# The Short-Run Employment Effects of Public Infrastructure Investment

Alexander Matusche (University of Konstanz)

August 25, 2022

EEA, Milan

### Introduction

#### Motivation

- A central question in macroeconomics: How does government spending affect output and employment? ~> fiscal multiplier
- Plans to expand infrastructure investment in EU, UK, US
- Permanent increase in infrastructure investment leads to long-run productivity gains (e.g. Bom and Ligthart 2014; Cubas 2020)
- What are the short-run employment effects, i.e. within one year? Can expansion of public investment stabilize employment in recession?

#### Short-Run Employment Effects of Public Investment

Like government consumption, public investment could

- raise labor demand directly → construction workers (Michaillat 2014)
- raise employment through wealth effect on labor supply (Barro and King 1984; Baxter and King 1993; Brinca et al. 2016; Ferriere and Navarro 2018)
- raise aggregate demand and thereby labor demand (Christiano, Eichenbaum, and Rebelo 2011; Hagedorn, Manovskii, and Mitman 2019)

This paper studies a different mechanism specific to public investment, which I call the anticipation effect on labor demand.

#### The Anticipation Effect on Labor Demand

- Permanent increase in infrastructure investment gradually raises productivity
- Future labor productivity, labor demand & market tightness increase
- Hiring in the future becomes more difficult, future recruiting costs rise
- Firms substitute hiring over time, expand hiring today when workers are easy to find, hoard labor

#### This Paper

٠

Anticipation effect on labor demand in model w/ matching labor market and private and public capital

- Public capital is production factor 
   — public investment raises future labor
   productivity
- Matches last multiple periods ~> firms hoard labor

Anticipation effect on labor supply

- Unemployed workers choose search effort
- Higher long-run productivity could reduce effort & offset anticipation effect on labor demand

#### Results

1. Theoretically: fixed effort to focus on anticipation effect on labor demand

- Employment multiplier of public investment is positive in the short-run, even if zero in the long run
- Multiplier is larger when public investment is more productive
- Anticipation effect can improve labor market efficiency

#### Results

- 1. Theoretically: fixed effort to focus on anticipation effect on labor demand
  - Employment multiplier of public investment is positive in the short-run, even if zero in the long run
  - Multiplier is larger when public investment is more productive
  - Anticipation effect can improve labor market efficiency
- 2. Quantitatively: with search effort response
  - Anticipation effect on labor demand is dominant effect
  - Employment rises by 0.4 pp. one year after permanent increase of public investment by 1% of GDP
  - Effect 40% larger in recession than in boom

### Matching Model with Public Capital

#### Model Overview

#### Workers

- $\cdot$  Work or unemployed
- Unemployed choose search effort (intensive margin)

#### Firm owners

- Do not work
- Own private capital stock
- $\cdot$  Own firm equity

#### Firms and labor market

- Random matching
- Exogenous separations
- $\cdot$  Nash bargaining with wage inertia
- Rent private capital

#### Government

- Invests in public capital stock  $K_t^G$
- Determines productivity of firms  $z_t = A_t \left(K_t^G\right)^{\vartheta}$
- $\cdot\,$  Collects taxes and pays benefits

#### Calibration

- $\cdot$  Calibrated to US, monthly frequency
- Match transition probabilities between unemployment and employment estimated from CPS microdata (1994–2020)
- Output elasticity of public capital artheta= 0.1 (Bom and Ligthart 2014; Cubas 2020)
- Wage stickiness to get business cycle volatility of unemployment

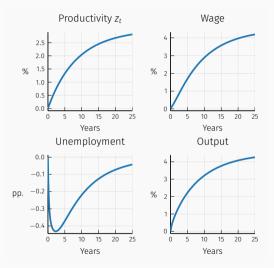
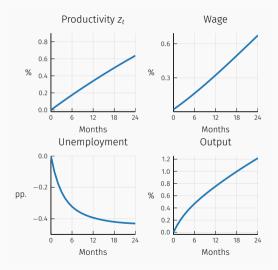

|       | U     | Y     | Inv   | Wages | Lab. prod. | Z     |
|-------|-------|-------|-------|-------|------------|-------|
| Data  | 0.101 | 0.015 | 0.065 | 0.010 | 0.012      | 0.012 |
| Model | 0.081 | 0.017 | 0.090 | 0.008 | 0.011      | 0.012 |

