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Introduction

• Job polarisation: employment has shifted substantially from
middle-paying occupations to both the top and the bottom.
• Observed in many developed countries since the 90s;
• The most popular explanation is Routine Biased Technical

Change (RBTC).
• Complementary explanation: increasing supply of skills and

endogenous adoption of technology
• Exploit the large policy-driven expansion of HE in the UK
• Explains not only job polarisation, but also two additional facts

about occupations.
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Change in occupational employment shares and
wages

Abstract
Routine

Note: In each year, we regress log wages on gender-age interactions, detailed education, and occupation dummies. The
coefficients on occupation dummies form our ’composition-adjusted’ occupational wage data log Pjt . We then smoothed
over the discontinuities in 2000-1 and 2010-11 by estimating a 5th order polynomial in log Pjt for each j .
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Increasing education and little occupational
downgrading

Note: ‘graduate’ means having at least higher education qualifications (bachelors, NVQ level 4), ‘high-school’ refers to those
with secondary school qualifications such as A-levels, O-Levels, GCSE C+ (NVQ levels 2 and 3). ‘abstract’ refers to the first
three SOC2000 occupation groups: managerial, professional and technicians.
The ‘counterfactual’ asks if the aggregate share of abstract jobs were to remain constant while the education composition
shifted as in reality, how much do the education-specific abstract share need to fall?
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Contributions

1. Develop one unified framework that explains three facts:
large positive shift in skill supply

⇒
adopt technology that’s biased against routine tasks and in favour
of abstract tasks
⇒

1 employment shift from middle to top
2 little change in occupational wages
3 little change in occupational shares conditional on skills

2. Quantify the contributions of three factors to job polarisation:
1) Skill supply shifts, 2) between-industry demand shifts, 3) RBTC
within industries
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The Full Model - overview

• There are 9 tasks j = 1,2...9 and 7 industries g = 1,2...7. In
each industry, firms choose between 2 technologies.
• Many points of relative task prices will be consistent with both

technologies being adopted in all industries.

• The endogenous shifts between technologies⇒ task demand
is highly elastic.
• Static, Frictionless, Competitive markets
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The Full Model - Demand side

In each industry, firms choose between two technologies
T ∈ {O,N}.

Each technology is a CES function over tasks j = 1,2...J

Y T
gt = AT

gt [
∑

j

αT
gj(y

T
gjt)

ρ]
1
ρ , T ∈ {O,N} (1)

• Task intensities αT
gj do not vary over time.

• TFP growth is exogenous.
Consumers have CES preferences over G goods.

Ut = [
∑

g

Bgt(Y O
gt + Y N

gt )
σ−1
σ ]

σ
σ−1 (2)

• Between-industry demand shifts are exogenous.
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Model prediction
Firms’ F.O.C.⇒

log(
pjt

p1t
) =(ρ− 1) log

EMPgjt

EMPg1t

+ (1− ρ) log [(1− wgt)(
αO

gj

αO
g1

)
1

1−ρ + wgt(
αN

gj

αN
g1

)
1

1−ρ ] (3)

where
• EMPgjt = yO

gjt + yN
gjt

• ρ− 1 < −1 if tasks are complements; −1 < ρ− 1 < 0 if tasks are
substitutes.

• wgt is the share of new technology in industry g at time t.

wgt moves endogenously. The movement in the 2nd term attenuates the
impact of labour supply shift on relative wages. details

jump to identification
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The Model - Supply side

Worker i in occupation j produces task output

y(i , j) = kjeβaj ai+βsj si+µi (4)

where ai , si are two observable skills that determine comparative
advantage, µi is unobserved general ability.

The utility worker i gets from occupation j is

Uij = ln(y(i , j)pj) + ηj + eij , j = 1, ...J (5)

where eij follows iid Type-1 extreme value distribution, with location
parameter at 0 and scale parameter ζ. ηj is job amenity in occupation j .

⇒ The probability of worker i choosing any occupation is simply a
function of (ai , si) and task prices. details

jump to identification
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Model fit

Figure: routine occupations employment shares

We achieve a good fit for EMPjt , logPjt ,wgt , logPgt , ∀g,∀j over
1997 ≤ t ≤ 2015. more figures



Counterfactuals

• The model contains 3 time-varying exogenous factors:
skills distribution
industry demand
TFP in two technologies

• Using counterfactual analysis, we attribute historical changes
to these 3 factors. For each counterfactual, we allow one factor
to change over time and hold all other factors to their 1997
values. For each year t ≥ 1998, we search for an equilibrium
Pjt ,wgt that’s closest to the t − 1 values, subject to equilibrium
constraints.
• In future, we can model changes to the skill distribution due to

further increase in education and immigration policies.



Counterfactuals

• The model contains 3 time-varying exogenous factors:
skills distribution
industry demand
TFP in two technologies
• Using counterfactual analysis, we attribute historical changes

to these 3 factors. For each counterfactual, we allow one factor
to change over time and hold all other factors to their 1997
values. For each year t ≥ 1998, we search for an equilibrium
Pjt ,wgt that’s closest to the t − 1 values, subject to equilibrium
constraints.

• In future, we can model changes to the skill distribution due to
further increase in education and immigration policies.



Counterfactuals

• The model contains 3 time-varying exogenous factors:
skills distribution
industry demand
TFP in two technologies
• Using counterfactual analysis, we attribute historical changes

to these 3 factors. For each counterfactual, we allow one factor
to change over time and hold all other factors to their 1997
values. For each year t ≥ 1998, we search for an equilibrium
Pjt ,wgt that’s closest to the t − 1 values, subject to equilibrium
constraints.
• In future, we can model changes to the skill distribution due to

further increase in education and immigration policies.



Counterfactual effects on occupation employment

Note: There are 3 time-varying exogenous factors: skills distribution, industry demand, and TFP. For each counterfactual,
we hold 2 factors constant and allow one factor to vary according to baseline estimates. Occupational wage change are
normalized to be zero on average.



Summary

• I build a task-based model with endogenous adoption of
technology. It can simultaneously explain:
• job polarisation and the absence of wage polarisation
• limited occupational downgrading within education groups

when education increases
• Occupational demand is very elastic within the cone of

diversification⇒ different implication for any policy that shifts
the distribution of skills.
• Skill supply shift and between-industry demand shift can each

explain about a third to two thirds of the decline in routine
manual employment, and a third to half of the increase in
abstract employment.



Graduate wage premium has been completely flat

Note: Figure 2 in Blundell, Green and Jin 2022 ”The U.K. as a Technological
Follower: Higher Education Expansion and the College Wage Premium”, The
Review of Economic Studies back
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