Intelligence Disclosure and Cooperation in Repeated Interactions

Marco Lambrecht, ${ }^{*}$ Eugenio Proto ${ }^{\dagger}$ Aldo Rustichini, \ddagger Andis Sofianos ${ }^{\S}{ }^{〔}$

August 20, 2022

Abstract

How does information on the intelligence of players affect strategic behavior? The theory, departing from the assumption of common knowledge of rationality, does not allow to make sharp predictions. We experimentally show that in the Prisoners' dilemma, intelligence disclosure hampers cooperation: higher intelligence players cooperate less when they play against someone of lower ability. Similarly, in the Battle of Sexes with low payoff inequality, disclosure disrupts coordination, as higher intelligence players try to force their most preferred outcome. However, with high payoff inequality, this pattern of behavior changes; we explore reasons for this change in behaviour.

JEL classification: C73, C91, C92, D83
Keywords: Repeated Prisoners Dilemma, Cooperation, Intelligence, IQ

[^0]
1 Introduction

How does knowledge of the cognitive skills of others affect cooperation when people repeatedly interact with each other? This question is of primary importance to evaluate the relevance of experiments on strategic interactions, and their external relevance for social interactions. In the laboratory, subjects typically interact anonymously, thus, such information is unknown to others. On the other hand, in natural real life interactions, individuals will often have some information, or at least, will be able to form some impression on the characteristics of the person they are dealing with; in particular regarding cognitive skills and personality. This knowledge could significantly affect choices and behavior.

It is by now known that, when no information on the cognitive skills of others is revealed, there is a systematic relationship between cognitive skills and strategic behaviour under repeated interactions. This topic has now been widely investigated (Alaoui and Penta, 2015; Brocas and Carrillo, 2021b; Burks et al., 2009; Gill and Prowse, 2016; Jones, 2008; Proto et al., 2019, forthcoming). Thus, as part of this general research agenda, a natural question arises: should more intelligent players trust the less intelligent ones when they know that their opponent is less intelligent than they are, and vice versa. Understanding how information on an opponent's ability affects behavior is useful in applications to social interactions, which are seldom completely anonymous. But this understanding can also have theoretically interesting implications: players may have an incentive to signal their cognitive skills, or not, in order to affect the beliefs and decisions of others. This paper considers whether and in which direction the provision of information on the relative level of intelligence affects behavior.

We consider two games: Prisoners' Dilemma (PD) and Battle of Sexes (BoS). These games cover a large set of the interesting scenarios generated by repeated games with two actions two players symmetric stage games (Proto et al., 2019). In the repeated PD the key decision follows from recognising the existence of a trade-off between gains in the present and gains in the future. Thus, disclosing the level of intelligence of the players may have an effect on cooperative behaviour. The more intelligent players might not trust the less intelligent to fully understand the trade-off and to be tempted to be less cooperative. For the less intelligent,
specific theoretical predictions are potentially more complicated. On the one hand, if a player's intelligence level is too low, they might not be able to think strategically (Gill and Prowse, 2016). On the other hand, they may trust the capacity of the more intelligent to understand the game, and - given our payoffs and continuation probability - cooperate more. Alternatively, if they are able to form higher order beliefs, they may think that the more intelligent will not trust them and therefore would decide to defect.

In the BoS the decision problem is not whether to cooperate or not, but rather how to coordinate on one of the two pure strategy Nash Equilibria, which result in different payoff allocations. Hence, in the BoS a tension is generated by the different payoff appropriation that is possible. Thus, the question of how disclosure may affect behaviour when the payoff allocation becomes more extreme arises, as is the case when the payoff difference in the pure strategy Nash Equilibria is larger.

A natural conjecture for the BoS is that players of higher cognitive skill will try to force coordination on their preferred outcome. This could stem from the anticipation that their partner of lower ability is more likely to concede than oppose such forceful behaviour. The higher intelligence player may believe that the lower ability partner would not be able to understand that opposing their forceful behaviour could induce more compromise in future plays. When the payoffs in the pure strategy Nash Equilibria outputs are more unequal, both players have a higher incentive to achieve their preferred outcome and are potentially less willing to concede to others. Thus, we would expect that the effect of disclosure should be attenuated by increasing the inequality in the payoffs of the non-zero payoff outcomes. In order to study this we implement two variants of the BoS which differ in the level of inequality of payoff, one with lower payoff inequality and one with higher payoff inequality.

We find that disclosure affects behavior. In the PD, higher intelligence players play less cooperatively when intelligence differences are disclosed. This change in behavior of higher intelligence players with disclosure results in the lower intelligence subjects suffering the sucker payoff more often. Overall, we find that disclosure hampers cooperation. A similar disruption of cooperation occurs in the BoS with low inequality. Higher intelligence players try to impose themselves by forcing their preferred outcome. However, in the BoS with high inequality, this
pattern of behavior changes and disclosure does not significantly disrupt coordination. Our conjecture is that the higher inequality in the payoffs makes the less intelligent less likely to concede in coordinating on an outcome where they obtain the smaller payoff, which in turn discourages the more intelligent to force coordination on their preferred outcome.

The behavior of experimental subjects in the repeated games we are considering in the current paper has been extensively studied in the literature under no disclosure of cognitive ability. Subjects tend to converge to almost full cooperation when gains from cooperation are sufficiently large both in the PD (e.g. Blonski et al., 2011; Dal Bó, 2005; Dreber et al., 2008; Duffy and Ochs, 2009; Dal Bó and Fréchette, 2011) and in the BoS (e.g. Ioannou and Romero, 2014; Proto et al., 2019). Moreover, the capacity of cooperating in the repeated PD is strongly related to cognitive skills, while in the BoS, intelligence influences the capacity of alternating between Nash equilibria but not coordination itself (Jones, 2008; Proto et al., 2019). Proto et al. (forthcoming) show that more intelligent subjects discipline the less intelligent through punishment only if the error rates of the latter are not too high, the former will stop cooperating otherwise. Our results here show that ex-ante knowledge of the partner's cognitive skills can be disruptive as this can convey the signal that the partner is not capable to play the PD correctly, or induce the more intelligent players to force coordination on their preferred outcome in the BoS.

The theoretical literature is mostly silent about the effect of information of varying levels of cognitive skills of interacting players. Most of classic game theory results hold under the assumption of common knowledge of rationality. ${ }^{1}$ Introducing different cognitive skills of players opens the question of what would be a meaningful definition of common knowledge of rationality in a context where players have different cognitive skills. In the current paper, we analyze the effect of disclosing the cognitive skills of the two players in repeated games. In other words, the effect of disclosing the relative cognitive skills of each player within a given pair of players. Previous laboratory experiments show that the identity of the partner can affect strategic behaviour. In particular, Eichberger et al. (2008) introduce the notion of

[^1]lack of confidence in probability judgements in a static game and show that playing against a granny, a game theorist, or other subjects generate different levels of strategic ambiguity in a static game and experimental subjects play accordingly. Palacios-Huerta and Volij (2009) show that laboratory subjects play more in accordance to sub-game perfect Nash equilibrium when matched with professional chess players than when they play among each other.

The remainder of the paper is organized as follows. The next section provides a theoretical background to analyze the experimetal results. Section 3 describes our experimental design. Section 4 presents our experimental results, for the Prisoners' Dilemma, the Battle of the Sexes with low inequality, and the Battle of the Sexes with high inequality. Section 5 offers a short discussion and conclusions. The online supplementary material includes all experimental details and documents and some summary statistics.

2 Theoretical \& Experimental Background

We consider two games: Prisoners' Dilemma (PD) and Battle of Sexes (BoS). In table 1, we present the payoff matrices we implement in our experimental design. As argued in Proto et al. (2019), these games cover a large set of the interesting scenarios generated by repeated games with two actions two players symmetric stage games. Both games capture important features of cooperation in strategic environments.

Table 1: Stage Games.
(a) PD

	C	D
C	48,48	12,50
D	50,12	25,25

(b) BoSLI

	W	B
B	48,25	0,0
W	0,0	25,48

(c) BoSHI

	W	B
B	48,12	0,0
W	0,0	12,48

Note: C : Cooperate, D : Defect; B : Best-outcome action, W : Worst-outcome action

We begin by analyzing the set of possible strategies of the various specifications. Equilib-
rium strategy profiles for repeated games with PD and BoS as stage games are of course well understood; here we focus on how the equilibria change in games with incomplete information, where players may differ in cognitive skills, and on how different information provided on these skills affect equilibria. As the theory does not provide a precise characterization of these strategies, in particular for the possible effect of disclosing intelligence on strategic behaviour, we begin the analysis, following the recent experimental literature (e.g. Dal Bó and Fréchette, 2011; Fudenberg et al., 2012), by formulating some natural questions deriving from a few repeated game strategies that have previously received attention.

In the PD (for the stage game see table 1a) the key decision follows from recognising the trade-off between gains in the present and losses in the future. Jones (2008) and Proto et al. (2019) show that this understanding and the potential of cooperative behaviour is influenced by the level of intelligence of the decision making player. Furthermore, Proto et al. (forthcoming) show that more intelligent subjects adopt harsher strategies if their partners commit too many strategic mistakes. Finally, the more intelligent may think that the less intelligent are unconditional cooperators (a strategy strictly dominated in our setting). All that is consistent with Eichberger et al. (2008) showing that playing against a player with potentially different skills results in different levels of strategic ambiguity.

Given these possible beliefs about the capacity of understanding the game and correctly implementing a strategy, more intelligent players might be tempted to not cooperate. This leads us to our first research question:

Question 1. In the repeated PD, are the more intelligent less cooperative when cognitive skills are disclosed?

Formulating predictions on the behavior of the less intelligent is potentially more complicated. If a player's level of intelligence is too low, they might not be able to think strategically (Gill and Prowse, 2016), thus, making their behaviour potentially erratic (level 0-like). On the other hand, they may trust that the more intelligent are better able to understand the game and follow them in cooperating more (level 1-like). A further possibility could be that, despite being of lower intelligence, players are able to form higher order beliefs (level >1-like).

These beliefs might allow them to anticipate that the more intelligent will not expect them to be cooperative and therefore would decide to play in a non-cooperative manner. These considerations lead to our second research question:

Question 2. In the repeated PD, do the less intelligent cooperate more or less when cognitive skills are disclosed?

Overall, putting our first two questions together, we are interested in understanding the effect of cognitive skills disclosure on cooperation of groups of mixed intelligence. Thus, our third research question is:

Question 3. In the repeated $P D$, does cognitive skills disclosure lead to lower cooperation rates?

In the BoS the key issue is not whether to choose to be cooperative or not, but rather how to achieve coordination on one of the non-zero payoff outcomes (pure strategy Nash Equilibria). Each of these outcomes result in a heterogeneous earning allocation given their asymmetric nature. Hence, in the BoS a tension is generated by the different payoff appropriation that is possible. Proto et al. (2019) use the same payoffs we use in the current paper in what we refer to here as Battle of Sexes with low inequality (BoSLI) - see table 1b. Proto et al. (2019) show that coordination on one of the two pure strategy Nash equilibria is not affected by player intelligence. Instead, intelligence affects the capacity of alternating and reaching the so-called Efficient and Fair Outcome (EFO). ${ }^{2}$

We anticipate that players with higher cognitive skills will want to try to force coordination on their preferred outcome. This may be because they believe their partner will concede, anticipating them not to be able to comprehend that non-compliance could result in more compromising behaviour in later interactions.

These observations lead to the second block of research questions. In the repeated BoS with low inequality:

[^2]Question 4. Do the more intelligent try to force coordination on their preferred outcome when cognitive skills are disclosed?

Question 5. Are the the less intelligent more likely to concede when cognitive skills are disclosed?

Overall, depending on how the behaviour of both the more and less intelligent players changes when cognitive skills are disclosed, we ask:

Question 6. Does cognitive skills disclosure lead to lower coordination rates?

The nature of the BoS, as already discussed above, entails a tension between players due to the asymmetry in earnings that result when coordinating to one of the pure strategy Nash equilibria. Therefore, understanding how the effect of disclosing cognitive skills is influenced when inequality of payoffs is increased is very relevant and we study this with the game we call Battle of Sexes with high inequality (BoSHI) - see table 1c. Higher inequality can make coordination more difficult as both players will have a higher incentive to achieve their preferred outcome and would be less willing to concede. Consequently, we expect that the effect of disclosure would be attenuated by increasing the inequality in the payoffs of the non-zero payoff outcomes.