 Table 1: Business cycle moments

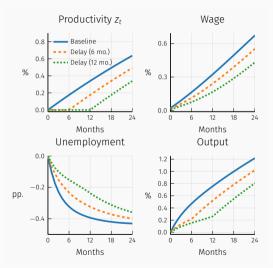
#### **Quantitative Results**


#### Long-run Effect of Investment Program

- Start from steady state
- Permanent increase in public investment by 1% of GDP
- Financed by lump-sum taxes on firm owners
- Productivity increases by 3% in the long-run
- Unemployment drops initially and converges back



#### Short-run Effect of Investment Program


- Consider short run now
- After 12 months:
  - unemp. 0.4 pp. lower
  - output 0.8% higher
  - wages 0.3% higher

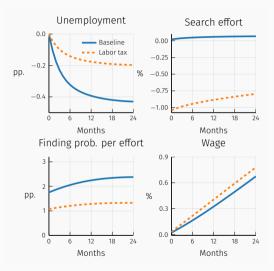


#### **Implementation Delays**

- Delay until investment takes place
- Six months delay:
  - Unemployment 0.36 pp. lower after one year
- One year delay:
  - Unemployment 0.25 pp. lower after one year
- Indicates importance of anticipation effect

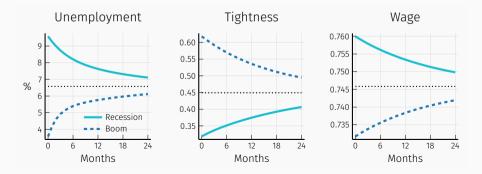
Transitory expansion



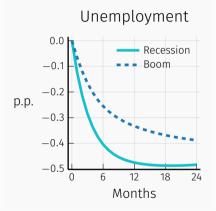

#### The Role of Search Effort



- Effort has little effect on change in the job finding probability
- + Finding job expected to get even easier in future: effort  $\downarrow$
- + Firms create more vacancies  $\rightsquigarrow$  finding prob. per effort increases: effort  $\uparrow$


#### Financing with Distortionary Labor Taxes

- Consider financing with contemporaneous distortionary labor taxes
- Discourages search effort
- Firms share tax burden through bargaining
- Dampened effect on job creation




#### State Dependence: Recession vs. Boom I/II

- Recession: unemp. 3 pp. higher than in steady state, wage 2% higher; boom: 3 pp. and 2% lower
- Unemployment in recession: 9.5% (as in 2009), in boom 3.5% (as in 2020)
- Tightness in recession: 0.32 (as in 2007), in boom 0.65 (as in 2003)



#### State Dependence: Recession vs. Boom II/II



- Unemployment after one year is reduced 40% more in recession than boom
- High unemployment → congestion externality of additional vacancies is smaller
- High wage → wage increases less, larger effect on labor demand

#### **Fiscal Output Multipliers**

• Cumulative output multiplier of public investment 
$$\frac{\sum_{t=0}^{T-1} \Delta Y_t}{\sum_{t=0}^{T-1} \Delta I_t^{o}}$$

• Peak output multiplier of public investment  $\frac{\max_{t=0,...,T-1} \Delta Y_t}{\Delta I_s^G}$ 

Table 2: Fiscal output multipliers

|            | 1 year | 2 years | 3 years | Long run |
|------------|--------|---------|---------|----------|
| Peak       | 0.71   | 1.18    | 1.57    | 4.52     |
| Cumulative | 0.41   | 0.69    | 0.93    | 4.52     |

→ The fiscal multiplier for productive public investment is larger than for unproductive government spending

Conclusion

#### Conclusion

- Short-run employment multiplier of public investment is large because of anticipation effect on labor demand
- Unemployment reduced by 0.4 pp. one year after permanent expansion in public investment by 1% of GDP
- Effect 40% larger in recession than in boom
- Announcing investment program can stimulate employment in the short-run even if implementation takes time

Thank you!



