (aggregate) business cycle component. The whole economy’s volatility is

var(ĜDPt) = d2t
∑
s∈S

w2
stvar(Ŷst) + d2t

∑
s∈S

wst

∑
s′∈S\{s}

ws′tcov(Ŷst, Ŷs′t). (27)

Equivalently,

var(ĜDPt) = d2t
∑
s∈S

w2
st[σ

2
A,st + χst +Γst] + BIOt, (28)

where BIOt is the between-industry origins defined below. The granular and clustered ori-

gins of cluster s are Γst = σ2A,st+
∑

i∈Ist w
2
sitσ

2
F,it and χst =

∑
i∈Ist wsit

∑
i′∈Ist\{i}wsi′tρFF,ii′tσF,itσF,i′t.

Thus, we can quantify the granular and clustered origins in the whole economy as follows.

DEFINITION 4—Granular origins in the whole economy: Γt = d2t
∑

s∈S w
2
stΓst.

DEFINITION 5—Clustered origins in the whole economy: χt = d2t
∑

s∈S w
2
stχst.

The between-industry origins is

BIOt = d2t
∑
s∈S

wst

∑
s′∈S\{s}

ws′t

[
cov(εA,st, εA,s′t) +

∑
i∈Ist

wsit

∑
i′∈Is′t

wsi′tcov(εF,it, εF,i′t)

]
,

(29)
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Figure 4. Clustered and Granular Origins
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Figure 5. Ratio of Clustered and Granular Origins to GDP Volatility
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which contains the correlated sectoral shocks across clusters (the first part in the parenthe-

sis) and the correlated idiosyncratic shocks with firms in other clusters (the second part in

the parenthesis). Existing literature has documented the importance of the first term. This

paper focuses on the clustered origins: cross-firm correlation within a cluster. I leave issues

related to BIOt open for future research.

Figure 4 plots aggregate GDP volatility and its clustered and granular origins for the

US.11 In the early 1980s, the 10 year rolling window variance of GDP’s business cycle

components is around 0.7% (8.4% standard deviation). The variance sharply falls to below

0.2% (4.5% standard deviation) during the great moderation era, followed by a rise to 0.4%

11Aggregate GDP volatility is calculated as the variance of the US private economy’s GDP business cycle

components with a rolling window of 10 years, [t− 4, t+ 5], in which the business cycle components are from

the residuals of AR(1) similarly to equation (26).
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(6.3% standard deviation) after the early 2000s. The figure shows micro origins can well

explain the evolution of the US economy’s volatility.

Figure 5 plots a ratio of clustered and granular origins to the US economy’s GDP volatil-

ity. I observe the rise of micro origins of aggregate fluctuations in the US. The red area

represents the clustered origins’ contribution to the aggregate volatility which is low —

around 10% of GDP variance — during the era of great moderation. In the early 2000s, its

contribution started rising and is currently around 25% of the US economy volatility now.

The blue area — the granular origins’ ratio to the GDP variance — steadily increases from

10% to 25% approximately in my sample period.

6.1. Robustness Checks

This subsection discusses issues related to the above results and performs further ro-

bustness checks. In Figure 6, the whole economy’s Herfindahl-Hirschman Index (HHI)

fluctuates over time, but its changes are not drastic so as to generate the time-variations in

the micro origins in Figure 4. Also, high HHI is related to clustered origins negatively but

granular origins positively. Thus, I conclude that the evolution of HHI is not the primary

source deriving the evolution of micro origins.

According to Panel B in Figure 6, Domar adjustment is low in the great moderation era

and recently rises. This can generate the observed patterns of micro origins in Figure 4. Fig-

ure 7 plots micro origins without Domar adjustments, dt, from equation (28). The evolution

of clustered origins and its relationship with the GDP volatility have the same patterns as

Figure 4’s results with Domar adjustments. While granular origins recently rise as shown in

Figure 4, the 1980s and 1990s have similar granular origins, which differs from Figure 4.

A sizable part of granularity’s contribution to the great moderation comes from the low

Domar weight in that era.