Accordingly, the more intelligent might feel more strongly about achieving their preferred outcome. A countervailing force might be in place though, as the more intelligent could believe that the less intelligent would be less willing to concede given the inequality in payoffs. As a result, the more intelligent might be less tempted to force their preferred outcome onto others. Hence, for the repeated BoS with high inequality we ask the following:

Question 7. Do the more intelligent force coordination on their preferred outcome more or less when the cognitive skills are disclosed?

Equivalently, for the less intelligent:

Question 8. Do the less intelligent concede more or less when cognitive skills are disclosed?

Overall, we are interested in how different levels of inequality in payoffs can influence the effect of cognitive skill disclosure on coordination:

Question 9. Does cognitive skills disclosure have a smaller effect in the BoS with high inequality than in the BoS with low inequality?

3 Experimental Design

3.1 Overview

In our experiment subjects play repeated games in a between-subjects design. While playing these games, subjects are either informed or not of the approximate relative ability of themselves and the person they are playing against. Subjects complete a cognitive ability test and are subsequently asked to play either a Prisoner's Dilemma game or one of two variants of a Battle of Sexes game depending on the condition. ${ }^{3}$ We vary whether the subjects, while interacting, are given some information on their own and their partner's test scores, the Disclosure condition, or not, the No-disclosure condition. To avoid any form of deception, prior to the cognitive ability task, subjects are warned that their score may anonymously be shown to other subjects at a later point in the session. Overall, we have a 2×3 factor design resulting in 6 treatments summarised in table 2.

Table 2: Summary of treatments.

	Disclosure	No-disclosure
Prisoners' Dilemma	1) PD Discl.	4) PD No Discl.
Battle of Sexes (low ineq.)	2) BoSLI Discl.	5) BoSLI No Discl.
Battle of Sexes (high ineq.)	3) BoSHI Discl.	6) BoSHI No Discl.

3.2 Session Timeline

In the first part of the session subjects complete tasks which elicit their cognitive ability and risk preferences. Subjects first complete a Raven Advanced Progressive Matrices (APM) test of 36 matrices. They have a maximum of 30 minutes for all 36 matrices. The subjects are initially shown an example of a matrix with the correct answer provided below for 30 seconds.

[^3]Then, for each item a 3×3 matrix of images is displayed on the subjects' screen; the image in the bottom right corner is missing. The subjects are asked to complete the pattern, choosing one out of 8 possible choices presented on the screen. The 36 matrices are presented in order of progressive difficulty, just as they are sequenced in Set II of the APM. Subjects are allowed to switch back and forth through the 36 matrices during the 30 minutes and change their answers. They are rewarded with 1 Euro per correct answer from a random choice of three out of the 36 matrices. The Raven test is a non-verbal test commonly used to measure reasoning ability and general intelligence. Matrices from Set II of the APM are appropriate for adults and adolescents of above average intelligence. This test was among others implemented in Gill and Prowse (2016) and Proto et al. (2019, forthcoming) and has been found to be relevant in determining behaviour in cooperative or coordinating games. During the session we never mention that the task is a test of intelligence or cognitive ability. For risk attitude elicitation, subjects complete an incentivised Holt-Laury task (Holt and Laury, 2002).

Subjects are then asked to play an induced infinitely repeated game. Depending on the condition, subjects played a Prisoner's Dilemma (PD) game, a Battle of Sexes with low inequality (BoSLI) game, or a Battle of Sexes with high inequality (BosHI) game. The respective stage games are presented in table 1. Payoffs reported are in terms of experimental units; each experimental unit corresponds to 0.003 Euros and subjects receive the sum of all earnings earned across all their interactions.

As is standard in experimental tests of infinitely repeated games, we reproduce the conditions of an infinite repetition of the stage game by introducing random termination through continuation probability δ, with $\delta=0.75$. We use a pre-drawn realisation of the random numbers to ensure all sessions across all treatments are faced with the same experience in terms of length of play at each decision point. ${ }^{4}$ We define each repeated game played a supergame and refer to the round within a specific supergame as a period. We define as round the overall count of number of times the stage game has been played across supergames during the session. The length of play of the repeated game is until the completion of the 26th supergame

[^4](which entailed 92 rounds, i.e. repetitions of the stage game). This rule is not disclosed to the subjects.

The matching of partners is done within each session under an anonymous and random re-matching protocol. Subjects play as partners for as long as the random continuation rule determines that the particular partnership is to continue. Once a match is terminated, the subjects are again randomly and anonymously matched, and start playing the game again according to the respective continuation probability. Each decision round for the game is terminated when every subject in the session has made their decision. After all subjects make their decisions, a screen appears that reminds them of their own decision, indicates their partner's decision, as well as the experimental units they have earned for that particular round.

After completing the repeated game, subjects are asked to respond to a standard Big Five personality questionnaire ${ }^{5}$ together with some demographic questions. No monetary payment is offered for this section of the session and the subjects are informed of this. All the instructions are included in the supplementary material. ${ }^{6}$

3.3 Disclosure of intelligence

In the disclosure condition, as subjects play either the PD, BoSLI or BosHI (depending on the treatment), they receive information about their own Raven test score as well as their partner's approximate Raven test score. We call the information on the opponent approximate because it is offered through a line graph like the one in figure 1. The grey range depicts the overall possible test scores ranging from 0 to 36 , while the black line indicates the range of actual scores in the session; providing this information is necessary to offer an idea of the typical range of scores subjects obtain. The yellow circle indicates the score of the subject, while the green range indicates the range within which the partner's score lies. We choose to display the green range, instead of a specific point on the line, to prevent (as far as possible) the identification of a partner from previous supergames. This range indicates two points on the line, one of which is the true partner's score. Subjects are not explicitly told how many points are contained

[^5]Figure 1: Disclosure of Raven scores. An example of how the own raven score and partner's raven score was disclosed to subjects.

within the green range, they only see the range as depicted in figure 1. For each supergame, the partner's score would either be the higher or lower point on the green range. This is kept constant within a supergame but then randomly determined across supergames. In order to allow for clear identification of score differences we ensure that in all matches there is at least one score point difference, which means that the yellow circle never coincides with the green range. ${ }^{7}$ This rule is also applied in the no-disclosure condition matching protocol. Other than this restriction, matching is done completely randomly. In the no-disclosure condition, the area where the figure of intelligence disclosure should be is left blank.

3.4 Implementation Details

The recruitment was conducted through the Alfred-Weber-Institute (AWI) Experimental Lab subject pool based on the ORSEE (Greiner, 2015) and SONA recruitment software for the sessions taking place in the Heidelberg Lab. For the sessions that were administered in the Frankfurt Lab, recruitment was conducted through the Frankfurt Laboratory for Experimental Economic Research (FLEX) subject pool based on the ORSEE recruitment software. We had to administer some sessions in the Frankfurt lab because the subject pool at the Heidelberg Lab was not large enough to accommodate our needs given that we did not want participants from previous related work (Proto et al., forthcoming) to be also participants in this study. Participants across the two labs are not different in terms of individual characteristics as seen in table O. 20 in the supplementary material. Moreover, when we analyze the data we will also present the main results split by location and argue that the findings are consistent. A total of 430 subjects participated in the experimental sessions. They earned on average around 12 Euros each. The software used for the entire experiment was Z-Tree (Fischbacher, 2007).

[^6]We conducted 6 sessions for the PD condition consisting of a total of 100 subjects, 10 sessions for the BoSLI condition consisting of a total of 170 subjects and 8 sessions for the BosHI condition consisting of 160 subjects. Since the analysis for the BoS treatments mainly focuses on outcomes (i.e. whether coordination is achieved or not), while for the PD treatments on just cooperative choices, more observations were needed for the BoS treatments, hence the slightly larger number of sessions and participants for these. The dates of the sessions and the number of subjects per session, are reported in tables O.16, O.17 and O. 18 in the supplementary material.

4 Experimental Evidence

4.1 Prisoner's Dilemma

We first address our first two research questions, which we repeat here for convenience:

Question 1. In the repeated PD, are the more intelligent less cooperative when cognitive skills are disclosed?

Question 2. In the repeated PD, do the less intelligent cooperate more or less when cognitive skills are disclosed?

We initially focus on first period choices, that have the advantage of not being affected by past choices within a supergame. There is widespread evidence that in the repeated PD subjects overwhelmingly play 3 simple strategies: Always Defect, Tit-for-Tat and Grim Trigger (e.g. Dal Bó and Fréchette, 2018, 2019; Proto et al., 2019; Romero and Rosokha, 2019). ${ }^{8}$ Since most behaviour is typically limited to these three strategies, first period choices are very indicative of whether a subject is playing a cooperative strategy in a given supergame.

From figure 2, we can observe that under disclosure, subjects playing with partners of lower IQ than themselves open with cooperation less often compared to the non-disclosure treatment, while for the lower intelligence subjects in a given pair the evidence is less clear. In table 3, where we report our logit estimation results in terms of odds ratios, we confirm

[^7]this pattern. ${ }^{9}$ In particular, we analyze cooperative choices separately for when a subject is of higher intelligence than their partner and for when a subject is of lower intelligence than their partner. The results of the former, reported in columns 1 and 2, offer evidence that subjects of higher intelligence than their partner initiate supergames significantly less often with cooperation under disclosure. Interestingly, when we control for the difference in intelligence between partners (column 2), we find that the odds of cooperation decrease as the IQ difference between the pair increases under disclosure. Thus, confirming our prediction in section 2 about how cooperative the more intelligent will be with their partners would be inversely related to the partner's intelligence. This effect is substantial; looking at the 1st column of table 3, we find that disclosure reduces the odds of cooperation by almost 80% when the subject has a higher score than their partner, corresponding to an estimated negative marginal effect of magnitude 0.125 .

The results reported in column 3 table 3 offer some weak evidence that lower intelligence subjects cooperate less in the disclosure condition albeit this is only significant at 10%. The results reported in column 4 show that this effect is significant when the IQ differential is high but the magnitude is smaller compared to what we report in column 2 for the higher intelligence subjects. The fact that the less intelligent do not significantly change their behavior (or at least change it less that the more intelligent do) results in the less intelligent suffering in terms of payoff in the disclosure condition. In table 4 we analyse payoffs in first periods separately for subjects of higher intelligence than their partner and vice versa. The less intelligent in a pair are on average about 2.27 units worse off in the disclosure condition (column 3), while the more intelligent in a pair are not significantly affected in terms of payoff by disclosure (column 1). Overall, we find that disclosure makes the more intelligent cooperate significantly less, while for the less intelligent this evidence is weaker in first period choices.

Now we focus on how play of the different intelligence players looks like in the subsequent periods. We analyze this through estimating the likelihood of different strategies separately

[^8]for the first half and the second half of the session. ${ }^{10}$ We report the results of this estimation for the first half in table 5. In this table we consider only 4 possible strategies. As already discussed, the strategies Always Defect (AD), Tit-for-Tat (TfT), and Grim Trigger (GT) are the ones that are overwhelmingly played by experimental subjects in the indefinitely repeated PD. We additionally include Always Cooperate (AC) which could be potentially instructive. ${ }^{11}$ To make some meaningful comparisons we group together the TfT and GT strategies and label them as Sophisticated Cooperation (SC). In doing this we can reduce the game that is played to a normal form game that we label the strategy choice game as done in Proto et al. (2019). When players have a higher IQ score than their partner, we observe a substantial drop in the proportion of AC under disclosure (columns 1 and 2). Furthermore, we also observe more lenient strategies are played - i.e. more TfT and less GT - when they know that their partner has a lower score than themselves. Following Proto et al. (forthcoming), this could be explained by how more lenient strategies are optimal when initially expecting the partner to be modestly error prone. Switching now to individuals playing with partners of higher intelligence than themselves (columns 3 and 4), we observe that they are more cooperative under disclosure and play SC in a higher proportion, while the occurrence of AD drops.

In table 6, we report the strategy estimation for the second half of the session. We find no substantial differences between the disclosure conditions among the more intelligent. While, again, the less intelligent seem to become more cooperative as they play AC significantly more often under disclosure.