- Barro, Robert J., and Robert G. King. 1984. "Time-Separable Preferences and Intertemporal-Substitution Models of Business Cycles." *The Quarterly Journal of Economics* 99 (4): 817–839.
- Baxter, Marianne, and Robert G King. 1993. "Fiscal Policy in General Equilibrium." American Economic Review 83 (3): 315–334.
- Boehm, Christoph E. 2020. "Government Consumption and Investment: Does the Composition of Purchases Affect the Multiplier?" *Journal of Monetary Economics* 115:80–93.

- Bom, Pedro R.D., and Jenny E. Ligthart. 2014. "What Have We Learned from Three Decades of Research on the Productivity of Public Capital?" *Journal of Economic Surveys* 28 (5): 889–916.
- Brinca, Pedro, Hans A. Holter, Per Krusell, and Laurence Malafry. 2016. "Fiscal multipliers in the 21st century." *Journal of Monetary Economics* 77:53–69.
- Chetty, Raj. 2008. "Moral Hazard versus Liquidity and Optimal Unemployment Insurance." *Journal of Political Economy* 116 (2): 173–234.
- Christiano, Lawrence, Martin Eichenbaum, and Sergio Rebelo. 2011. "When Is the Government Spending Multiplier Large?" *Journal of Political Economy* 119 (1): 78–121.

Cubas, German. 2020. "Public Capital and Economic Development." *The Economic Journal* 130 (632): 2354–2381.

- Ferriere, Axelle, and Gaston Navarro. 2018. "The Heterogeneous Effects of Government Purchases: It's All About Taxes."
- Hagedorn, Marcus, Iourii Manovskii, and Kurt Mitman. 2019. *The Fiscal Multiplier*. Technical report.
- Leeper, Eric M., Todd B. Walker, and Shu-Chun S. Yang. 2010. "Government Investment and Fiscal Stimulus." *Journal of Monetary Economics* 57 (8): 1000–1012.
- Michaillat, Pascal. 2014. "A Theory of Countercyclical Government Multiplier." American Economic Journal: Macroeconomics 6 (1): 190–217.

- Michaillat, Pascal, and Emmanuel Saez. 2018. "Optimal Public Expenditure with Inefficient Unemployment." *The Review of Economic Studies* 86 (3): 1301–1331.
- Ramey, Valerie A. 2020. The Macroeconomic Consequences of Infrastructure Investment. National Bureau of Economic Research Working Paper 27625.
- Rendahl, Pontus. 2016. "Fiscal Policy in an Unemployment Crisis." *The Review of Economic Studies* 83 (3): 1189–1224.
- Shimer, Robert. 2010. *Labor Markets and Business Cycles*. Princeton, NJ: Princeton University Press.
- . 2012. "Reassessing the Ins and Outs of Unemployment." Review of Economic Dynamics 15 (2): 127–148.

Sims, Eric, and Jonathan Wolff. 2018. "The Output and Welfare Effects of Government Spending Over the Business Cycle." *International Economic Review* 59 (3): 1403–1435.

## Appendix

#### **Investment Plans**

#### EU:

- Recovery Fund 2021–2023
- 383 billion Euros to public investments
- ca. 0.9% of 2019 GDP p.a.

#### UK:

- National Infrastructure Strategy
- Increase: 2.2% of GDP in 2019/20 to 3.0% in 2024/25

#### ◀ back

#### **Public Investment**



#### Non-defense public investment

#### Workers

- $\cdot\,$  Mass of measure one
- Labor market state  $s_t \in \{e, u\}$
- Wage income  $w_t$ , benefits  $b_t$

