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Simple Inference for Constrained Optima
 

What do we want:
A confidence interval for p′θ, where

p is a known vector
(for this talk – we can handle a known or estimated smooth function g(θ)),
θ is constrained through moment inequalities E (mj (Xi , θ)) ≤ 0, j = 1, ..., J .

Original motivation:
Confidence intervals for components of a partially identified vector.
But the problem is considerably more general.
What’s new?
That it’s simple to compute:

A "critical value" is computed only once (twice for two-sided interval).
Only one global optimization per direction.
The adjustment from estimate to CI happens locally.

We have:
Written a generic Python implementation...
with a Stata wrapper...
and are in the process of applying it to past papers.



Simple Inference for Constrained Optima
 

What’s out there?

Method 1: Project Confidence Regions for Vectors
(our example: Andrews-Soares, Ecma 2010)

This is the most generally valid method.
It is also (potentially severely) conservative.
A CV must be bootstrapped at each θ.
A single bootstrap is cheap.
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What’s out there?

Method 1: Project Confidence Regions for Vectors

Method 2: Calibrated Projection
(Kaido-Molinari-Stoye, Ecma 2019)

Less universally valid than Method 1.
Much less conservative than Method 1.
A CV must be bootstrapped at each θ.
A single bootstrap is moderately expensive (resamples linear programs).
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What’s out there?

Method 1: Project Confidence Regions for Vectors

Method 2: Calibrated Projection

Method 3: Profiling
(Romano-Shaikh, JSPI 2008; Bugni-Canay-Shi, QE 2017)

Less universally valid than Method 1.
Much less conservative than Method 1.
A CV must be bootstrapped at each γ.
A single bootstrap is very expensive (resamples nonlinear programs).



Simple Inference for Constrained Optima
 

What’s out there?

Method 1: Project Confidence Regions for Vectors

Method 2: Calibrated Projection

Method 3: Profiling

Method 4: Support Function Bootstrap
(Pakes-Porter-Ho-Ishii, working paper 2011; see Ecma 2015)

Much less universally valid than other methods.
Excludes moment equalities and (local to) point identification.
Does not studentize moment inequalities.
Much less conservative than Method 1 (unless the previous point bites).
A CV must be bootstrapped once.
A single bootstrap is moderately expensive (resamples linear programs).
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What’s out there?

Method 1: Project Confidence Regions for Vectors

Method 2: Calibrated Projection

Method 3: Profiling

Method 4: Support Function Bootstrap

Simple Calibrated Projection
(This paper)

More assumptions than 1, 2, or 3, but considerably fewer than 4.
Allows for moment equalities and (local to) point identification.
Much less conservative than Method 1.
A CV must be bootstrapped once (twice for two-sided intervals).
This bootstrap is moderately expensive (resamples linear programs).
There is only one global optimization (twice for two-sided intervals).
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What’s out there?

Method 1: Project Confidence Regions for Vectors

Method 2: Calibrated Projection

Method 3: Profiling

Method 4: Support Function Bootstrap

Simple Calibrated Projection
(This paper)

More loosely related:
I. Andrews/Pakes/Roth, Cox/Shi, Belloni/Bugni/Chernozhukov, Gafarov,
Cho/Russell,...



Explaining Simple Calibrated Projection
 

Setting the Stage
The setting is moment inequalities:

"identified set" = ΘI = {θ : E (mj (Xi , θ)) ≤ 0, j = 1, . . . , J}
The object of interest is the projection (=support function)

s(p, ΘI ) ≡ max p′θ s.t. θ ∈ ΘI .

We define estimators
Θ̂I ≡ arg min max

j
mj (θ)

s(p, Θ̂I ) ≡ max p′θ s.t. θ ∈ Θ̂I .
We are interested in the one-sided confidence interval

CI = (−∞, ???].