Overall, these results suggest the following answers to questions 1 and 2 :

Result 4.1. Higher intelligence subjects are less cooperative under disclosure; while for the less intelligent the evidence is mixed.

[^9]We now answer our third research question:
Question 3. In the repeated $P D$, does cognitive skills disclosure lead to lower cooperation rates?

Figure 3 indicates that disclosure significantly reduces first period cooperation rates in the first half of the session. After the second block of 5 supergames is played (marked with 10 in the x -axis of the figure), we observe a difference of around 15 percentage points in first period cooperation rates between the disclosure and no-disclosure treatments. This observation is corroborated by econometric analysis. In table 7, we report the results of a logit estimation of the effect of disclosure on first periods cooperation rates. Column 3 shows a significant negative effect of disclosure in first periods cooperation in the first half - the odds of cooperation are reduced by more than 70% in the disclosure treatment compared to the no-disclosure treatment. This effect remains when estimating the same specification for the whole session (column 5), where we observe a reduction of about 74% of the odds of first periods cooperation in the disclosure treatment. This corresponds to an estimated negative marginal effect of magnitude 0.121. Columns 2,4 and 6 show that the negative effect of disclosure is significantly stronger when intelligence differences between players are high and this is disclosed. That is, whenever partners have a larger difference in their cognitive abilities and this is common knowledge, interactions are significantly less likely to be initiated with a cooperative choice.

We can then answer our third research question by:
Result 4.2. Disclosure has a negative effect on cooperation in the repeated Prisoners' Dilemma.

4.2 Battle of Sexes with Low Inequality

We now focus on the behavior in the BoS with low inequality and answer our fourth and fifth research questions:

Question 4. Do the more intelligent try to force coordination on their preferred outcome when cognitive skills are disclosed?

Question 5. Are the the less intelligent more likely to concede when cognitive skills are disclosed?

The top panels of figure 4 present the proportion of preferred choice for the subjects with a higher IQ than their partner in the left and vice versa in the right. From the top-left panel we observe that players of higher IQ than their partner more frequently make their preferred choice under disclosure. Instead, the evidence for the players of lower IQ than their partner is not clear. These graphical observations are confirmed in table 8 , where we report the results of a logit regression on the likelihood that a subject makes their preferred choice (i.e. choice of B for both the row and column players in table 1b). These results suggest that for subjects knowingly playing with partners of lower intelligence than themselves disclosure significantly increases the probability they play their preferred choice and impose themselves more often. The odds of higher intelligence subjects going for their preferred choice are increased by about 32% when in the disclosure treatment compared to the no-disclosure treatment (column 1); this corresponds to an estimated marginal effect of 0.06 . The likelihood the less intelligent play their preferred choice does not seem to be affected by disclosure as the results reported in columns 3 and 4 of table 8 indicate. ${ }^{12}$

The bottom panels of figure 4 show that, as a consequence of the behavior we just described, the less intelligent are less often able to achieve their preferred outcome, while the more intelligent are not able to improve the extent by which they impose coordination on their preferred outcome. In table 9, we report the results of logit regression on the likelihood of achieving one's preferred outcome separately for subjects of higher and lower intelligence in a given pair. These results corroborate the observations made from figure 4. With disclosure there is significantly less coordination on the preferred outcome of the less intelligent subject in a pair. The odds of coordinating to the preferred outcome of the lower intelligence subject in a pair under disclosure are reduced by just over 25%, with an estimated negative marginal effect of disclosure of magnitude 0.06. ${ }^{13}$

The more intelligent partners impose themselves more; while the less intelligent appear to concede more. Nevertheless, the more intelligent are not able to achieve their preferred outcome

[^10]more often under disclosure, possibly because the overall rate of coordination is generally lower under disclosure. ${ }^{14}$

Subjects in the middle of the intelligence distribution are often flipping between being the higher and the lower intelligence player in a pair. In table 10, by introducing individual fixed effects, we are able to analyze how the same subjects change their behaviour when they are matched with a more or less intelligent partner. From columns 1 and 2, we note that under disclosure, when subjects are more intelligent than their counterparts the odds of imposing their preferred choice are increased by about 42%, with an estimated positive marginal effect of magnitude of 0.09.

We complement the econometric analysis of choices and outcomes with an analysis of the strategies used by the subjects, similarly to our analysis of the PD. We present the estimation of the likelihood of strategies in the first half and second half of the session. We consider strategies that are inspired from those analysed in Brocas and Carrillo (2021a). Apart from playing Always Preferred or Always Concede strategies, the others are increasingly sophisticated strategies aimed at achieving the efficient and fair outcome (EFO). We categorise each strategy as either forceful or submissive. For example, in forceful tit-for-tat, players start with their preferred choice, while in the submissive tit-for-tat players start with the preferred choice of their partner. The full set of strategies we consider are described in table O. 11 of the online supplementary material.

We first run an estimation that considers all strategies, which we present in tables 0.12 and 0.13 in the online supplementary material. Subsequently, we run a second estimation where we only include the strategies that are most frequently used by the subjects, the results of which we present in tables 11 and 12. Our results from the econometrics analysis are confirmed in the results reported in table 11. Subjects with a higher IQ than their partner play more often Always Preferred in the disclosure treatment (columns 1 vs. column 2). On the other hand, the less intelligent in a pair play Always Concede more often under disclosure (columns 3 vs. column 4). Overall, the less intelligent play submissive strategies more often

[^11]and forceful strategies less often under disclosure. For completeness we present the estimation results for the second part of the session in table 12. Here, we find more homogeneity across subjects and treatments, suggesting that disclosure becomes less relevant after subjects learn from experience. We summarize the results for the BoS with low inequality so far with:

Result 4.3. The higher intelligence subjects impose themselves by playing their preferred choice more often under disclosure. The less intelligent concede more often under disclosure.

We move on to address our next research question:
Question 6. Does cognitive skills disclosure lead to lower coordination rates?

In figure 5, we present the evolution of coordination across the two disclosure treatments. We observe that disclosure hampers coordination, at least in the first half of the session. There is a difference of approximately 10 percentage points between the disclosure and no-disclosure treatments. The equivalent regression analysis we report in table 13 supports this conclusion as well. We find a significant negative effect of disclosure on coordination (column 3) and this difference remains significant throughout the whole session (column 5). Overall, the odds of coordination are reduced by more that 20% in the disclosure treatment, with estimated negative marginal effects of magnitude 0.06 and 0.05 respectively for the fist half of the session and the whole session. ${ }^{15}$

We therefore conclude that for the BoS with low inequality:

Result 4.4. Disclosure has a negative effect on overall coordination. Overall, this negatively affects earnings, but is dis-proportionally more harmful for the lower intelligence subjects.

4.2.1 Battle of Sexes with High Inequality

We now turn to the BoS with high inequality addressing the following:

Question 7. Do the more intelligent force coordination on their preferred outcome more or less when the cognitive skills are disclosed?

[^12]Question 8. Do the less intelligent concede more or less when cognitive skills are disclosed?
Figure 6 suggests a different pattern than in the BoS with low inequality. Lower IQ seem to make their preferred choice and achieve their preferred outcome more often under disclosure, while the evidence for the Higher IQ is less clear. In table 14, we analyse a subject's likelihood to make their preferred choice, separately for the higher and lower intelligence subjects in a given pair. We find an important difference to the behaviour observed in the Battle of Sexes with low inequality. Higher intelligence subjects do not make their preferred choice significantly more often under disclosure in the BoS with high inequality, in contrast to what we observe in the low inequality variant. If anything, it seems on the contrary that they play their preferred choice less often (columns 1 and 2), albeit not statistically significant.

More intelligent subjects in the BoS with high inequality do not seem to impose themselves more under disclosure. This change in behaviour reduces the effect of disclosure on coordination onto the higher intelligent subject's preferred outcome. In table 15, we estimate the likelihood of coordination to a subject's preferred outcome separately for subjects of higher and lower intelligence than their partner. We find that lower intelligence subjects appear to significantly more often manage to coordinate on their preferred outcome. ${ }^{16}$ From column 3 of table 15 we note that the lower intelligence subject in a pair enjoys more than 25% increase in the odds of reaching their preferred outcome under disclosure with an estimated positive marginal effect of magnitude of about 0.05. If we analyze coordination in Heidelberg and Frankfurt separately, we find consistent results in the two locations as we can observe in table 0.7 of the online supplementary material. Column 1 shows that in Frankfurt disclosure significantly reduces the likelihood of coordination on the more intelligent subject's preferred outcome, while column 4 show that in Heidelberg disclosure increases the likelihood for coordination on the less intelligent subject's preferred outcome.

Table 16 presents the results of the likelihood estimation for the different strategies in the first half of a session. It is useful to recall that apart from Always Preferred and Always Concede all other strategies are aimed to achieve the EFO. As it is normal to expect given

[^13]the higher payoff inequality in this variant of the BoS , the less intelligent do not appear to be conceding any differently under disclosure or not. At the same time the more intelligent do not seem to play the Always Preferred strategy more often. On the contrary, and perhaps surprisingly, the less intelligent are more likely to play Always Preferred and other forceful strategies more often under disclosure.

Table 17 presents the likelihood estimation results for the second half of a session, where similar to the BoS with low inequality, we find fewer differences in the probability of playing the different strategies across the two disclosure treatments.

We can summarize the results for the BoS with high inequality so far with:
Result 4.5. The less intelligent are less likely to concede under disclosure, while the higher intelligence subjects do not try to force coordination on their own preferred outcome under disclosure.

4.2.2 Comparison within the two Battle of Sexes Conditions

We now turn to the effect of disclosure on the overall level of coordination and in particular to our research question:

Question 9. Does cognitive skills disclosure have a smaller effect in the BoS with high inequality than in the BoS with low inequality?

Figure 7 presents the evolution of coordination across the two disclosure treatments in the BoS with high inequality. In contrast to the BoS with low inequality, we observe no clear difference between the two treatments. Table 18 corroborates this observation, there is no statistically significant effect of disclosure on coordination.

We now directly compare the two BoS conditions. First, we study the evolution of preferred outcome coordination in figure 8. The figure contrasts whether the higher intelligence subject in a given pair achieves their preferred outcome or not depending on the game version (blue for BoSLI and red for BoSHI) and on whether intelligence was disclosed (right panel) or not (left panel). Focusing first on the left panel of figure 8, there is no clear difference between the two game variants on whether coordination is on the preferred outcome of the higher intelligence
player in a pair under no disclosure. In the disclosure treatments, the outcomes are clearly different depending on the game version (right panel). With disclosure, in the BoS with low inequality, the higher intelligence player in a pair is increasingly enjoying coordination on their preferred outcome, while the converse happens in the BoS with high inequality.

We formalise this discussion using regression analysis; we report the results of this analysis in table 19. The baseline in the regression analysis is the non-disclosure BoS with low inequality treatment. Observing the first column we conclude that disclosure is harmful for coordination in the BoS with low inequality. Moreover, high inequality in the non-zero outcome payoffs has a significant negative effect on coordination if compared to the BoS with low inequality. However, the interaction between disclosure and high inequality results in a significant positive effect on coordination. Having both disclosure and higher payoff inequality translates to 38% increase in the odds of coordination, when compared with low inequality and no-disclosure. As already seen in the previous analysis, coordination is more often on the preferred outcome of the lower intelligence subject in a given pair. This is also clear in columns 3 and 5 of table 19, where we find a significant positive effect for the interacted term (Disclosure*High Ineq.) on payoff. The effect is considerably larger for subjects of lower intelligence than their partner. Overall, these results lead us to conclude that:

Result 4.6. Intelligence disclosure in the the BoS with high inequality has no effect on overall coordination. Coordination is significantly higher in the BoS with high inequality than in the BoS with low inequality under no disclosure.

This confirms our initial conjecture that when inequalities increase, subjects try harder to achieve the efficient and fair outcome attenuating the effects of disclosure. This is also reflected in how differently subjects alternate. In figure 9 we present the alternation rates following Dal Bó (2005) who implement the alternation index by Rapoport et al. (1976). The alternation rates are very similar within the two treatments when inequality is higher, while in the BoS with low inequality, subjects alternate significantly less under disclosure.