- Search effort decision  $\ell_t(s_t)$
- All workers are hand-to-mouth
   → can be equilibrium of extension with saving

$$\max_{\{\ell_t(s_t), c_t(s_t)\}} \sum_{t=0}^{\infty} \sum_{s^t \in S^t} \beta^t \left( \log(c_t(s_t)) - d(\ell_t(s_t), s_t) \right) \pi(s^t | s_0, \{\ell_t(s_t), \theta_t\})$$
  
s.t.  $c_t(s_t) = (1 - \tau_t) w_t \mathbb{1}\{s_t = e\} + b_t \mathbb{1}\{s_t = u\},$   
 $\ell_t(s^t) \ge 0 \text{ and given } s_0.$ 

back

#### **Firm Owners**

- Mass  $\mu^{\rm F}$
- Risk-neutral
- Own capital  $k_t^F$  and equity

- Receive firm profits  $\Pi_t^F$
- Lump-sum taxes  $T_t^F$
- Capital adjustment costs

$$\max_{\substack{\{c_{t}^{F}, j_{t}^{F}, k_{t+1}^{F}\} \\ \text{s.t.}}} \sum_{t=0}^{\infty} \beta^{t} c_{t}^{F}} \\ \text{s.t.} \quad i_{t}^{F} + c_{t}^{F} = r_{t}^{k} k_{t}^{F} + \Pi_{t}^{F} - T_{t}^{F} - \frac{\phi}{2} \left(\frac{i_{t}^{F}}{k_{t}^{F}} - \delta_{k}\right)^{2} k_{t}^{F}} \\ \quad k_{t+1}^{F} = (1 - \delta_{k}) k_{t}^{F} + i_{t}^{F}.$$



#### Firms and Labor Market

• Firm posts vacancy at cost  $\kappa \cdot y_t$ , when filled, firm rents capital  $k_t$  and produces

 $y_t = A_t (K_t^G)^{\vartheta} k_t^{\alpha}$ 

- Total number of new matches  $M(v_t, L_t^u) = \zeta v_t^{1-\eta} (L_t^u)^{\eta}$ 
  - *v<sub>t</sub>* aggregate number of vacancies
  - +  $L_t^u = \sum_{s^t | s_t = u} \ell(s^t) \pi_t(s^t)$  aggregate search effort
- Job-finding probability of individual worker  $\pi(e|u) = \frac{M(L^u,v)}{L^u}\ell_t$
- + Existing matches separate exogenously with probability ho
- Aggregate output is  $Y_t = A_t(K_t^G)^{\vartheta}K_t^{\alpha}N_t^{1-\alpha} \rightsquigarrow$  Baxter and King (1993)

• Wage is sticky

$$w_t = \gamma w_{t-1} + (1 - \gamma) w_t^*$$

- I consider two alternatives for the target wage  $w_t^*$ :
  - a) Fixed output share:  $w_t^* = \omega A_t (K_t^G)^{\vartheta} k_t^{\alpha} \rightsquigarrow$  for theoretical results
  - b) Nash bargaining  $\rightsquigarrow$  for quantitative analysis

▶ back

• Wage is sticky

$$w_t = \gamma w_{t-1} + (1 - \gamma) w_t^*$$

- I consider two alternatives for the target wage  $w_t^*$ :
  - a) Fixed output share:  $w_t^* = \omega A_t (K_t^G)^{\vartheta} k_t^{\alpha} \rightsquigarrow$  for theoretical results
  - b) Nash bargaining  $\rightsquigarrow$  for quantitative analysis

▶ back

#### Government

• Collects taxes, pays unemployment benefits, invests  $I_t^G$ 

$$\mu^F T_t^F + \tau_t w_t N_t = b_t (1 - N_t) + I_t^G$$

• Law of motion for public capital

$$K_{t+1}^G = (1 - \delta_G)K_t^G + I_t^G$$

• More public investment financed by higher taxes  $T_t^F$  or  $\tau_t$ 

► back

# **Equilibrium Definition**

## Equilibrium

- Unemployed workers: optimal effort
- Firm owners: optimal savings
- Firms: optimal capital  $r_t^k = \alpha z_t k_t^{\alpha-1}$
- Tightness solves job creation equation (free-entry)
- Capital market clears  $K_t = \frac{k_t^F}{\mu^F} = k_t N_t$
- Wage rule satisfied
- Government budget is balanced