The definition of Θ̂I ensures nonemptiness.
We aim for coverage that is uniform over a reasonable class of DGPs.
Two-sided inference is by intersection of one-sided confidence intervals
(of size (1− α/2) or, depending on a pre-test, (1− α)).
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Simple Calibrated Projection: The Algorithm

Step 1: Pick an arbitrary θ̂∗ ∈ S(p, Θ̂I ) ≡ arg maxθ∈Θ̂I
p′θ.

This step is a by-product of estimating s(p, ΘI ).
However, it is in practice the hardest.
In other words, we incur minimal computational cost beyond estimation.

Intuitively, the next steps are:
We replace the optimization problem with its local linear approximation at θ̂∗.
For this approximation, we estimate by how much constraints would have to
be relaxed so that the value of the relaxed sample problem exceeds the value
of the unrelaxed population problem with probability (1− α).
We report the value of the correspondingly relaxed empirical problem.
We retain the linearization in the last step, rendering it computationally
trivial.

The formal definition makes for one busy slide.
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Explaining Simple Calibrated Projection
 

Step 2: Define the linear program

ψ(c, µ, ρ) ≡ max
ϑ∈Rk

p′ϑ

s.t. D̂j (θ̂
∗)′ϑ−

√
nµj ≤ c, j ∈ J ∗

−ρ ≤ e′jϑ ≤ ρ, j = 1, . . . , k,

where (e1, . . . , ek ) is an orthonormal basis of Rk s.t. e1 = p/‖p‖.
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Step 2: Define the linear program

ψ(c, µ, ρ) ≡ max
ϑ∈Rk

p′ϑ

s.t. D̂j (θ̂
∗)′ϑ−

√
nµj ≤ c, j ∈ J ∗

−ρ ≤ e′jϑ ≤ ρ, j = 1, . . . , k,

where (e1, . . . , ek ) is an orthonormal basis of Rk s.t. e1 = p/‖p‖.
The program is parameterized by relaxation c, (bootstrap) sample intercepts
µ ≡ (µj )j∈J ∗ and regularization parameter ρ. We will return to these.
The index set

J ∗ ≡
{

j ∈ {1, . . . , J} : mj (θ̂
∗)/σ̂j (θ̂

∗) ≤
√

log(n)/n
}

restricts attention to constraints that are plausibly binding at θ̂∗
(=Generalized Moment Selection; e.g., see Andrews/Soares 2010).
D̂j (θ̂∗) estimates the gradient Dj (θ̂∗) ≡ OθE (mj (Xi , θ̂∗)/σj (θ̂∗)).
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Step 2: Define the linear program

ψ(c, µ, ρ) ≡ max
ϑ∈Rk

p′ϑ

s.t. D̂j (θ̂
∗)′ϑ−

√
nµj ≤ c, j ∈ J ∗

−ρ ≤ e′jϑ ≤ ρ, j = 1, . . . , k,

where (e1, . . . , ek ) is an orthonormal basis of Rk s.t. e1 = p/‖p‖.
The slackness vector µ collects intercepts of linearized constraints.
Their sampling variation will be how we model estimation uncertainty.
We also restrict ϑ to a hypercube scaled by ρ. This ensures that linear
approximation is uniformly (asymptotically) valid where we need it.
We give a suggestion for the tuning parameter ρ.
Under stronger assumptions that resemble Pakes, Porter, Ho, and Ishii
(2011), we can set ρ =∞.
This eliminates a tuning parameter and clarifies relation to earlier work.



Explaining Simple Calibrated Projection
 

Step 3: Let ĉ be the smallest value of c s.t.

Pr(ψ(c, µb , ρ) ≥ 0) ≥ 1− α,

where

µb
j =

mb
j (θ̂
∗)−mj (θ̂∗)

σ̂j (θ̂∗)

and
(
mb

j (θ̂
∗)
)

j∈J ∗ is a bootstrap analog of (mj (θ̂∗))j∈J ∗ .