5 Concluding Remarks

In this paper we have shown, using laboratory evidence, that disclosure of own and partner's cognitive skills in a repeated game affects cooperation and coordination. These results are of primary importance for our understanding of cooperation in the experiments and in real life, where this information is typically, in one form or another, available. In experiments, subjects typically interact anonymously; hence, information on cognitive skills is not available. Instead, individuals in social strategic situations will often have some information and form some belief on the characteristics of the person they are dealing with. Furthermore, these results provide more insight on the understanding of strategic behaviour under repeated interactions.

In our design we communicate both own and partner's intelligence scores, with some noise, and study behaviour across three repeated games that entail different possible motivations for players. The first, a Prisoner's Dilemma game, entails a trade-off between an instantaneous gain from deviating from mutual cooperation, but a long-term loss of future cooperating outcomes. We also study behavior in two versions of the Battle of Sexes game. The Battle of Sexes does not entail the aforementioned trade-off, but allows players to try and increase their payoff by forcing their own preferred outcome. In one version of the Battle of Sexes game, the non-zero payoff outcomes of the stage game involve relatively low inequality in payoffs, while in the second there is higher inequality.

We find that disclosure results in disrupting cooperation in the Prisoner's Dilemma game, compared to the baseline where this information is not available. Access to information on intelligence leads higher intelligence subjects to be less cooperative, while subjects of lower intelligence do not appear to significantly adjust their behavior. This results in a detrimental effect on the payoffs of the lower intelligence subjects.

In the Battle of Sexes games, we find similar evidence that disclosure hampers coordination. This is more evident in the Battle of Sexes with low inequality, where higher intelligence subjects try to force their own preferred outcome. This attempt is not entirely successful, which results in lower coordination under disclosure. However, in the Battle of Sexes with high inequality, we do not find disclosure having a significant effect on coordination. The higher
payoff inequality appears to act as a stronger incentive to reach an efficient and fair outcome, which makes the less intelligent less keen to concede and discourages the more intelligent from trying to force their own preferred outcome.

Overall, the less intelligent appear to have an incentive to not disclose their intelligence to the more intelligent, or to send positive signals to others about their own skill. This is consistent with what individuals will typically do when such revelation has no further consequences on the action of others (e.g. Burks et al., 2013). However, this conclusion holds only when the environment is such that a conceding behavior will not result in a very unequal division of earnings.

6 Figures and Tables

Figure 2: Prisoner's Dilemma: Evolution of cooperation and sucker's payoff rates across the disclosure treatments. The upper panels represent the cooperation rates in the first period of each supergame for subjects of higher IQ in the left and lower IQ in the right than their partners. The lower panels represent the share of subjects that suffer the sucker's payoffs of 12 . The rates are calculated by aggregating blocks of 5 supergames.

Figure 3: Prisoner's Dilemma: Evolution of first periods cooperation rate across the disclosure treatments. Cooperation rates in the first period of each supergame. The rates are calculated by aggregating blocks of 5 supergames. The bands represent the 95% confidence interval.

Figure 4: Battle of Sexes with low inequality: Evolution of preferred choice and preferred outcome rates across the disclosure treatments. The upper panels represent the preferred choice rates for subjects of higher IQ in the left and lower IQ in the right than their partners. The lower panels represent the share of subjects that coordinated with their partners and obtained their preferred outcome $(48,25)$. The rates are calculated by aggregating blocks of 5 supergames.

Figure 5: Battle of Sexes with low inequality: Evolution of coordination. Coordination rates to a non-zero payoff outcome. The rates are calculated by aggregating blocks of 5 supergames. The bands represent the 95% confidence interval.

Figure 6: Battle of Sexes with High Inequality: Evolution of preferred choice and outcome rates in the two treatments. The upper panels represent the preferred action rates for subjects with respectively higher and lower IQ than their opponents. The lower panels represent the share of subjects that coordinated with their partners and obtained their preferred outcome $(48,12)$. The rates are calculated by aggregating blocks of 5 supergames.

Figure 7: Battle of Sexes with High Inequality: Evolution of coordination. Coordination rates to a non-zero payoff outcome. The rates are calculated by aggregating blocks of 5 supergames. The bands represent the 95% confidence interval.

Figure 8: Battle of Sexes: Coordination on preferred outcome of the more intelligent player by disclosure. Share of subjects that coordinated with their partners and obtained their preferred outcome. The shares are calculated by aggregating blocks of 5 supergames. The bands represent the 95% confidence interval.

Figure 9: Battle of Sexes: Alternation rates between the two non-zero payoff outcomes. Index calculated following Rapoport et al. (1976) and Dal Bo (2005)

Table 3: Prisoner's Dilemma: Effect of disclosure on cooperative choice in first periods by relative IQ. The dependent variable is the choice of cooperation in the first periods of all supergames. The variable IQ diff. represents the absolute difference between the IQ of the two players. Panel logit estimator with random effects and errors clustered at the individual level. Controls for trend, gender, Big 5 personality traits, risk aversion, size of session, average length of past supergames are included in the regressions but omitted from the table. The coefficients are expressed in Odds Ratios. Clustered Std errors in brackets; ${ }^{*} p$-value $<0.1,{ }^{* *} p$ - value $<0.05,{ }^{* * *} p$-value <0.01.

	Own IQ > Partner IQ		Own IQ < Partner IQ	
	1	2	3	4
	b/se	b/se	b/se	b/se
choice				
Disclosure	$\begin{aligned} & 0.20290^{* *} \\ & (0.1429) \end{aligned}$	$\begin{gathered} 0.74122 \\ (0.6591) \end{gathered}$	$\begin{aligned} & 0.26699^{*} \\ & (0.1894) \end{aligned}$	$\begin{gathered} 0.57362 \\ (0.4402) \end{gathered}$
Disclosure*IQ diff.		$\begin{aligned} & 0.81483^{* * *} \\ & (0.0613) \end{aligned}$		$\begin{aligned} & 0.88588^{* *} \\ & (0.0496) \end{aligned}$
IQ diff.		$\begin{array}{r} 1.04490 \\ (0.0456) \end{array}$		$\begin{aligned} & 1.05300^{* *} \\ & (0.0256) \end{aligned}$
Own IQ	$\begin{aligned} & 1.16499 * \\ & (0.0976) \end{aligned}$	$\begin{aligned} & 1.18881^{* *} \\ & (0.1035) \end{aligned}$	$\begin{gathered} 1.13511 \\ (0.0950) \end{gathered}$	$\begin{aligned} & 1.13340 \\ & (0.0925) \end{aligned}$
N	1250	1250	1250	1250

Table 4: Prisoner's Dilemma: Effect of disclosure on individual payoff in first periods by relative IQ. The dependent variable is the payoff in the first periods of all supergames. The variable IQ diff. represents the absolute difference between the IQ of the two players. GLS estimator with random effects and errors clustered at the individual level. Controls for trend, gender, Big 5 personality traits, risk aversion, size of session, average length of past supergames are included in the regressions but omitted from the table. Clustered Std errors in brackets; * $p-$ value $<0.1,{ }^{* *} p-$ value $<0.05,{ }^{* * *} p-$ value <0.01.

	Own IQ > Partner IQ		Own IQ < Partner IQ	
	1	2	3	4
	b/se	b/se	b/se	b/se
Disclosure	0.16990	1.40674	$-2.27113^{* *}$	1.72237
	(1.2783)	(2.3085)	(1.0044)	(1.8094)
Disclosure*IQ diff.		-0.18713		$-0.56865^{* * *}$
		(0.2645)		(0.1779)
Own IQ	-0.03440	0.04197	0.06757	-0.14484
	(0.1973)	(0.2239)	(0.1114)	(0.1190)
Partner IQ	0.21306	0.13795	0.56489***	$0.76462^{* * *}$
	(0.1425)	(0.1795)	(0.1629)	(0.1804)
N	1250	1250	1250	1250

Table 5: Prisoner's Dilemma: Strategies estimation in the SGs in the first half of the session. SC stands for 'Sophisticated Cooperation' which sums together the proportion of Grim after 1D and Tit for Tat. Gamma is the error coefficient that is estimated for the choice function used in the ML and beta is the probability estimated that the choice by a subject is equal to what the strategy prescribes. When beta is close to $1 / 2$, choices are essentially random and when it is close to 1 then choices are almost perfectly predicted. Tests equality to 0 using the Waldtest: ${ }^{*} p$-values $<0.1,{ }^{* *} p$-values $<0.05^{* *}, p$-values $<0.01^{* * *}$

	Own IQ > Partner IQ				Own IQ < Partner IQ			
	No Disclosure		Disclosure		No Disclosure		Disclosure	
Strategy								
Always Cooperate	$\begin{array}{r} 0.1031 \\ (0.0548) \end{array}$	*	$\begin{array}{r} 0.0102 \\ (0.0478) \end{array}$		$\begin{array}{r} 0.0878 \\ (0.1239) \end{array}$		$\begin{array}{r} 0.0498 \\ (0.0611) \end{array}$	
Always Defect	$\begin{array}{r} 0.1329 \\ (0.0637) \end{array}$	**	$\begin{array}{r} 0.1449 \\ (0.0992) \end{array}$		$\begin{array}{r} 0.2455 \\ (0.0755) \end{array}$	***	$\begin{array}{r} 0.1707 \\ (0.1241) \end{array}$	
Grim after 1 D	$\begin{array}{r} 0.3396 \\ (0.1381) \end{array}$	**	$\begin{array}{r} 0.2832 \\ (0.0941) \end{array}$	***	$\begin{array}{r} 0.2462 \\ (0.1026) \end{array}$	**	$\begin{array}{r} 0.3515 \\ (0.1167) \end{array}$	***
Tit for Tat (C first)	0.4244	***	0.5616	***	0.4204	***	0.4280	***
SC	0.7640		0.8448		0.6666		0.7795	
Gamma	$\begin{array}{r} 0.5121 \\ (0.1147) \end{array}$	***	$\begin{array}{r} 0.5724 \\ (0.0469) \end{array}$	***	$\begin{array}{r} 0.5163 \\ (0.0602) \end{array}$		$\begin{array}{r} 0.6130 \\ (0.0440) \end{array}$	***
beta	0.876		0.852		0.874		0.836	
Average Periods	3.625		3.625		3.625		3.625	
Observations	1,152		1,248		1,152		1,248	

Table 6: Prisoner's Dilemma: Strategies estimation in the SGs in the second half of the session. SC stands for 'Sophisticated Cooperation' which sums together the proportion of Grim after 1D and Tit for Tat. Gamma is the error coefficient that is estimated for the choice function used in the ML and beta is the probability estimated that the choice by a subject is equal to what the strategy prescribes. When beta is close to $1 / 2$, choices are essentially random and when it is close to 1 then choices are almost perfectly predicted. Tests equality to 0 using the Waldtest: ${ }^{*} p$-values $<0.1,{ }^{* *} p$-values $<0.05^{* *}, p$-values $<0.01^{* * *}$

	Own IQ > Partner IQ				Own IQ < Partner IQ			
	No Disclosure		Disclosure		No Disclosure		Disclosure	
Strategy								
Always Cooperate	$\begin{array}{r} 0.0297 \\ (0.0347) \end{array}$		$\begin{array}{r} 0.0471 \\ (0.0807) \end{array}$		$\begin{array}{r} 0.0248 \\ (0.0390) \end{array}$		$\begin{array}{r} 0.2410 \\ (0.1180) \end{array}$	**
Always Defect	$\begin{array}{r} 0.1474 \\ (0.0713) \end{array}$	**	$\begin{array}{r} 0.1252 \\ (0.0636) \end{array}$	**	$\begin{array}{r} 0.2254 \\ (0.0800) \end{array}$	***	$\begin{array}{r} 0.1265 \\ (0.0797) \end{array}$	
Grim after 1 D	$\begin{array}{r} 0.4469 \\ (0.1801) \end{array}$		$\begin{array}{r} 0.3522 \\ (0.0931) \end{array}$	***	$\begin{array}{r} 0.4666 \\ (0.1599) \end{array}$	***	$\begin{array}{r} 0.3130 \\ (0.1149) \end{array}$	***
Tit for Tat (C first)	0.3760	**	0.4755	***	0.2831	**	0.3195	***
SC	0.8229		0.8277		0.7497		0.6325	
Gamma	$\begin{array}{r} 0.3203 \\ (0.0723) \end{array}$		$\begin{array}{r} 0.3941 \\ (0.0432) \end{array}$	***	$\begin{array}{r} 0.3663 \\ (0.0557) \end{array}$		$\begin{array}{r} 0.4335 \\ (0.0587) \end{array}$	***
beta	0.958		0.927		0.939		0.909	
Average Periods	2.818		2.818		2.818		2.818	
Observations	1,056		1,144		1,056		1,144	

Table 7: Prisoner's dilemma: Effect of disclosure on cooperative choice in first periods. The dependent variable is the choice of cooperation in the first periods of all supergames. The variable IQ diff. represents the absolute difference between the IQ of the two players. Columns 1 and 2: Logit estimator with robust standard errors. Columns 3 to 6: Panel logit estimator with random effects and errors clustered at the individual level; estimated either for only first half $(3 \& 4)$ or whole session ($5 \& 6$). Controls for trend, gender, Big 5 personality traits, risk aversion, size of session, average length of past supergames are included in the regressions but omitted from the table. The coefficients are expressed in Odds Ratios. Std errors in brackets; * p-value $<0.1,{ }^{* *} p-$ value $<0.05,{ }^{* * *} p$-value <0.01.