▶ back

## **Related Literature**

|                            | No matching frictions                                                                                                        | Matching frictions                                                   |  |  |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|--|
| Unproductive<br>spending   | Barro and King (1984), Brinca et al. (2016),<br>Ferriere and Navarro (2018), and Hage-<br>dorn, Manovskii, and Mitman (2019) | Michaillat (2014), Michaillat and Saez<br>(2018), and Rendahl (2016) |  |  |
| <b>Productive</b> spending | Baxter and King (1993), Boehm (2020),<br>Leeper, Walker, and Yang (2010), Ramey<br>(2020), and Sims and Wolff (2018)         | This paper                                                           |  |  |

- Literature: short-run multiplier smaller for more productive spending b/c of wealth effect on labor supply: future productivity ↑, wealth ↑, labor supply ↓
- Difference to literature: employment multiplier is larger if spending is more productive

| Param.                        | Interpretation                                                                              | Value   | Target / Source         |
|-------------------------------|---------------------------------------------------------------------------------------------|---------|-------------------------|
| θ <sub>G</sub>                | ela. priv. prod. w.r.t. <i>K</i> <sub>G</sub> pub. cap. depreciation public investment rate | 0.1     | Bom and Ligthart (2014) |
| δ <sub>G</sub>                |                                                                                             | 0.00874 | 10% ann. deprec. rate   |
| I <sub>G</sub> /Y             |                                                                                             | 2.9%    | US avg.                 |
| $lpha \ eta \ eta \ \delta_k$ | output ela. priv. capital                                                                   | 0.33    | standard                |
|                               | disc. factor                                                                                | 0.992   | interest rate p.a. 1%   |
|                               | priv. cap. depreciation                                                                     | 0.00874 | 10% ann. deprec. rate   |

#### Calibrated parameters

#### Search Effort and Transition Probabilities

• Disutility from search effort

$$d(\ell, s) = d_{0,s} + \frac{\ell^{1+\chi}}{1+\chi}$$
(1)

- Normalize  $d_{0,u} = 0$ , no difference in steady state:  $d_{0,e} = \frac{\ell^{1+\chi}}{1+\chi}$
- $\chi = 4.70 \Rightarrow$  micro elasticity of job finding prob. w.r.t. *b* of -0.5 (Chetty 2008)
- Posting costs proportional to labor productivity  $\kappa_t = \kappa z_t k_t^{\alpha}$
- Match steady state transition probabilities from CPS microdata (1994–2020)

# **Estimation of Transition Probabilities**

Estimate job finding probability from gross flows as in Shimer (2012):

- Match individuals across monthly CPS waves to obtain panel
- For every month: compute the number of workers who transition between employed, unemployed, inactive
  - Seasonally adjust using X13-ARIMA-SEATS
- From flows obtain Markov matrix for the monthly transition
- Adjust for time aggregation using method in Shimer (2012)

↓ back

## **Estimated Transition Probabilities**

#### Monthly transition probabilities

| 1976-2020 | 1994-2020 |
|-----------|-----------|
| 29.8      | 29.4      |
| -         | 26.9      |
| 1.9       | 1.9       |
|           | 29.8      |

✓ back

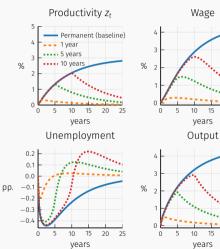
# Labor Market Parameters

Calibrated parameters

| Param.                                       | Interpretation      | Value | Target / Source               |
|----------------------------------------------|---------------------|-------|-------------------------------|
| ρ                                            | sep. rate           | 0.019 | monthly EU prob. 1.9%         |
| ζ                                            | match. effcy.       | 0.53  | monthly UE prob. 26.9%        |
| κ                                            | posting costs       | 0.89  | monthly. vac. fill. prob. 71% |
| $egin{array}{c} b \ \eta \ \psi \end{array}$ | benefits            | 0.37  | replacement rate 70%          |
|                                              | match. elast.       | 0.30  | standard range                |
|                                              | worker barg. weight | 0.38  | lab. share 63%                |
| $\gamma$                                     | wage stickiness     | 0.993 | Shimer (2010), sd. unemp.     |

## **Business Cycle Properties**

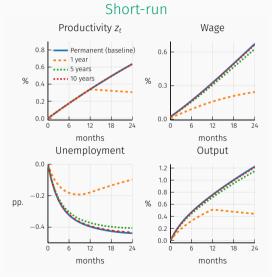
• We assume that exogenous productivity is


$$\log A_t = \rho_A \log A_{t-1} + \epsilon_t, \quad \text{with } \epsilon_t \sim N(0, \sigma_\epsilon^2)$$
(2)