In our linear bootstrap world, this is by how much we would have to relax
empirical constraints so that the relaxed empirical maximization problem
covers true problem’s value.

Step 4: The confidence interval equals

CIα =
(
−∞, s(p, Θ̂I ) + ψ(ĉ, 0,∞)/

√
n
]
.

We report the value of the empirical optimization problem but relaxed by ĉ.
We retain the linearization and thereby avoid a second global optimization.
Computationally, this is just one more bootstrap iteration (with the ρ-box
dropped).
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Reminder: Calibrated Projection
 

The busy slide as a picture: We...
choose an arbitrary empirical support point θ̂∗,

linearize,
relax by a candidate c,
resample intercepts (one possible bootstrap draw shown),
encase in the ρ-box if needed.

θ1

θ2

E [m1(X , θ)]E [m2(X , θ)]

θ̂∗

ϑ1

ϑ2

0

cσ1
cσ2

−ρ−ρ

ρ−ρ
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Justifying Simple Calibrated Projection

When does this work?
The calibration of ĉ at θ̂∗ builds on our previous work.
The difference is we calibrate only at θ̂∗, not again and again for each θ.
This makes the procedure much faster.
The cost is that we need additional assumptions.

High-Level New Condition:
θ̂∗ is O(n−1/2)-close to some, not necessarily constant true support point.

Equivalently, its point-set distance from the true support set is of order O(n−1/2).
We next formalize this and provide sufficient low-level conditions.
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Preliminaries

Recall we want to verify coverage of

s(p, ΘI ) ≡ max p′θ s.t. θ ∈ ΘI .

We impose assumptions from previous work, notably:
The functions mj are known.
E (mj (Xi , θ)) as function of θ is smooth.
E (mj (Xi , θ))/σj (θ) is bounded.
Gj (Xi , θ) = 1√

nσj (θ)

∑
i
(
mj (Xi , θ)− E (mj (Xi , θ))

)
can be bootstrapped including if an estimator θ̂ is plugged in.
A restriction on covariances that precludes superconsistent estimation.
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Condition 1
max

θ∈S(p,Θ̂I )
d(θ, S(p, ΘI )) = OP(n−1/2),

where d(·) is point-set distance.

Note relation to Hausdorff distance:
This is "directed" Hausdorff distance. Standard Hausdorff distance would be

max
{

max
θ∈S(p,Θ̂I )

d(θ, S(p, ΘI )), max
θ∈S(p,ΘI )

d(θ, S(p, Θ̂I ))

}
.

The estimated support set must hit the true one, but need not explore it.
This ensures the desired property of any selection θ̂∗ from s(p, Θ̂I ).
It is also much easier to enforce by assumption.
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Condition 1
max

θ∈S(p,Θ̂I )
d(θ, S(p, ΘI )) = OP(n−1/2),

where d(·) is point-set distance.

Result 1:

If Condition 1 holds, SCP achieves uniform asymptotic size control.

Why?
All accumulation points of θ̂∗ are in S(p, ΘI ) ≡ arg maxθ∈ΘI p′θ.
Furthermore, they are approached at

√
n-rate.

Can then leverage existing proofs to show:
ĉn(θ̂∗) ensures correct coverage of p′θ for some θ ∈ S(p, ΘI ).
But that is coverage of s(p, ΘI ).
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We next identify lower-level conditions that imply Condition 1.

To do so, relate our problem to first-year PhD Extremum (or m-) Estimation.

S(p, ΘI ) = arg min
θ∈Θ

Q(θ),

Q(θ) ≡ max
j
[E (mj (Xi , θ))/σ(θ)]+ + |p′θ− s(p, ΘI )|

S(p, Θ̂I ) = arg min
θ∈Θ

Qn(θ),

Qn(θ) ≡ max
j
[m̄j (θ)/σ̂(θ)]+ −min

θ∈Θ
max

j
[m̄j (θ)/σ̂(θ)]+ + |p′θ− s(p, Θ̂I )|.