	Round 1 Cooperate b / se	Round 1 Cooperate b / se	1st Half Cooperate b / se	1st Half Cooperate b / se	All Cooperate b / se	All Cooperate b / se
choice						
Disclosure	0.65712	6.11118^{*}	$0.28940^{* *}$	0.74653	$0.25820^{* *}$	0.91731
Disclosure*IQ diff.	(0.3052)	(6.0493)	(0.1514)	(0.4535)	(0.1523)	(0.5683)
		$0.69879^{* * *}$		$0.89158^{* *}$		$0.84913^{* * *}$
IQ diff.		(0.0920)		(0.0464)		(0.0367)
		$1.25098^{* *}$		1.01436		1.03585
Own IQ		(0.1238)		(0.0293)		(0.0231)
	1.05828	1.08294	$1.12252^{* *}$	$1.11608^{* *}$	$1.14146^{* *}$	$1.12840^{* *}$
N	(0.0468)	(0.0541)	(0.0545)	(0.0551)	(0.0640)	(0.0587)

Table 8: Battle of Sexes with Low Inequality: Effect of disclosure on the subject's preferred choice. The dependent variable is the subject making their preferred choice. The variable IQ diff. represents the absolute difference between the IQ of the two players. Panel logit estimator with random effects and errors clustered at the individual level. Controls for trend, gender, Big 5 personality traits, risk aversion, size of session, average length of past supergames are included in the regressions but omitted from the table. The coefficients are presented in Odds Ratios. Std errors clustered at the individual level in brackets; * $p-$ value $<0.1,{ }^{* *} p-$ value $<0.05,{ }^{* * *} p-$ value <0.01.

	Own IQ > Partner IQ		Own IQ < Partner IQ	
	1	2	3	4
	b/se	b/se	b/se	b/se
preferredchoice				
Disclosure	1.32290**	1.40183**	0.90679	1.08107
	(0.1830)	(0.2192)	(0.1049)	(0.1911)
Disclosure*IQ diff.		0.99189		0.96921
		(0.0120)		(0.0203)
IQ diff.		1.01347		1.02495
		(0.0090)		(0.0171)
Own IQ	0.99626	0.99328	0.97713	0.98112
	(0.0177)	(0.0178)	(0.0142)	(0.0175)
N	7735	7735	7735	7735

Table 9: Battle of Sexes with Low Inequality: Effect of disclosure on coordinating to subject's preferred outcome. The dependent variable is coordination to the subject's preferred outcome. The variable IQ diff. represents the absolute difference between the IQ of the two players. Panel logit estimator with random effects and errors clustered at the individual level. Controls for supergame, period, gender, Big 5 personality traits, risk aversion, size of session, average length of past supergames are included in the regressions but omitted from the table. The coefficients are presented in Odds Ratios. Std errors clustered at the individual level in brackets; ${ }^{*} p$-value $<0.1,{ }^{* *} p-$ value $<0.05,{ }^{* * *} p-$ value <0.01.

	Own IQ > Partner IQ		Own IQ < Partner IQ	
	1	2	3	4
	b/se	b/se	b/se	b/se
preferredoutcome				
Disclosure	0.93869	1.07270	$0.74730^{* * *}$	0.87681
	(0.1097)	(0.1680)	(0.0696)	(0.1546)
Disclosure*IQ diff.		0.97739		0.97234
		(0.0167)		(0.0251)
Own IQ	1.00086	1.01338	0.99717	0.98292
	(0.0152)	(0.0181)	(0.0142)	(0.0172)
Partner IQ	1.02118**	1.00759	1.01230	1.02559
	(0.0084)	(0.0129)	(0.0155)	(0.0180)
N	7735	7735	7735	7735

Table 10: Battle of Sexes: Effect of positive IQ differentials. The dependent variable is the subject making their preferred choice. Panel logit estimator with fixed effects. The dummy Higher $I Q$ is equal to 1 when own IQ is higher that the partner's IQ. Controls for supergame, period, average length of past supergames are included in the regressions but omitted from the table. Coefficients are in Odds Ratios. Std errors in brackets; * p-value <0.1, ${ }^{* *}$ p-value $<0.05,{ }^{* * *} p$-value <0.01.

	Disclosure Only BoSLI b / se	All BoSLI b / se	Disclosure Only BoSHI b / se	All BoSHI b / se
preferredchoice				
Higher IQ	$1.41840^{* * *}$	1.01664	0.93880	1.03888
Disclosure*Higher IQ	(0.0967)	(0.0718)	(0.0665)	(0.0711)
		(0.1369)		0.90374
N				

Table 11: Battle of Sexes with Low Inequality: Strategy estimation in the SGs in the first half of the session. Forceful groups together the proportion of the three forceful strategies, while Submissive groups together the proportion of the three submissive strategies. Gamma is the error coefficient that is estimated for the choice function used in the ML and beta is the probability estimated that the choice by a subject is equal to what the strategy prescribes. When beta is close to $1 / 2$, choices are essentially random and when it is close to 1 then choices are almost perfectly predicted. Tests equality to 0 using the Waldtest: * $p-$ values $<0.1,{ }^{* *} p-$ values $<0.05^{* *}, p-$ values $<0.01{ }^{* * *}$

	Own IQ > Partner IQ				Own IQ < Partner IQ			
	No Disclosure		Disclosure		No Disclosure		Disclosure	
Strategy								
Always Preferred	$\begin{array}{r} 0.1633 \\ (0.0527) \end{array}$	***	$\begin{array}{r} 0.2365 \\ (0.0774) \end{array}$	***	$\begin{array}{r} 0.1427 \\ (0.0703) \end{array}$	**	$\begin{array}{r} 0.1619 \\ (0.0833) \end{array}$	*
Forceful Rev. Tit for Tat	$\begin{array}{r} 0.3829 \\ (0.1006) \end{array}$	***	$\begin{gathered} 0.2089 \\ (0.1021) \end{gathered}$	**	$\begin{array}{r} 0.1542 \\ (0.0916) \end{array}$	*	$\begin{array}{r} 0.0888 \\ (0.0640) \end{array}$	
Forceful Teaching	$\begin{array}{r} 0.0858 \\ (0.0757) \end{array}$		$\begin{array}{r} 0.2076 \\ (0.0721) \end{array}$	***	$\begin{array}{r} 0.2828 \\ (0.0888) \end{array}$	***	$\begin{array}{r} 0.1541 \\ (0.0655) \end{array}$	**
Always Concede	$\begin{array}{r} 0.0563 \\ (0.0502) \end{array}$		$\begin{array}{r} 0.0703 \\ (0.0348) \end{array}$	**	$\begin{array}{r} 0.0720 \\ (0.0623) \end{array}$		$\begin{array}{r} 0.1297 \\ (0.0680) \end{array}$	*
Submissive Rev. Tit for Tat	$\begin{array}{r} 0.3072 \\ (0.0884) \end{array}$	***	$\begin{array}{r} 0.2107 \\ (0.0607) \end{array}$	***	$\begin{array}{r} 0.1880 \\ (0.0656) \end{array}$	***	$\begin{array}{r} 0.3636 \\ (0.0699) \end{array}$	***
Submissive Teaching	0.0045		0.0660		0.1603	**	0.1020	*
Forceful Submissive	$\begin{aligned} & 0.6320 \\ & 0.3680 \end{aligned}$		$\begin{aligned} & 0.6530 \\ & 0.3470 \end{aligned}$		$\begin{aligned} & 0.5797 \\ & 0.4203 \end{aligned}$		$\begin{aligned} & 0.4048 \\ & 0.5953 \end{aligned}$	
Gamma	$\begin{array}{r} \hline 0.6703 \\ (0.0385) \end{array}$	***	$\begin{array}{r} 0.7165 \\ (0.0590) \end{array}$	***	$\begin{array}{r} \hline 0.8601 \\ (0.0989) \end{array}$	***	$\begin{array}{r} \hline 0.9142 \\ (0.0830) \end{array}$	***
beta	0.816		0.801		0.762		0.749	
Average Periods	3.625		3.625		3.625		3.625	
Observations	1,872		2,208		1,872		2,208	

Table 12: Battle of Sexes with Low Inequality: Strategy estimation in the SGs in the second half of the session. Forceful groups together the proportion of the three forceful strategies, while Submissive groups together the proportion of the three submissive strategies. Gamma is the error coefficient that is estimated for the choice function used in the ML and beta is the probability estimated that the choice by a subject is equal to what the strategy prescribes. When beta is close to $1 / 2$, choices are essentially random and when it is close to 1 then choices are almost perfectly predicted. Tests equality to 0 using the Waldtest: * $p-$ values $<0.1,{ }^{* *} p-$ values $<0.05^{* *}, p-$ values $<0.01{ }^{* * *}$

	Own IQ > Partner IQ				Own IQ < Partner IQ			
	No Disclosure		Disclosure		No Disclosure		Disclosure	
Strategy								
Always Preferred	$\begin{array}{r} 0.0811 \\ (0.0567) \end{array}$		$\begin{array}{r} 0.1218 \\ (0.0825) \end{array}$		$\begin{array}{r} 0.1113 \\ (0.0572) \end{array}$	*	$\begin{array}{r} 0.1065 \\ (0.0636) \end{array}$	*
Forceful Rev. Tit for Tat	$\begin{array}{r} 0.4265 \\ (0.1113) \end{array}$	***	$\begin{array}{r} 0.3094 \\ (0.1258) \end{array}$	**	$\begin{array}{r} 0.3576 \\ (0.1022) \end{array}$	***	$\begin{array}{r} 0.2945 \\ (0.1051) \end{array}$	***
Forceful Teaching	$\begin{array}{r} 0.1353 \\ (0.0866) \end{array}$		$\begin{array}{r} 0.1924 \\ (0.0944) \end{array}$	**	$\begin{array}{r} 0.0677 \\ (0.0734) \end{array}$		$\begin{array}{r} 0.0657 \\ (0.0886) \end{array}$	
Always Concede	$\begin{array}{r} 0.0179 \\ (0.0244) \end{array}$		$\begin{array}{r} 0.0043 \\ (0.0099) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0184) \end{array}$		$\begin{array}{r} 0.0628 \\ (0.0554) \end{array}$	
Submissive Rev. Tit for Tat	$\begin{array}{r} 0.2921 \\ (0.0817) \end{array}$	***	$\begin{array}{r} 0.2357 \\ (0.0644) \end{array}$	***	$\begin{array}{r} 0.4135 \\ (0.0837) \end{array}$	***	$\begin{array}{r} 0.3576 \\ (0.0859) \end{array}$	***
Submissive Teaching	0.0472		0.1364	***	0.0499		0.1130	**
Forceful	0.6429		0.6236		0.5366		0.4667	
Submissive	0.3572		0.3764		0.4634		0.5334	
Gamma	$\begin{array}{r} 0.5925 \\ (0.0630) \end{array}$		$\begin{array}{r} 0.5926 \\ (0.0470) \end{array}$	***	$\begin{array}{r} 0.6685 \\ (0.0861) \end{array}$	***	$\begin{array}{r} 0.6772 \\ (0.0994) \end{array}$	***
beta	0.844		0.844		0.817		0.814	
Average Periods	2.818		2.818		2.818		2.818	
Observations	1,716		2,024		1,716		2,024	

Table 13: Battle of Sexes with Low Inequality: Effect of disclosure on coordination. The dependent variable is coordination to a non-zero payoff outcome. The variable IQ diff. represents the absolute difference between the IQ of the two players. Columns 1 and 2: Logit estimator with robust standard errors. Columns 3 to 6 : Panel logit estimator with random effects and errors clustered at the individual level; estimated either for only first half (3 \& 4) or whole session ($5 \& 6$). Controls for trend, gender, Big 5 personality traits, risk aversion, size of session, average length of past supergames are included in the regressions but omitted from the table. The coefficients are expressed in Odds Ratios. Clustered Std errors in brackets; ${ }^{*} p$-value $<0.1,{ }^{* *} p$-value $<0.05,{ }^{* * *} p$-value <0.01.