Figure 8 shows that my results are robust to an alternative measure — growth rate —

of business cycle components.12 Also, Figure 9 plots micro origins using business cycle

components of the firm’s real sales instead of labor productivity. The clustered origins’

12In Figure 8, the GDP volatility is also based on its growth rate.
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Figure 6. Herfindahl–Hirschman Index and Dormar Adjuestment
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Figure 7. Clustered and Granular Origins without Domar Adjustment
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Figure 8. Clustered and Granular Origins with Productivity Growth Rate
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Figure 9. Clustered and Granular Origins with Business Cycle Components of Firm Sales
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range is narrower than previously seen in Figure 4 and has a U shape. These results confirm

clustered origins are essential to understanding the aggregate economy’s business cycle

fluctuations.

7. Further Discussion: Factor Model Interpretation

A factor model is an alternative way to handle pairwise correlations in the framework in

the previous section. Suppose comovements across idiosyncratic shocks arise from reac-

tions to a latent common factor. Decompose the idiosyncratic shock into the latent factor

and (pairwisely) uncorrelated shocks, i.e., εF,it = λitft+uit where εA,t, ft, uit and ui′t are

uncorrelated for any firm i ̸= i′. Then, equation (1) can be rewritten by

ŷit = εA,t + λitft + uit︸ ︷︷ ︸
=εF,it

, (30)

which allows a firm’s responses to the latent common factor to differ across firms. The

business cycle component’s variance and covariance are

var(ŷit) = σ2A,t + var(λitft + uit) = σ2A,t + λ2itσ
2
f,t + σ2u,it, (31)

cov(ŷit, ŷi′t) = σ2A,t + cov(λitft, λi′tft) = σ2A,t + λitλi′tσ
2
f,t, (32)

where λ2itσ
2
f,t+σ

2
u,it and λitλi′tσ2f,t are the corresponding part of σ2F,it and ρFF,ii′tσF,itσF,i′t

in equation (19) and (20) of our benchmark framework.

The latent factor derives pairwise comovements of idiosyncratic shocks. Such comove-

ments prevent the difference between true and pseudo shocks from converging to zero in

mean square:

E
[
|eA,t − εA,t|2

]
= E

[
|eF,it − εF,it|2

]
=

1

Nt
σ2u,t + λ

2
tσ

2
f,t, , (33)

where λt =N−1
t

∑
i λit. Compared with the previous benchmark framework, the zero av-

erage response, λt = 0, means negligible pairwise comovements, covFF,it ≈ 0 and thus
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covFF,t ≈ 0, in section 3.13 The sample mean and deviation from it would not be a good

tool in studying business cycle fluctuations and their origins.

Again, the pseudo factor variance (based on a sample mean) is not a consistent estimator.

var(eA,t) = σ2A,t + λ
2
tσ

2
f,t +

1

Nt
σ2u,t (36)

var(eF,it) =

(
1− 1

Nt

)
σ2u,it + (λit − λt)

2σ2f,t −
1

Nt

(
σ2u,it − σ2u,t

)
, (37)

where σ2u,t = N−1
t

∑
i σ

2
u,it and λt = N−1

t

∑
i λit are averages. These values are not a

good measurement for the true common and idiosyncratic shock variances, var(εA,t) and

var(εF,it), except for negligible comovements case, λt = 0. Also, the pseudo common and

idiosyncratic shocks’ covariances are correlated:

cov(eA,t, eF,it) = (λit − λt)λtσ
2
f,t +

1

Nt

(
σ2u,it − σ2u,t

)
, (38)

which converges to zero as the number of firms goes to infinity in the case of λt = 0. Also,

they are uncorrelated asymptotically when the factor coefficient does not differ across firms,

λit = λt. In this homogeneous case, the pseudo factors are well-defined macro and micro

shocks.14 However, the identical coefficient implies identical business cycle components’

covariance, cov(ŷit, ŷi′t) in equation (32), which is inconsistent with data. Finally, the pair-

wise covariance of pseudo idiosyncratic shocks tend to ignore the true covariance.