If standard m-estimator consistency conditions apply to these objects, then
maxθ∈S(p,Θ̂I )

d(θ, S(p, ΘI ))
p→ 0 is implied.
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θ

Q

Qn

θ

Q

Qn

Left panel:
Well-behaved extremum estimation.
The minimum of Qn estimates the minimum of Q.
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θ

Q

Qn

θ

Q

Qn

Right panel:
Well-behaved extremum estimation except for identification failure.
The minimum of Qn "inner approximates" the minimum of Q.
This insight goes back at least to Redner 81. See also Newey/McFadden 94.
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θ

Q

Qn

θ

Q

Qn

We are not quite done because we also need the
√

n-rate.
Wanted:
A result between consistency (too weak) and

√
n-asy normality (not true).

We will adapt the "Argmax Theorem" of van der Vaart and Wellner.
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A Set-Valued Argmax-Theorem

Define νn(θ) ≡
√

n(Qn(θ)−Q(θ)) and Θ∗ ≡ arg min Q(θ).

Suppose that:
1 Q(θ)−minθ∈Θ Q(θ) ≥ C min{d2(θ, Θ∗), δ},
2 ∃ε > 0,∀δ ≤ ε : E

(
supθ∈Θ,θ∗∈Θ∗ :‖θ−θ∗‖≤δ |νn(θ)− νn(θ∗)|

)
≤ δ.

Then maxθ∈Θ̂∗ d(θ, Θ∗)) = OP(n−1/2), where Θ̂∗ ≡ arg min Qn(θ).

This novel result clarifies general conditions under which a sample arg max
approaches its population counterpart at "parametric" rate.
Or at other rates, depending on modulus of continuity of νn(·).
The above statement extracts what we need today.
We "morally" impose the (much stronger) conditions for

√
n-Hausdorff

consistency on Θ∗ = ΘI because we need
√

n-consistency of s(p, Θ̂I ).
But we do not, and would not want to, impose them on Θ∗ = S(p, ΘI ).
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Condition 2

We have that
s(p, Θ̂I )− s(p, ΘI ) = OP(n−1/2)

and

θ ∈ H(p, ΘI ) =⇒ Q(θ) ≥ C min{d2(θ, S(p, ΘI )), δ}
↑ supporting hyperplane.

The sample analog of the support function is
√

n-consistent.
Sufficient condition: dH(Θ̂I , ΘI ) = OP(n−1/2).
Counterexample: Weak identification.
S(p, ΘI ) is a well-separated minimum of Q on the supporting hyperplane.
Counterexamples: Nearly flat face, smooth maximum with singular Hessian.
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Condition 2

We have that
s(p, Θ̂I )− s(p, ΘI ) = OP(n−1/2)

and

θ ∈ H(p, ΘI ) =⇒ Q(θ) ≥ C min{d2(θ, S(p, ΘI )), δ}
↑ supporting hyperplane.

Result 2:
If Condition 2 holds, SCP achieves uniform asymptotic size control.

Why?
The conditions allow to invoke the generalized arg max-theorem.
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Condition 2

We have that
s(p, Θ̂I )− s(p, ΘI ) = OP(n−1/2)

and

θ ∈ H(p, ΘI ) =⇒ Q(θ) ≥ C min{d2(θ, S(p, ΘI )), δ}
↑ supporting hyperplane.

Result 2a:
The first assumption above is implied by the degeneracy and polynomial
minorant conditions for moment inequality models in Chernozhukov/Hong/Tamer
(2007) and also by similar conditions in Pakes/Porter/Ho/Ishii (2011).
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Condition 2

We have that
s(p, Θ̂I )− s(p, ΘI ) = OP(n−1/2)

and

θ ∈ H(p, ΘI ) =⇒ Q(θ) ≥ C min{d2(θ, S(p, ΘI )), δ}
↑ supporting hyperplane.

