Background	Data	Estimation	Results	Conclusion	Appendi x
0000	0	00	00000	O	0000000

Agricultural Productivity and Local Economic Development: Evidence from Private Investment in Irrigation

Camille Boudot-Reddy Andre Butler

University of Edinburgh

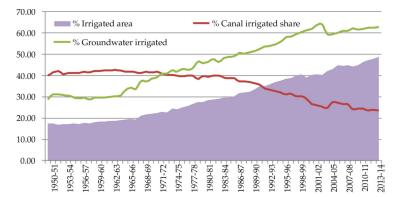
August 22th 2022, European Economic Association

Introduction ●00	Background 0000	Data 0	Estimation 00	Results 00000	Conclusion 0	App en di x 0000000

- Industrial growth is often preceded by unprecedented increases in agricultural output.
- ► Theory:
 - 1. Closed economies: a boost to agricultural productivity generates demand for manufacturing goods which leads to a re-allocation of labour away from agriculture (Gollin et al. 2002; Kongsamut et al. 2001; Ngai and Pissarides 2007).
 - 2. Open economies: improved agricultural productivity can retard industrial growth as the economy specialises in the comparative advantage sector (Matsuyama 1992; Field, 1978).

Introduction ●00	Background 0000	Data 0	Estimation 00	Results 00000	Conclusion 0	App en di x 0000000

- Industrial growth is often preceded by unprecedented increases in agricultural output.
- ► Theory:
 - 1. Closed economies: a boost to agricultural productivity generates demand for manufacturing goods which leads to a re-allocation of labour away from agriculture (Gollin et al. 2002; Kongsamut et al. 2001; Ngai and Pissarides 2007).
 - 2. Open economies: improved agricultural productivity can retard industrial growth as the economy specialises in the comparative advantage sector (Matsuyama 1992; Field, 1978).
- Limited accompanying empirical evidence identifying the process by which shifts in agricultural productivity can alter the shape of the wider economy (Bustos et al. 2016; Carillo 2021).


Introduction	Background	Data	Estimation	Results	Conclusion	Appendi x
○●○	0000	0	00	00000	0	0000000

Question: Does access to groundwater irrigation lead to increases in productivity? Does this increase in output lead to structural shifts in the rural economy?

Introduction	Background	Data	Estimation	Results	Conclusion	App en di x
0●0	0000	0	00	00000	0	0000000

- Question: Does access to groundwater irrigation lead to increases in productivity? Does this increase in output lead to structural shifts in the rural economy?
- To answer this, we exploit quasi-random between-village variation in access to groundwater driven by an exogenous constraint in irrigation technology.
 - ► We leverage a kink in the relationship between groundwater depth and water extraction for irrigation.

Background	Data	Estimation	Results	Conclusion	App en di x
●000	0	00	00000	0	0000000

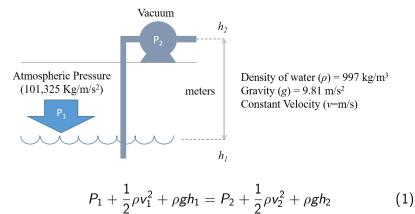
- Canal Irrigation: Asher et al. (2022) Long-run Development effects, and Blakeslee et al. (2022) Spatial Patterns.
- Ground Water Irrigation: Significant private investment & policy relevant.

Background	Data	Estimation	Results	Conclusion	A pp en di x
○●○○	0	00	00000	0	0000000

Irrigation Pump Technology

Figure: Centrifugal Pumps

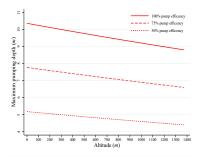
INR 16,000 Max Lift 10.33m


Figure: Submersible Pumps

INR 25,000 No Max Lift

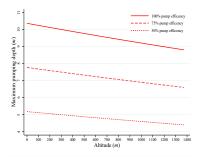
Agricultural Productivity and Local Economic Development