cov(eF,it, eF,i′t) = (λit − λt)(λi′t − λt)σ
2
f,t −

1

Nt
σ2u,t

− 1

Nt

[
(σ2u,it − σ2u,t) + (σ2u,i′t − σ2u,t)

]
(39)

13Note that covFF,it = (Nt − 1)−1∑
i′ ̸=i cov(εF,it, εF,i′t) = (Nt − 1)−1∑

i′ ̸=i cov(λitft, λi′tft) implies

covFF,it =
1

Nt − 1

(
− λit +

∑
i′

λi′t
)
σ2
f,t =

Nt

Nt − 1

(
λt −

λit
Nt

)
λitσ

2
f,t (34)

covFF,t =
1

Nt

∑
i

covFF,it =
Nt

Nt − 1

(
λ
2
t −

1

N2
t

∑
i

λ2it

)
σ2
f,t. (35)

14Also, the model of ŷit = εA,t + εF,it with εF,it = λtft + uit versus the model of ŷit = ε̃A,t + ε̃F,it with

ε̃A,t = εA,t + λtft and ε̃F,it = uit cannot be identified.
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Regardless of the value of λt, its average is asymptotically zero by construction.

These results show that the previous sections’ conclusions hold when pairwise comove-

ments across firms arise from (heterogeneous) responses to a underlying common shock.

Also, researchers should carefully consider (1) using a sample mean and deviations as well

as (2) implementing zero normalization of average coefficient (as in Bai and Ng, 2013)

when the presence of firms’ interdependency and networks is expected.

8. Conclusion

Recent business cycle literature has highlighted the importance of individual firms in

generating macro fluctuations. However, the fact that correlated idiosyncratic movements

across firms within a cluster can generate macroeconomic fluctuations, i.e., clustered ori-

gins, has been neglected. This paper distinguishes the micro origins of aggregate fluctua-

tions into clustered and granular origins from the US firm-level data using simple statistical

properties. Both the clustered and granular origins account for the US economy’s business

cycle volatility and its evolution. Specifically, they improve our understanding of the great

moderation and the recent macro volatility rise. These results imply that networks and in-

terdependency across firms deserve a central place in business-cycle research, alongside

macro and granular origins.

A large part of comovements of individual firms’ idiosyncratic labor productivity and

sales would come from their endogenous decisions. Recent literature on firm networks in

various dimensions (e.g., Oberfield, 2018, Bernard, Moxnes and Saito, 2019, Giroud and

Mueller, 2019, Heise, 2019, and many others) can show a question what drives comove-

ments and thus clustered origins. Applying the conventional sectoral level input-output

studies (e.g., Long and Plosser, 1983, Bak, Chen, Scheinkman and Woodford, 1993, Hor-

vath, 1998, Dupor, 1999, Foerster, Sarte and Watson, 2011, Atalay, 2017, and many others)

on the firm-level also guides us to understand underlying mechanisms. Moreover, vintage

capital, technology spillover and adoption (e.g., recently, Bloom, Schankerman and Van

Reenen, 2013, Schaal and Taschereau-Dumouchel, 2018, Mullen, 2020, Fiori and Scoc-

cianti, 2021, and many others) can lead to productivity comovements as well.
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APPENDIX A: Arbitrary Weights in Section 3.4

Consider an arbitrary weight, {wit}i, satisfying
∑

i′ wi′t = 1 and wit ≥ 0. Define pseudo

common and idiosyncratic factors based on the weighted mean, as follows.

ewA,t =
∑
i′

wi′tŷi′t = εA,t +
∑
i′

wi′tεF,i′t (40)

ewF,it = ŷit − eA,t = εF,it −
∑

i′wi′tεF,i′t (41)

Then, the variance of pseudo idiosyncratic shocks is

var(ewF,it) = (1− 2wit + mw
2 )(1− ρF,t)σ

2
F,t (42)

where mw
2 =

∑
i′ w

2
i′t ∈ [N−1

t ,1] measures how much equally weighted. Also, the pairwise

correlation of pseudo idiosyncratic shocks are

corr(eF,it, eF,i′t) =− wit +wi′t − mw
2√

1− 2wit + mw
2

√
1− 2wi′t + mw

2

, (43)

which is independent of the pairwise correlation of true idiosyncratic shocks denoted by