- With  $ho_{\rm A}=$  0.9957 and  $\sigma_{\epsilon}=$  0.0056 we match volatility of autocorrelation of TFP

Table 3: Business cycle moments

|       |           | U-5   | U-3   | Y     | Inv   | Wages | Lab. prod. | Z     |
|-------|-----------|-------|-------|-------|-------|-------|------------|-------|
| Data  | Std. dev. | 0.101 | 0.128 | 0.015 | 0.065 | 0.010 | 0.012      | 0.012 |
|       | Autocorr. | 0.943 | 0.886 | 0.845 | 0.821 | 0.744 | 0.761      | 0.797 |
| Model | Std. dev. | 0.081 | _     | 0.017 | 0.090 | 0.008 | 0.011      | 0.012 |
|       | Autocorr. | 0.848 | _     | 0.846 | 0.248 | 0.947 | 0.789      | 0.791 |


# **Temporary Expansion of Public Investment**



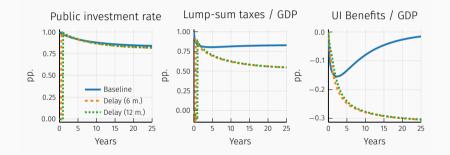
20 25

20 25

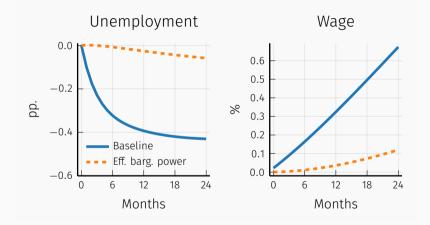
#### Long-run



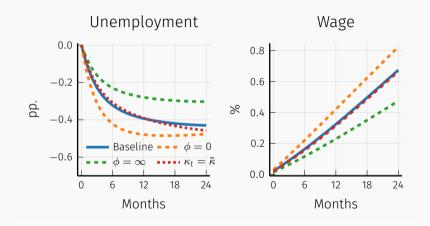
▲ back


#### Robustness: Steady State Investment Rate

- With distortionary tax financing the fiscal cost of the investment program matters through its effect on search effort
- $\cdot$  The size of the fiscal costs depends on the steady state investment rate
- For given replacement rate of UI, steady state employment and capital are unaffected by public investment
- The optimal investment rate is then


$$\frac{I_G}{Y} = \frac{\theta_G \delta_G}{\frac{1}{\beta} - 1 + \delta_G}$$
(3)

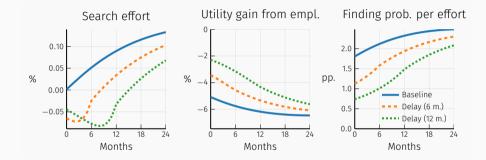
- Can analyze employment effect in this case
- Smaller because tax burden will be larger
- See also Ramey (2020, section 2.6)


#### **Response of Fiscal Variables**



## **Responses with Efficient Steady State Bargaining Power**



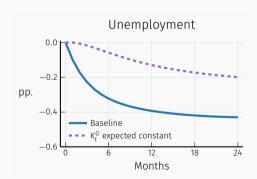

## Capital Adjustment Costs and Proportional Posting Costs



Varying Wage Stickiness



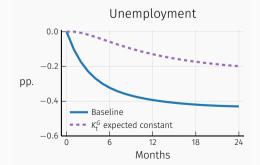
#### **Response of Search Effort**




✓ back

# Size of Anticipation Effect

- $\cdot\,$  Want to quantify contribution of anticipation effect
- $\cdot$  Unemployment change = Current productivity effect +Anticipation effect


Change with  $K_t^G$  expected const.



# Size of Anticipation Effect

- How large is the contribution of the anticipation effect?
- Suppose in every period, public capital stock was expected to stay constant
- Unemployment change = Current productivity effect + Anticipation effect

Change with  $K_t^G$  expected const.