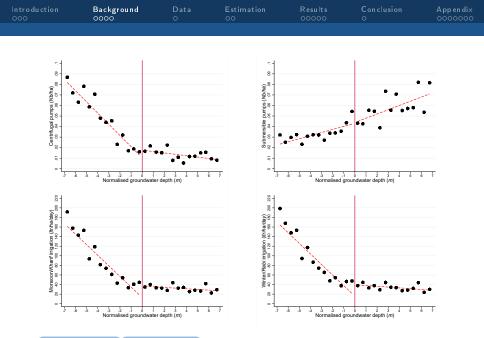
Background	Data	Estimation	Conclusion	App en dix
0000				


Bernoulli's Principle of Fluid Dynamics

$$h_2 - h_1 = \frac{P_1 - P_2}{\rho g}$$
(2)

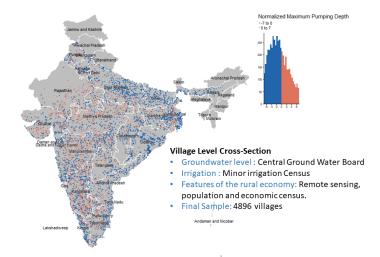
Background	Data	Estimation	Results	Conclusion	App en di x
000●	0	00	00000	0	0000000


Pump Efficiency


- The pump efficiency is random with known PDF G(.).
- At a given groundwater depth there exists a minimum pump efficiency that will still be operational, e(λ).

Background	Data	Estimation	Results	Conclusion	App en di x
000●	0	00	00000	0	0000000

Pump Efficiency


- The pump efficiency is random with known PDF G(.).
- At a given groundwater depth there exists a minimum pump efficiency that will still be operational, e(λ).
- There is a probability $g(e(\lambda_v))$ that a pump will not work, when drawn at random.

▶ water calculation ↓ ▶ estimation table

Agricultural Productivity and Local Economic Development

Background	Data	Estimation	Results	Conclusion	App en di x
0000	●	00	00000	0	0000000

Agricultural Productivity and Local Economic Development

Background	Data	Estimation	Results	Conclusion	App en di x
0000	0	●○	00000	0	0000000

Fuzzy Regression Kink Design

The fuzzy RK design exploits a discontinuity in the first-derivative of the assignment function with respect to the treatment variable at a kink point.

$$E[I|W=w] = \alpha_0 + \left[\sum_{p=1}^{\bar{p}} \omega_p (w-k)^p + \pi_p (w-k)^p \cdot D\right] \quad (3)$$

where $D = \mathbb{1}[W \ge k]$, W is the groundwater depth (assignment variable), and k is the operational threshold of centrifugal pumps.

Background	Data	Estimation	Results	Conclusion	App en di x
0000	O	●○	00000	O	0000000

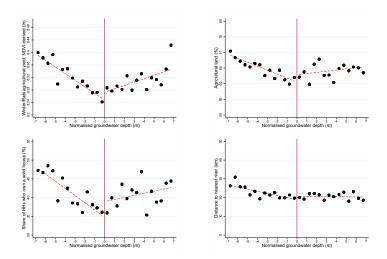
Fuzzy Regression Kink Design

The fuzzy RK design exploits a discontinuity in the first-derivative of the assignment function with respect to the treatment variable at a kink point.

$$E[I|W=w] = \alpha_0 + \left[\sum_{p=1}^{\bar{p}} \omega_p (w-k)^p + \pi_p (w-k)^p \cdot D\right] \quad (3)$$

where $D = \mathbb{1}[W \ge k]$, W is the groundwater depth (assignment variable), and k is the operational threshold of centrifugal pumps.

The outcome of interest also exhibits a kink in slope in its relation to the assignment variable at the same point.


$$E[Y|W=w] = \mu_0 + \left[\sum_{p=1}^{\bar{p}} \gamma_p (w-k)^p + \nu_p (w-k)^p \cdot D\right] \quad (4)$$

Estimation Notes

Agricultural Productivity and Local Economic Development

Background	Data	Estimation	Results	Conclusion	App en di x
0000	0	○●	00000	0	0000000

Graphical Evidence: Covariates and Outcomes

Background	Data	Estimation	Results	Conclusion	App en di x
0000	0	00	●0000	0	0000000

Table: Impact of tube-well irrigation on agricultural yield and production choices