Result 2b:
The second assumption above is considerably weaker than a similar assumption in
Bugni/Canay/Shi (2017) and also Pakes/Porter/Ho/Ishii (2011).
In particular, both imply the above but with Q(θ) ≥ C min{d(θ, S(p, ΘI )), δ}.

For detailed analysis of how these restrictions relate to each other and to
constraint qualifications, see Kaido/Molinari/Stoye (2022).
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How restrictive is Condition 2?

Condition 2 does exclude cases of interest, e.g. weak identification of ΘI .
(Both calibrated projection and profiling allow weak identification of ΘI .)

However, it accommodates some interesting "tricky" cases.
Smooth maximum:
The support set is (at least partially) characterized by a FOC.
(This case is excluded for support function bootstrap and profiling.)
Multiple solutions:
Distinct, locally well-identified global maxima.
(This case is excluded for support function bootstrap.)
Thin identified set:
This occurs whenever there are some moment equalities, including the
boundary case of GMM.
(This case is excluded for support function bootstrap.)
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Two-Sided Confidence Intervals

We propose to always intersect two one-sided intervals.

If the projection of ΘI is "long" in the sense of

∆ ≡ s(p, ΘI )− s(−p, ΘI )� sampling uncertainty,

being much larger than sampling uncertainty, intersect two (1− α)-CI’s.

Else, intersect two (1− α/2)-CI’s.

Of course, we do not know which obtains.

We propose a conservative pre-test, e.g. use the larger interval if

∆̂ ≡ s(p, Θ̂I )− s(−p, Θ̂I ) ≤ κn.

(This resembles Imbens/Manski (2004) and in particular Stoye (2009).
Can be generalized to shrinkage as in Andrews/Soares (2010).)



Detailed Comparison to Support Function Bootstrap
 

Superconsistency and Support Function Bootstrap

Compared to PPHI, we impose an additional restriction on the d.g.p.:

Moment conditions must not be (near) perfectly correlated without the
researcher’s knowledge.
(Known perfect correlations are no problem.)

s(p, Θ̂I ) may otherwise be superconsistent for s(p, ΘI ).
A nonparametric bootstrap will then fail.

This observation also applies to support function bootstrap.
Our assumption must in fact be added to PPHI.
Auxiliary contribution: Rigorous justification of support function bootstrap.
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To studentize or not to studentize?

Our presentation assumed studentization throughout.

The Support Function Bootstrap cannot studentize moment conditions.

This is expected to sacrifice power (Andrews and Soares, 2010).

Example: Minimum of two means

θ ≤ min{E (Xi ), E (Yi )}
Xi ∼ N(µx , 1)
Yi ∼ N(µy ,σ2).

We can then compare

studentized CI = (−∞, min{x̄ + 1.95/
√

n, ȳ + 1.95σ/
√

n}]
nonstudentized CI = (−∞, min{x̄ , ȳ}+ 1.64σ/

√
n].

With large σ, the second interval is much larger in expectation.
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To studentize or not to studentize?

Our presentation assumed studentization throughout.

The Support Function Bootstrap cannot studentize moment conditions.

This is expected to sacrifice power (Andrews and Soares, 2010).

On the other hand:

Studentization can add computational cost.
This is first-order if nonstudentized constraints are linear.
We may also not want to studentize when computing θ̂∗.

We therefore treat studentization as optional.



Wrapping up
 

Conclusion

We analyze simple inference methods for constrained optima.

Motivating application:
Projections of partially identified parameter vectors.

Core findings:
We show that under reasonable (though not innocuous) conditions, our
earlier Calibrated Projection method can be drastically simplified.
Namely, a "critical value" gets computed at most twice.
We provide an analogous simplification of a Profiling method.
We rigorously justify another simple method (Support Function Bootstrap)
that is used in applications.
We explain trade-offs between the relatively simple methods thus justified.

Did I mention the Stata command?

Thank you!
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