	Round 1 b / se	Round 1 b / se	1st Half b / se	1st Half b / se	All b / se	All b / se
coordboseq						
Disclosure	0.53161	0.62923	$0.75468^{* * *}$	0.84706	$0.78522^{* * *}$	0.88222
	(0.2060)	(0.3111)	(0.0811)	(0.1223)	(0.0710)	(0.1054)
Disclosure*IQ diff.		0.97066		0.98045		0.98013^{*}
		(0.0521)		(0.0154)		(0.0116)
Own IQ	1.02319	1.02045	0.99722	0.99537	$1.01641^{* *}$	1.01447^{*}
	(0.0339)	(0.0343)	(0.0083)	(0.0086)	(0.0077)	(0.0080)
Partner IQ	1.01556	1.01243	1.00085	0.99863	$1.01759^{* * *}$	$1.01527^{* * *}$
	(0.0324)	(0.0332)	(0.0079)	(0.0078)	(0.0058)	(0.0059)
N						

Table 14: Battle of Sexes with High Inequality: Effect of disclosure on the subject's preferred choice. The dependent variable is the subject making their preferred choice. The variable IQ diff. represents the absolute difference between the IQ of the two players. Panel logit estimator with random effects and errors clustered at the individual level. Controls for trend, gender, Big 5 personality traits, risk aversion, size of session, average length of past supergames are included in the regressions but omitted from the table. The coefficients are presented in Odds Ratios. Clustered Std errors in brackets; * p-value <0.1, ${ }^{* *}$ p-value $<0.05,{ }^{* * *} p$-value <0.01.

	$\underline{\text { Own IQ > Partner IQ }}$		Own IQ < Partner IQ	
	1	2	3	4
	b/se	b/se	b/se	b/se
preferredchoice				
Disclosure	0.88769	0.90445	1.12211	1.01332
	(0.1411)	(0.1506)	(0.1649)	(0.1801)
Disclosure*IQ diff.		0.99597		1.01621
		(0.0102)		(0.0190)
IQ diff.		1.01264		0.98067
		(0.0078)		(0.0137)
Own IQ	1.00785	1.00506	0.97233	0.96651*
	(0.0190)	(0.0192)	(0.0177)	(0.0172)
N	7280	7280	7280	7280

Table 15: Battle of Sexes with High Inequality: Effect of disclosure on coordinating to subject's preferred outcome. The dependent variable is coordination to the subject's preferred outcome. The variable IQ diff. represents the absolute difference between the IQ of the two players. Panel logit estimator with random effects and errors clustered at the individual level. Controls for supergame, period, gender, Big 5 personality traits, risk aversion, size of session, average length of past supergames are included in the regressions but omitted from the table. The coefficients are presented in Odds Ratios. Clustered Std errors in bracket; * $p-$ value $<0.1,{ }^{* *} p-$ value $<0.05,{ }^{* * *} p-$ value <0.01.

	Own IQ > Partner IQ		Own IQ < Partner IQ	
	1	2	3	4
	b/se	b/se	b/se	b/se
preferredoutcome				
Disclosure	0.91303	1.09568	$1.25705^{* * *}$	1.12828
	(0.0796)	(0.1356)	(0.0771)	(0.1155)
Disclosure*IQ diff.		0.97165*		1.01713
		(0.0163)		(0.0147)
Own IQ	1.01178	1.02662	1.01431*	1.02401*
	(0.0131)	(0.0168)	(0.0086)	(0.0142)
Partner IQ	1.03146***	1.01665	0.99482	0.98577
	(0.0089)	(0.0138)	(0.0084)	(0.0123)
N	7280	7280	7280	7280

Table 16: Battle of Sexes with High Inequality: Strategy estimation in the SGs in the first half of the session. Forceful groups together the proportion of the three forceful strategies, while Submissive groups together the proportion of the three submissive strategies. Gamma is the error coefficient that is estimated for the choice function used in the ML and beta is the probability estimated that the choice by a subject is equal to what the strategy prescribes. When beta is close to $1 / 2$, choices are essentially random and when it is close to 1 then choices are almost perfectly predicted. Tests equality to 0 using the Waldtest: * $p-$ values $<0.1,{ }^{* *} p-$ values $<0.05^{* *}, p-$ values $<0.01{ }^{* * *}$

	Own IQ > Partner IQ				Own IQ < Partner IQ			
	No Disclosure		Disclosure		No Disclosure		Disclosure	
Strategy								
Always Preferred	$\begin{array}{r} 0.2078 \\ (0.0757) \end{array}$	***	$\begin{array}{r} 0.0897 \\ (0.0579) \end{array}$		$\begin{array}{r} 0.1684 \\ (0.0652) \end{array}$	**	$\begin{array}{r} 0.2568 \\ (0.0890) \end{array}$	***
Forceful Rev. Tit for Tat	$\begin{array}{r} 0.2712 \\ (0.0812) \end{array}$	***	$\begin{array}{r} 0.2540 \\ (0.1130) \end{array}$	**	$\begin{array}{r} 0.0642 \\ (0.0685) \end{array}$		$\begin{array}{r} 0.4332 \\ (0.0974) \end{array}$	***
Forceful Teaching	$\begin{array}{r} 0.1342 \\ (0.0664) \end{array}$	**	$\begin{array}{r} 0.2997 \\ (0.1190) \end{array}$	**	$\begin{array}{r} 0.3256 \\ (0.0957) \end{array}$	***	$\begin{array}{r} 0.0000 \\ (0.0511) \end{array}$	
Always Concede	$\begin{array}{r} 0.0000 \\ (0.0236) \end{array}$		$\begin{array}{r} 0.0347 \\ (0.0348) \end{array}$		$\begin{array}{r} 0.0701 \\ (0.0431) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0258) \end{array}$	
Submissive Rev. Tit for Tat	$\begin{array}{r} 0.3714 \\ (0.0759) \end{array}$	***	$\begin{array}{r} 0.3192 \\ (0.0671) \end{array}$	***	$\begin{array}{r} 0.3198 \\ (0.0691) \end{array}$	***	$\begin{array}{r} 0.2730 \\ (0.0643) \end{array}$	***
Submissive Teaching	0.0154		0.0027		0.0519		0.0370	
Forceful	0.6132		0.6434		0.5582		0.6900	
Submissive	0.3868		0.3566		0.4418		0.3100	
Gamma	$\begin{array}{r} 0.6763 \\ (0.0803) \end{array}$	***	$\begin{array}{r} 0.8067 \\ (0.0716) \end{array}$	***	$\begin{array}{r} 0.8718 \\ (0.0747) \end{array}$	***	$\begin{array}{r} 0.7811 \\ (0.0599) \end{array}$	***
beta	0.814		0.776		0.759		0.782	
Average Periods	3.625		3.625		3.625		3.625	
Observations	1,968		1,872		1,968		1,872	

Table 17: Battle of Sexes with High Inequality: Strategy estimation in the SGs in the second half of the session. Forceful groups together the proportion of the three forceful strategies, while Submissive groups together the proportion of the three submissive strategies. Gamma is the error coefficient that is estimated for the choice function used in the ML and beta is the probability estimated that the choice by a subject is equal to what the strategy prescribes. When beta is close to $1 / 2$, choices are essentially random and when it is close to 1 then choices are almost perfectly predicted. Tests equality to 0 using the Waldtest: ${ }^{*} p-$ values $<0.1,{ }^{* *} p-$ values $<0.05^{* *}, p-$ values $<0.01^{* * *}$

	Own IQ > Partner IQ				Own IQ < Partner IQ			
	No Disclosure		Disclosure		No Disclosure		Disclosure	
Strategy								
Always Preferred	$\begin{array}{r} 0.1428 \\ (0.0773) \end{array}$	*	$\begin{array}{r} 0.0395 \\ (0.0299) \end{array}$		$\begin{array}{r} 0.1331 \\ (0.0603) \end{array}$	**	$\begin{array}{r} 0.1544 \\ (0.0731) \end{array}$	**
Forceful Rev. Tit for Tat	$\begin{array}{r} 0.3784 \\ (0.0932) \end{array}$	***	$\begin{array}{r} 0.5037 \\ (0.1184) \end{array}$	***	$\begin{array}{r} 0.3238 \\ (0.0932) \end{array}$	***	$\begin{array}{r} 0.3913 \\ (0.1106) \end{array}$	***
Forceful Teaching	$\begin{array}{r} 0.1273 \\ (0.0878) \end{array}$		$\begin{array}{r} 0.1031 \\ (0.0862) \end{array}$		$\begin{array}{r} 0.1436 \\ (0.0652) \end{array}$	**	$\begin{array}{r} 0.0752 \\ (0.0784) \end{array}$	
Always Concede	$\begin{array}{r} 0.0169 \\ (0.0163) \end{array}$		$\begin{array}{r} 0.0169 \\ (0.0154) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0322) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0018) \end{array}$	
Submissive Rev. Tit for Tat	$\begin{array}{r} 0.3345 \\ (0.0830) \end{array}$	***	$\begin{array}{r} 0.2995 \\ (0.0710) \end{array}$	***	$\begin{array}{r} 0.3922 \\ (0.0698) \end{array}$	***	$\begin{array}{r} 0.3487 \\ (0.0748) \end{array}$	***
Submissive Teaching	0.0000		0.0374		0.0072		0.0304	
Forceful	0.6485		0.6463		0.6005		0.6209	
Submissive	0.3514		0.3538		0.3994		0.3791	
Gamma	$\begin{array}{r} \hline 0.6008 \\ (0.0412) \end{array}$	***	$\begin{array}{r} 0.5471 \\ (0.0504) \end{array}$	***	$\begin{array}{r} \hline 0.7087 \\ (0.0471) \end{array}$	***	$\begin{array}{r} \hline 0.6498 \\ (0.0451) \end{array}$	***
beta	0.841		0.862		0.804		0.823	
Average Periods	2.818		2.818		2.818		2.818	
Observations	1,804		1,716		1,804		1,716	

Table 18: Battle of Sexes with High inequality: Effect of disclosure on coordination. The dependent variable is coordination to a non-zero payoff outcome. The variable IQ diff. represents the absolute difference between the IQ of the two players. Columns 1 and 2: Logit estimator with robust errors. Columns 3 to 6: Panel logit estimator with random effects and errors clustered at the individual level. Controls for trend, gender, Big 5 personality traits, risk aversion, size of session, average length of past supergames are included in the regressions but omitted from the table. The coefficients are expressed in Odds Ratios. Clustered Std errors in brackets; * p-value $<0.1,{ }^{* *} p-$ value $<0.05,{ }^{* * *} p-$ value <0.01.