	Agricultural yie	Id NDVI derived	Inputs	Crop choice		
	Winter/ <i>Rabi</i> Differenced (<i>In</i>) (1)	Monsoon/ <i>Kharif</i> Differenced (<i>In</i>) (2)	Cultivated land (%) (3)	Winter/ Rabi (binary) (4)	Drought tolerant (<i>binary</i>) (5)	Cash (<i>binary</i>) (6)
Irrigation (standardised)	0.098*** (0.035)	0.036 (0.062)	15.972*** (4.580)	0.071 (0.062)	-0.254*** (0.084)	0.050 (0.072)
Mean SD	253.350 1575.954	3411 471 1229 687	64.364 25.330	0.242 0.429	0.315 0.465	0.198 0.398
N	4896	4896	4896	3848	3848	3848

Land We test the impact of access to irrigation on landholdings and find no evidence

of land agglomeration. • Results - Landholdings

Background	Data	Estimation	Results	Conclusion	App en di x
0000	O	00	0●000	0	0000000

Table: Impact of tube-well irrigation on consumption

	Consumption per capita	Poverty rate	Asset index	Mean night light
	(In)	(share)	(SD unit)	(In)
	(1)	(2)	(3)	(4)
Irrigation	0.060	-0.054*	0.178**	0.451*
(standardised)	(0.039)	(0.028)	(0.081)	(0.230)
Mean	18.215	0.316	6.715	0.317
SD	4.900	0.190	4.665	0.994
N	4896	4896	4896	3600

Housing We test for the impact of access to irrigation on the different components of the asset index. Groundwater irrigation increases the share of households in the village that own a solid house by 17%.
Results - Assets

Background	Data	Estimation	Results	Conclusion	App en di x
0000	O	00	00●00	0	0000000

Table: Impact of tube-well irrigation on agricultural sector employment

	Total	Cultivators	Manual labourers
	(%)	(%)	(%)
	(1)	(2)	(3)
Panel A: Share	of population		
Irrigation	-2.481*	0.506	-1.701
(standardised)	(1.464)	(1.605)	(1.850)
Mean	44.582	13.319	18.394
SD	10.354	10.239	11.951
Panel B: Share	of workforce		
Irrigation	-	2.521	-1.849
(standardised)	(-)	(3.099)	(3.393)
Mean	-	29.224	39.853
SD	-	19.585	21.502
Panel C: Share	of full-time w	orkers	
Irrigation	10.289***	6.648**	10.224**
(standardised)	(3.583)	(3.239)	(4.971)
Mean	73.651	84.616	61.758
SD	21.592	20.191	30.915
N	4896	4896	4896

Background	Data	Estimation	Results	Conclusion	App en di x
0000	O	00	000●0	0	0000000

Table: Impact of tube-well irrigation on village industrial sector employment

	Total (1)	Agro-processing (2)	Livestock (3)	Construction (4)	Manufacturing (5)	Services (6)
Panel A: Share	of workford	e (%)				
Irrigation	0.983	-0.235	1.167	0.150	0.026	0.313
(standardised)	(3.043)	(0.180)	(1.617)	(0.120)	(1.009)	(1.479)
Mean	21.247	0.262	4.924	0.263	3.606	8.824
SD	19.165	1.090	9.572	0.724	5.904	9.262
Panel B: Estab	lishments (n	b)				
Irrigation	83.095	-0.644	19.087	1.565	2.570	41.841
(standardised)	53.002	1.247	22.069	1.177	10.703	28.921
Mean	249.779	2.076	68.078	2.612	38.548	122.03
SD	457.944	7.389	171.334	7.444	79.370	226.96
N	4896	4896	4896	4896	4896	4896

Background	Data	Estimation	Results	Conclusion	Appendix
0000	O	00	0000●	O	0000000

Table: Impact of tube-well irrigation on population

	Population	Population density	Working age population	Male working age population
	(<i>ln</i>)	(<i>In</i>)	(%)	(%)
	(1)	(2)	(3)	(4)
Irrigation	0.347*	0.445***	-0.455	0.676
(standardised)	(0.179)	(0.147)	(0.838)	(1.188)
Mean	7.783	5.888	61.295	71.144
SD	1.105	0.951	4.744	6.849
N	4896	4896		3600

Background	Data	Estimation	Results	Conclusion	A pp en di x
0000	0	00	00000	●	0000000

Concluding Remarks

- 1. Irrigation improves agricultural productivity primarily during the dry winter.
 - Intensity of irrigation is similar in both seasons; suggesting that monsoon season irrigation is much less efficient.
- 2. This study adds to the evidence that access to irrigation improves average welfare outcomes at the village level.
- 3. Access to irrigation does not lead to a significant reallocation of labour into or out of the agricultural sector.
- 4. Excess demand for labour generated by irrigation is largely absorbed by extending the hours of existing workforce.