ρF,t. If the weights are unequal, the idiosyncratic shocks correlate with the pseudo common

in contrast to the equal wights case with homogeneous variance and covariance.

corr(eA,t, eF,it) =− wit − mw
2√

σ2A,t/σ
2
F,t + ρF,t

1− ρF,t
+ mw

2

√
1− 2wit + mw

2

, (44)

where the equal weights — ∀i, wit =N−1
t — lead the pseudo common and idiosyncratic

shocks to be uncorrelated for all firms; ∀i, corr(eA,t, eF,it) = 0.

APPENDIX B: Simulation Exercise

First, I generate 5,000 firms’ true idiosyncratic shocks (εF,it) during 50 periods which

are randomly generated from a multi-normal distribution with mean zero, 12% standard

deviation, and 2.5% correlation. Figure B.1 reports results with a time-invariant size distri-

bution with fat-tails where the distribution is generated from Pareto distribution with shape
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parameter 1.2 on support [1,∞), which yields approximately a 13% Herfindahl-Hirschman

index. Compared to Figure 1, Figure B.1 shows larger aggregate fluctuations due to granu-

larity. Correlations still generate additional aggregate fluctuations. The solid orange line of

Panel B with correlations is more volatile than Panel A’s solid orange line without correla-

tions. However, the dashed blue lines constructed by pseudo shocks have indistinguishable

volatilities between Panels A and B. Second, I redo the above exercise 3,000 times and

calculate the sample statistics of true and pseudo idiosyncratic shocks. Figure B.2 plots

histograms for the aggregate volatility with and without unequal size distributions. Positive

correlations lead to sizable aggregate fluctuations.

Figure B.1. True vs Pseudo Idiosyncratic Shocks and Their Aggregate Fluctuations with fat tails
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Figure B.2. Sample Standard Deviations of Aggregate Fluctuations
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APPENDIX C: Data and Measurements

[Step 1] I correct the industry-level deflators (pst) — Chain-Type Price Indexes for Gross

Output by Industry [2012=100] — from the US Bureau of Economic Analysis (BEA)

database. Sales (saleit) and employments (empit) are directly from the Compustat North

America: Fundamental Annuals (1975–2018) databases.

[Step 2] I construct the sample as follows. First, I keep the following observations in the

Compustat database.

• No major mergers flag: Comparability status (compstit) does not equal to AB.

• Country ISO 3 digit code (locit): USA

• Currency ISO 3 digit code (curcdit): USD

Then, I exclude firms with the following criteria.

• Non-positive sales

• Non-positive employments

• Utilities sector (NAICS 22)

• Public administration sector (NAICS 91–92)

[Step 3] I merge the Compustat sample and the industry-level BEA deflator using Ta-

ble C.1. I calculate the logged labor productivity as real sales divided by employments

(lnsaleit − lnpst − lnempit) for firm i in industry s at t.

[Step 4] Since some clusters have low observations, I merge them. See Table C.1 for the

list of clusters.
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Table C.1. List of Clusters