	Round 1 b / se	Round 1 b / se	1st Half b / se	1st Half b / se	All b / se	All b / se
coordboseq						
Disclosure	1.15304	2.06671	0.94762	1.04744	1.09694	1.17099
	(0.4049)	(1.2535)	(0.0912)	(0.1331)	(0.0957)	(0.1225)
Disclosure*IQ diff.		0.91257		0.98433		0.99001
		(0.0698)		(0.0136)		(0.0089)
Own IQ	1.00976	1.00202	$1.02697^{* * *}$	$1.02530^{* *}$	$1.02546^{* *}$	$1.02452^{* *}$
	(0.0325)	(0.0328)	(0.0104)	(0.0101)	(0.0105)	(0.0103)
Partner IQ	0.98726	0.98047	$1.02944^{* * *}$	$1.02800^{* * *}$	$1.02518^{* * *}$	$1.02433^{* * *}$
	(0.0321)	(0.0324)	(0.0082)	(0.0082)	(0.0059)	(0.0060)
N						

Table 19: Battle of Sexes: Effect of disclosure and payoffs inequality. The dependent variable in column 1 is coordination to a non-zero payoff outcome. In columns 2 and 4 , the dependent variable is coordination to the subject's preferred outcome, while in columns 3 and 5 , the dependent variable is subject payoff. Columns 2 and 3 present the results for only subjects of higher IQ than their partner, in columns 4 and 5 the opposite is true. Columns 1,2 , and 4: Panel logit estimator with random effects. Other columns: Panel GLS estimator with random effects. The dummy High inequality is equal to 1 for observations in the BoSHI and zero otherwise. Controls for supergame, period, gender, Big 5 personality traits, risk aversion, size of session, average length of past supergames are included in the regressions but omitted from the table. Coefficients in columns $\mathbf{1 , 2}$, and 4 are in Odds Ratios. Std errors clustered at the individual level in brackets; * p - value $<0.1,{ }^{* *} p$-value $<0.05,{ }^{* * *}$ p-value <0.01.

	All	Own IQ > Partner IQ		Own IQ < Partner IQ	
	Coordination b/se	Pref. Out. b/se	$\begin{gathered} \text { Payoff } \\ \text { b/se } \end{gathered}$	Pref. Out. b/se	Payoff
main					
Disclosure	$\begin{aligned} & 0.79845^{* * *} \\ & (0.0655) \end{aligned}$	$\begin{array}{r} 0.95235 \\ (0.0935) \end{array}$	$\begin{aligned} & -0.29488^{* * *} \\ & (0.0873) \end{aligned}$	$\begin{aligned} & 0.22044^{*} \\ & (0.1920) \end{aligned}$	$\begin{aligned} & -2.45483^{* * *} \\ & (0.9301) \end{aligned}$
Disclosure*High Ineq.	$\begin{aligned} & 1.38031^{* * *} \\ & (0.1699) \end{aligned}$	$\begin{aligned} & 0.94834 \\ & (0.1315) \end{aligned}$	$\begin{aligned} & 0.51681^{* * *} \\ & (0.1142) \end{aligned}$	$\begin{array}{r} 3.36975 \\ (4.2660) \end{array}$	$\begin{aligned} & 4.32163^{* * *} \\ & (1.2148) \end{aligned}$
High Inequality	$\begin{aligned} & 0.62079^{* * *} \\ & (0.0621) \end{aligned}$	$\begin{aligned} & 0.80571^{*} \\ & (0.0889) \end{aligned}$	$\begin{aligned} & -0.35651^{* * *} \\ & (0.0931) \end{aligned}$	$\begin{aligned} & 0.00056^{* * *} \\ & (0.0006) \end{aligned}$	$\begin{aligned} & -8.25568^{* * *} \\ & (1.0312) \end{aligned}$
Own IQ	$\begin{aligned} & 1.02156^{* * *} \\ & (0.0064) \end{aligned}$	$\begin{aligned} & 1.00577 \\ & (0.0098) \end{aligned}$	$\begin{gathered} 0.00444 \\ (0.0081) \end{gathered}$	$\begin{gathered} 1.08670 \\ (0.0995) \end{gathered}$	$\begin{array}{r} 0.11416 \\ (0.0786) \end{array}$
Partner IQ	$\begin{aligned} & 1.02169^{* * *} \\ & (0.0042) \end{aligned}$	$\begin{aligned} & 1.02717^{* * *} \\ & (0.0062) \end{aligned}$	$\begin{gathered} 0.00363 \\ (0.0085) \end{gathered}$	$\begin{aligned} & 1.33371^{* * *} \\ & (0.0820) \end{aligned}$	$\begin{array}{r} 0.05709 \\ (0.0817) \end{array}$
N	30030	15015	15015	15015	15015

References

Alaoui, L. and Penta, A. (2015). Endogenous depth of reasoning, The Review of Economic Studies 83(4): 1297-1333.

Aumann, R. J. (1995). Backward induction and common knowledge of rationality, Games and Economic Behavior 8(1): 6-19.

Blonski, M., Ockenfels, P. and Spagnolo, G. (2011). Equilibrium selection in the repeated prisoner's dilemma: Axiomatic approach and experimental evidence, American Economic Journal: Microeconomics 3(3): 164-192.

Brocas, I. and Carrillo, J. D. (2021a). Dynamic coordination in efficient and fair strategies: a developmental perspective.

Brocas, I. and Carrillo, J. D. (2021b). Steps of reasoning in children and adolescents, Journal of Political Economy 129(7): 000-000.

Burks, S. V., Carpenter, J. P., Goette, L. and Rustichini, A. (2009). Cognitive skills affect economic preferences, strategic behavior, and job attachment, Proceedings of the National Academy of Sciences 106(19): 7745-7750.

Burks, S. V., Carpenter, J. P., Goette, L. and Rustichini, A. (2013). Overconfidence and social signalling, Review of Economic Studies 80(3): 949-983.

Dal Bó, P. (2005). Cooperation under the shadow of the future: Experimental evidence from infinitely repeated games, American Economic Review 95(5): 1591-1604.

Dal Bó, P. and Fréchette, G. R. (2011). The evolution of cooperation in infinitely repeated games: Experimental evidence, American Economic Review 101(1): 411-29.

Dal Bó, P. and Fréchette, G. R. (2018). On the determinants of cooperation in infinitely repeated games: A survey, Journal of Economic Literature 56(1): 60-114.

Dal Bó, P. and Fréchette, G. R. (2019). Strategy choice in the infinitely repeated prisoner's dilemma, American Economic Review 109(11): 3929-52.

Dreber, A., Rand, D. G., Fudenberg, D. and Nowak, M. A. (2008). Winners do not punish, Nature 452: 348-351.

Duffy, J. and Ochs, J. (2009). Cooperative behavior and the frequency of social interaction, Games and Economic Behavior 66(2): 785-812.

Eichberger, J., Kelsey, D. and Schipper, B. C. (2008). Granny versus game theorist: Ambiguity in experimental games, Theory and Decision 64(2-3): 333-362.

Fischbacher, U. (2007). Z-tree: Zurich toolbox for ready-made economic experiments, Experimental Economics 10(2): 171-178.

Fudenberg, D., Rand, D. G. and Dreber, A. (2012). Slow to anger and fast to forgive: Cooperation in an uncertain world, American Economic Review 102(2): 720-49.

Gill, D. and Prowse, V. (2016). Cognitive ability, character skills, and learning to play equilibrium: A level-k analysis, Journal of Political Economy 124(6): 1619-1676.

Greiner, B. (2015). An online recruitment system for economic experiments., Journal of the Economic Science Association 1(1): 114-125.

Holt, C. A. and Laury, S. K. (2002). Risk aversion and incentive effects, American Economic Review 92(5): 1644-1655.

Ioannou, C. A. and Romero, J. (2014). A generalized approach to belief learning in repeated games, Games and Economic Behavior 87: 178-203.

John, O. P., Donahue, E. M. and Kentle, R. L. (1991). The big five inventory: versions $4 a$ and 54, Berkeley, CA: University of California, Berkeley, Institute of Personality and Social Research.

John, O. P., Naumann, L. P. and Soto, C. J. (2008). Paradigm shift to the integrative big five trait taxonomy, in R. W. R. Oliver P. John and L. A. Pervin (eds), Handbook of Personality: Theory and Research, Guilford Press New York, NY, pp. 114-158.

Jones, G. (2008). Are smarter groups more cooperative? evidence from prisoner's dilemma experiments, 1959-2003, Journal of Economic Behavior \mathcal{G} Organization 68(3): 489-497.

Palacios-Huerta, I. and Volij, O. (2009). Field centipedes, American Economic Review 99(4): 1619-35.

Proto, E., Rustichini, A. and Sofianos, A. (2019). Intelligence, personality, and gains from cooperation in repeated interactions, Journal of Political Economy 127(3): 1351-1390.

Proto, E., Rustichini, A. and Sofianos, A. (forthcoming). Intelligence, errors and cooperation in repeated interactions, The Review of Economic Studies .

Rapoport, A., Guyer, M. and Gordon, D. (1976). The 2 X 2 game, University of Michigan Press.

Romero, J. and Rosokha, Y. (2019). Mixed strategies in the indefinitely repeated prisoner's dilemma, Available at SSRN 3290732 .

Intelligence Disclosure in Repeated Interactions

Online Supplementary Material
Marco Lambrecht, Eugenio Proto, Aldo Rustichini, Andis Sofianos

August 20, 2022
1 Additional Analysis O-2
2 Timeline of the Experiment O-14
3 Session Dates, Size and Characteristics O-15
4 Experimental Instructions \& Invitation Email O-24

1 Additional Analysis

Table O.1: Battle of Sexes with Low Inequality: Preferred choices in Heidelberg and Frankfurt. The dependent variable is the subject making their preferred choice. Panel logit estimator with random effects and errors clustered at the individual level. Controls for supergame, period, gender, Big 5 personality traits, risk aversion, size of session, average length of past supergames are included in the regressions but omitted from the table. Std errors clustered at the individual level in brackets; * p - value $<0.1,{ }^{* *} p-v a l u e<0.05,{ }^{* * *}$ p-value <0.01.

| | Own IQ > Partner IQ | | Own IQ < Partner IQ | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| | Frankfurt
 b / se | Heidelberg
 b / se | | Frankfurt
 b / se | Heidelberg
 b / se |
| preferredchoice | | | | | |
| Disclosure | 1.51126 | 1.19148 | | 0.62555 | 0.99154 |
| | (0.5916) | (0.1454) | | (0.1877) | (0.1208) |
| Own IQ | 0.98239 | 1.00360 | 1.01426 | 0.97688 | |
| | (0.0450) | (0.0187) | (0.0504) | (0.0142) | |
| N | | | | 1456 | 6279 |

Table O.2: Battle of Sexes with Low Inequality: Preferred outcomes in Heidelberg and Frankfurt. The dependent variable is subject's preferred outcome. Panel logit estimator with random effects and errors clustered at the individual level. Controls for supergame, period, gender, Big 5 personality traits, risk aversion, size of session, average length of past supergames are included in the regressions but omitted from the table. Std errors clustered at the individual level in brackets; * p-value $<0.1,{ }^{* *} p$-value $<0.05,{ }^{* * *} p-$ value <0.01.

| | Own IQ > Partner IQ | | | Own IQ < Partner IQ | |
| :--- | ---: | ---: | :--- | :--- | :--- | ---: |
| | Frankfurt
 b / se | Heidelberg
 b / se | | Frankfurt
 b / se | Heidelberg
 b / se |
| preferredoutcome | | | | | |
| Disclosure | 1.13918 | 0.89673 | | $0.48298^{* * *}$ | 0.89502 |
| | (0.1980) | (0.1073) | | (0.0893) | (0.0802) |
| Own IQ | 0.98353 | 1.00494 | | 0.97572 | 0.99953 |
| | (0.0319) | (0.0170) | | (0.0361) | (0.0155) |
| Partner IQ | 1.01917 | $1.02277^{* *}$ | | 1.07330^{*} | 1.00420 |
| | (0.0215) | (0.0094) | | (0.0412) | (0.0174) |
| N | | | | 1456 | 6279 |

Table O.3: Battle of Sexes with Low Inequality: Effect of disclosure on payoffs. The dependent variable is subject payoff. The variable IQ diff. represents the absolute difference between the IQ of the two players. Panel GLS estimator with random effects and errors clustered at the individual level. Controls for supergame, period, gender, Big 5 personality traits, risk aversion, size of session, average length of past supergames are included in the regressions but omitted from the table. Clustered Std errors in brackets; * p-value <0.1, ${ }^{* *}$ $p-$ value $<0.05,{ }^{* * *} p-$ value <0.01.