Fuzzy Regression Kink Design

• The causal impact is found by dividing the change in slope of the outcome by the change in slope of the treatment $\beta = \nu_1/\pi_1$

*The standard errors are recovered using the Delta method.

- ► All regressions are estimated:
 - Using a linear functional form (As a robustness test we compare our results under a quadratic and cubic function.)
 - Including covariates and state fixed effects as controls
 - Using a bandwidth of 7 metres (Results are robust to a range of bandwidth down to 3 metres.)

Back

Background	Data	Estimation	Results	Conclusion	Appendi x
0000	0	00	00000	0	o●ooooo

Calculation of Water Input

We use the MIC variables to calculate water input in litres, for each villages, following a standard engineering formula for water extraction (Manring, 2013).

$$W_i(H_iD_i) = \rho \frac{P_iH_i}{D_i}$$
(5)

Where P_i is the average pump capacity (HP) in the village; H_i is the total pumping hours per day; and D_i is the ground water depth (m).

$$\rho = c \frac{E}{dg} \tag{6}$$

Where c is a constant to correct units and account for friction, E is the pump efficiency, d is density of water, and g is the gravitational constant.

Background	Data	Estimation	Results	Conclusion	Appendi x
0000	O	00	00000	0	00●0000

Table: Constants used in water input calculation

Variable	Value	Units
с	$3.6 imes10^6$	
E	0.25	
d	10 ³	kg/m^2
g	9.81	m/s^2

Back

Background	Data	Estimation	Results	Conclusion	App en dix
0000	0	00	00000	0	000●000

Table: Evolution of Irrigation and Covariates at the Kink Point

	Irrigation	Covariates			
	Average	Distance to nearest river	Inside a canal command area	Potentia yield	
	(standardised)	(<i>km</i>)	(binary)	(index)	
	(1)	(2)	(3)	(4)	
π_1	0.090***	0.332	0.006	0.013	
_	(0.012)	(0.329)	(0.004)	(0.012)	
Mean	-0.000	21.783	0.081	-0.081	
SD	1.000	23.185	0.273	0.963	
N	4896	4896	4896	4896	

▶ Back

Agricultural Productivity and Local Economic Development

Background	Data	Estimation	Results	Conclusion	Appendix
0000	0	00	00000	0	0000●00

Table: Correlates of NDVI proxy for agricultural production

	(1)	(2)	(3)	(4)
Agricultural Output	0.056	0.035	0.331	0.233
	(0.018)	(0.017)	(0.042)	(0.040)
Fixed Effects	State	State-Year	District	District-year
N	2124	2124	2124	2124
R^2	0.35	0.53	0.74	0.78

Back

Background	Data	Estimation	Results	Conclusion	App en di x
0000	0	00	00000	0	00000●0

Table: Impact of tube-well irrigation on the distribution of landholdings

	Landless	0-2 Acres	2-4 Acres	4+ Acres
	(%)	(%)	(%)	(%)
	(1)	(2)	(3)	(4)
Irrigation	1.522	0.491	- 2.543	0.601
(standardised)	(4.699)	(3.746)	(1.575)	(2.587)
Mean	55.696	22.641	9.271	12.081
SD	22.904	19.078	7.296	12.756
N	3600	3600	3600	3600

▶ Back

Background	Data	Estimation	Results	Conclusion	Appendi x
0000	O	00	00000	O	000000●

Table: Impact of tube-well irrigation on ownership of assets

	Solid house	Refrigerator	Vehicle	Phone
	(%)	(%)	(%)	(%)
	(1)	(2)	(3)	(4)
lrrigation	19.991***	2.150	3.524	5.808
(<i>standardised</i>)	(6.217)	(2.377)	(3.125)	(4.356)
Mean	40.716	8.799	19.707	68.053
SD	28.570	12.957	15.411	24.972
N	3600	3600	3600	3600

▶ Back