Cluster BEA Industry NAICS

1997 2017

1. Agriculture, forestry, fishing, and hunting · Farms 111–2 111–2

· Forestry, fishing, and related activities 113–5 113–5

2. Oil and gas extraction · Oil and gas extraction 211 211

3. Mining, except oil and gas · Mining, except oil and gas 212 212

4. Support activities for mining · Support activities for mining 213 213

5. Construction · Construction 230 230

6. Wood products · Wood products 321 321

7. Nonmetallic mineral products · Nonmetallic mineral products 327 327

8. Primary metals · Primary metals 331 331

9. Fabricated metal products · Fabricated metal products 332 332

10. Machinery · Machinery 333 333

11. Computer and electronic products · Computer and electronic products 334 334

12. Electrical equipment, appliances, · Electrical equipment, appliances, 335 335

and components and components

13. Motor vehicles, bodies and trailers, · Motor vehicles, bodies and trailers, 3361–6 3361–6

and parts, and Other transportation and parts

Other transportation equipment · equipment 3369 3369

14. Furniture and related products Furniture and related products 337 337

15. Miscellaneous manufacturing Miscellaneous manufacturing 339 339

16. Food and beverage and tobacco · Food and beverage and tobacco 311–2 311–2

products products

17. Textile mills and textile product mills · Textile mills and textile product mills 313–4 313–4

Continued on next page
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Table C.1 — continued from previous page

Cluster BEA Industry NAICS

1997 2017

18. Apparel and leather and allied products · Apparel and leather and allied products 315–6 315–6

19. Paper products · Paper products 322 322

20. Printing and related support activities · Printing and related support activities 323 323

21. Petroleum and coal products · Petroleum and coal products 324 324

22. Chemical products · Chemical products 325 325

23. Plastics and rubber products · Plastics and rubber products 326 326

24. Wholesale trade · Wholesale trade 420 420

25. Retail trade · Motor vehicle and parts dealers 441 441

· Food and beverage stores 445 445

· General merchandise stores 452 452

· Other retail 442-4, 442-4,

446-8, 446-8,

451, 451,

453-4 453-4

26. Air transportation · Air transportation 481 481

27. Rail transportation · Rail transportation 482 482

28. Water transportation · Water transportation 483 483

29. Truck transportation · Truck transportation 484 484

30. Pipeline transportation · Pipeline transportation 486 486

31. Other transportation (transit and ground) · Transit and ground passenger 485 485

and support activities, and Warehousing transportation

and storage · Other transportation and support activities 487-8, 487-8,

491-2 491-2

· Warehousing and storage 493 493

Continued on next page
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Table C.1 — continued from previous page

Cluster BEA Industry NAICS

1997 2017

32. Publishing industries, except internet · Publishing industries, except internet 511 511

(includes software) (includes software)

33. Motion picture and sound recording · Motion picture and sound recording 512 512

industries industries

34. Broadcasting and telecommunications · Broadcasting and telecommunications 513 515,

517

35. Data processing, internet publishing, Data processing, internet publishing, 514 518–9

and other information services and other information services

36. Federal Reserve banks, credit · Federal Reserve banks, credit 521–2 521–2

intermediation, and related activities intermediation, and related activities

37. Securities, commodity contracts, and · Securities, commodity contracts, and 523 523

investments investments

38. Insurance carriers and related activities · Insurance carriers and related activities 524 524

39. Funds, trusts, and other financial · Funds, trusts, and other financial 525 525

vehicles vehicles

40. Real estate · Real estate 531 531

41. Rental and leasing services and lessors · Rental and leasing services and lessors 532–3 532–3

of intangible assets of intangible assets

42. Computer systems design and related · Computer systems design and related 5415 5415

services services

43. Legal services, and miscellaneous · Legal services 5411 5411

professional, scientific, and technical · Miscellaneous professional, scientific, 5412–4, 5412–4,

services and technical services 5416–9 5416–9

Continued on next page
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Table C.1 — continued from previous page

Cluster BEA Industry NAICS

1997 2017

44. Administrative and support services · Administrative and support services 561 561

45. Waste management and remediation · Waste management and remediation 562 562

services services

46. Educational services · Educational services 610 610

47. Ambulatory health care services · Ambulatory health care services 621 621

48. Hospitals, Nursing and residential care · Hospitals 622 622

facilities, and social assistance · Nursing and residential care facilities 623 623

· Social assistance 624 624

49. Performing arts, spectator sports, · Performing arts, spectator sports, 711–2 711–2

museums, and related activities museums, and related activities

50. Amusements, gambling, and recreation · Amusements, gambling, and recreation 713 713

industries industries

51. Accommodation · Accommodation 721 721

52. Food services and drinking places · Food services and drinking places 722 722

53. Other services, except government · Other services, except government 810 810
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