	Own IQ $>$ Partner IQ		Own IQ < Partner IQ				
	1		$\mathrm{~b} / \mathrm{se}$	b / se	b / se		b / se
Disclosure	-1.80465^{*}	-0.38960	$-2.19794^{* *}$	-0.62964			
	(1.0055)	(1.5490)	(1.0238)	(1.8434)			
Disclosure*IQ diff.		-0.23907		-0.28198			
		(0.1851)		(0.2597)			
Own IQ	0.05836	0.18700	0.11187	-0.03224			
	(0.1426)	(0.1797)	(0.1371)	(0.1770)			
Partner IQ	$0.22247^{* *}$	0.08042	0.08762	0.21878			
	(0.0900)	(0.1409)	(0.1440)	(0.1796)			
N							

Table O.4: Battle of Sexes with Low inequality: Coordination in Heidelberg and Frankfurt. The dependent variable is coordination on the non-zero payoff outcomes. Panel logit estimator with random effects and errors clustered at the individual level. Controls for supergame, period, gender, Big 5 personality traits, risk aversion, size of session, average length of past supergames are included in the regressions but omitted from the table. Clustered Std errors in brackets; * p-value $<0.1,{ }^{* *} p$-value $<0.05,{ }^{* * *} p$-value <0.01.

	Frankfurt b / se	Heidelberg b / se
coordboseq		
Disclosure	$0.60555^{* * *}$	0.88571
	(0.0891)	(0.0848)
Own IQ	0.98629	$1.01855^{* *}$
	(0.0225)	(0.0088)
Partner IQ	1.01428	$1.01904^{* * *}$
	(0.0128)	(0.0064)
N		

Table O.5: Battle of Sexes with High inequality: Effect of disclosure on payoffs. The dependent variable is subject payoff. The variable IQ diff. represents the absolute difference between the IQ of the two players. Panel GLS estimator with random effects and errors clustered at the individual level. Controls for supergame, period, gender, Big 5 personality traits, risk aversion, size of session, average length of past supergames, and average profit before t are included in the regressions but omitted from the table. Clustered Std errors in brackets; ${ }^{*} p-$ value $<0.1,{ }^{* *} p-$ value $<0.05,{ }^{* * *} p-$ value <0.01.

	Own IQ > Partner IQ		Own IQ < Partner IQ		
	1	2		3	4
	$\mathrm{~b} / \mathrm{se}$	b / se	b / se	b / se	
Disclosure	-0.31071	0.77963	$1.94891^{* * *}$	1.12097	
	(0.8332)	(1.5463)	(0.6857)	(1.1240)	
Disclosure*IQ diff.		0.14285		0.13219	
		(0.2015)		(0.1486)	
Own IQ	0.10169	0.19704	0.17443^{*}	0.24534^{*}	
	(0.1242)	(0.1711)	(0.0955)	(0.1396)	
Partner IQ	$0.34048^{* * *}$	-0.01020	0.00705	-0.06127	
	(0.0810)	(0.1615)	(0.0896)	(0.1257)	
N	7280	3760	7280	7280	

Table O.6: Battle of Sexes with High Inequality: Preferred choices in Heidelberg and Frankfurt. The dependent variable is subject making their preferred choice. Panel logit estimator with random effects and errors clustered at the individual level. Controls for supergame, period, gender, Big 5 personality traits, risk aversion, size of session, average length of past supergames are included in the regressions but omitted from the table. Std errors clustered at the individual levels in brackets; ${ }^{*} p-v a l u e<0.1,{ }^{* *} p-v a l u e<0.05,{ }^{* * *}$ p-value <0.01.

| | Own IQ > Partner IQ | | | Own IQ < Partner IQ | |
| :--- | ---: | ---: | ---: | :--- | ---: | ---: |
| | Frankfurt
 b / se | Heidelberg
 b / se | Frankfurt
 b / se | Heidelberg
 b / se | |
| preferredchoice | | | | | |
| Disclosure | 1.18672 | 0.41634 | | 1.58703^{*} | 0.71758 |
| | (0.2090) | (0.2259) | (0.3951) | (0.1967) | |
| Own IQ | 1.00217 | 0.96233 | | 0.96764^{*} | 0.99480 |
| | (0.0181) | (0.0368) | (0.0176) | (0.0225) | |
| N | | | | | |

Table O.7: Battle of Sexes with High Inequality. Preferred outcomes in Heidelberg and Frankfurt. The dependent variable is subject's preferred outcome. Panel logit estimator with random effects and errors clustered at the individual level. Panel logit estimator with random effects and errors clustered at the individual level. Controls for supergame, period, gender, Big 5 personality traits, risk aversion, size of session, average length of past supergames are included in the regressions but omitted from the table. Clustered Std errors in brackets; * p-value $<0.1,{ }^{* *} p$-value $<0.05,{ }^{* * *} p-$ value <0.01.

	Own IQ > Partner IQ			Own IQ < Partner IQ	
	Frankfurt b / se	Heidelberg b / se		Frankfurt b / se	Heidelberg b / se
preferredoutcome					
Disclosure	$0.79990^{* *}$	1.09318		1.00069	$1.51427^{* *}$
	(0.0910)	(0.2806)		(0.0699)	(0.2552)
Own IQ	0.99277	$1.06472^{* *}$		1.01093	1.01315
	(0.0128)	(0.0330)		(0.0098)	(0.0186)
Partner IQ	$1.03545^{* * *}$	1.01663		0.99839	0.99466
	(0.0086)	(0.0233)		(0.0097)	(0.0179)
N					

Table O.8: Battle of Sexes with High Inequality: Coordination in Heidelberg and Frankfurt. The dependent variable is coordination on the non-zero payoff outcomes. Panel logit estimator with random effects and errors clustered at the individual level. Controls for supergame, period, gender, Big 5 personality traits, risk aversion, size of session, average length of past supergames are included in the regressions but omitted from the table. Clustered Std errors in brackets; * p-value $<0.1,{ }^{* *} p$-value $<0.05,{ }^{* * *} p$-value <0.01.

	Frankfurt b / se	Heidelberg b / se
coordboseq		
Disclosure	0.79756^{*}	$1.45786^{* *}$
Own IQ	(0.0963)	(0.2792)
	1.01965^{*}	$1.03359^{* *}$
Partner IQ	(0.0107)	$1.02237^{* * *}$
	(0.0063)	$1.0163)$
		$\left(0.01302^{* *}\right.$
N	11648	2912

Table O.9: Prisoner's Dilemma: Expanded strategies estimation in the SGs in the first half of the session. Gamma is the error coefficient that is estimated for the choice function used in the ML and beta is the probability estimated that the choice by a subject is equal to what the strategy prescribes. When beta is close to $1 / 2$, choices are essentially random and when it is close to 1 then choices are almost perfectly predicted. Tests equality to 0 using the Waldtest: ${ }^{*} p$-values $<0.1,{ }^{* *} p-$ values $<0.05{ }^{* *}, p-$ values $<0.01{ }^{* * *}$

	Own IQ > Partner IQ				Own IQ < Partner IQ			
	No Disclosure		Disclosure		No Disclosure		Disclosure	
Strategy								
Always Cooperate	$\begin{array}{r} 0.0540 \\ (0.0555) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0327) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.1005) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0044) \end{array}$	
Always Defect	$\begin{array}{r} 0.1256 \\ (0.0557) \end{array}$	**	$\begin{array}{r} 0.1395 \\ (0.0909) \end{array}$		$\begin{array}{r} 0.2301 \\ (0.0750) \end{array}$	***	$\begin{array}{r} 0.1437 \\ (0.1146) \end{array}$	
Grim after 1 D	$\begin{array}{r} 0.3013 \\ (0.1421) \end{array}$	**	$\begin{array}{r} 0.3025 \\ (0.0983) \end{array}$	***	$\begin{array}{r} 0.2547 \\ (0.1008) \end{array}$	**	$\begin{array}{r} 0.3561 \\ (0.1079) \end{array}$	***
Tit for Tat (C first)	$\begin{array}{r} 0.4163 \\ (0.1032) \end{array}$	***	$\begin{array}{r} 0.4005 \\ (0.0852) \end{array}$	***	$\begin{array}{r} 0.3306 \\ (0.0950) \end{array}$	***	$\begin{array}{r} 0.3420 \\ (0.1001) \end{array}$	***
Tit for Tat (D first)	$\begin{array}{r} 0.0136 \\ (0.0593) \end{array}$		$\begin{array}{r} 0.0350 \\ (0.0442) \end{array}$		$\begin{array}{r} 0.0399 \\ (0.0254) \end{array}$		$\begin{array}{r} 0.0893 \\ (0.0579) \end{array}$	
Grim after 2 D	$\begin{array}{r} 0.0892 \\ (0.0585) \end{array}$		$\begin{array}{r} 0.0351 \\ (0.0464) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0426) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0474) \end{array}$	
Grim after 3 D	$\begin{array}{r} 0.0000 \\ (0.0142) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0205) \end{array}$		$\begin{array}{r} 0.0726 \\ (0.0660) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0104) \end{array}$	
Tit for two Tats (C first)	0.0000		0.0874		0.0720		0.0687	
Gamma	$\begin{array}{r} 0.4980 \\ (0.0924) \end{array}$		$\begin{array}{r} 0.5510 \\ (0.0384) \end{array}$	***	$\begin{array}{r} 0.5067 \\ (0.0610) \end{array}$	***	$\begin{array}{r} 0.5842 \\ (0.0416) \end{array}$	***
beta	0.882		0.860		0.878		0.847	
Average Periods	3.625		3.625		3.625		3.625	
Observations	1,152		1,248		1,152		1,248	

Table O.10: Prisoner's Dilemma: Expanded strategies estimation in the SGs in the second half of the session. Gamma is the error coefficient that is estimated for the choice function used in the ML and beta is the probability estimated that the choice by a subject is equal to what the strategy prescribes. When beta is close to $1 / 2$, choices are essentially random and when it is close to 1 then choices are almost perfectly predicted. Tests equality to 0 using the Waldtest: ${ }^{*} p$-values $<0.1,{ }^{* *} p-$ values $<0.05{ }^{* *}, p-$ values $<0.01{ }^{* * *}$

	Own IQ > Partner IQ				Own IQ < Partner IQ			
	No Disclosure		Disclosure		No Disclosure		Disclosure	
Strategy								
Always Cooperate	$\begin{array}{r} 0.0000 \\ (0.0014) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0157) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0007) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0059) \end{array}$	
Always Defect	$\begin{array}{r} 0.1476 \\ (0.0712) \end{array}$	**	$\begin{array}{r} 0.1082 \\ (0.0648) \end{array}$	*	$\begin{array}{r} 0.1972 \\ (0.0666) \end{array}$	***	$\begin{array}{r} 0.1252 \\ (0.0800) \end{array}$	
Grim after 1 D	$\begin{array}{r} 0.4661 \\ (0.1805) \end{array}$	**	$\begin{array}{r} 0.3478 \\ (0.0928) \end{array}$	***	$\begin{array}{r} 0.4487 \\ (0.1262) \end{array}$	***	$\begin{array}{r} 0.3082 \\ (0.1219) \end{array}$	**
Tit for Tat (C first)	$\begin{array}{r} 0.3244 \\ (0.1467) \end{array}$	**	$\begin{array}{r} 0.3985 \\ (0.1077) \end{array}$	***	$\begin{array}{r} 0.1637 \\ (0.1144) \end{array}$		$\begin{array}{r} 0.3062 \\ (0.1169) \end{array}$	***
Tit for Tat (D first)	$\begin{array}{r} 0.0000 \\ (0.0118) \end{array}$		$\begin{array}{r} 0.0178 \\ (0.0268) \end{array}$		$\begin{array}{r} 0.0282 \\ (0.0476) \end{array}$		$\begin{array}{r} 0.0503 \\ (0.0422) \end{array}$	
Grim after 2 D	$\begin{array}{r} 0.0000 \\ (0.0511) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.1060) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0516) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.1326) \end{array}$	
Grim after 3 D	$\begin{array}{r} 0.0000 \\ (0.0421) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0651) \end{array}$		$\begin{array}{r} 0.0570 \\ (0.0719) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0538) \end{array}$	
Tit for two Tats (C first)	0.0619		0.1276		0.1051		0.2100	
Gamma	$\begin{array}{r} 0.3104 \\ (0.0644) \end{array}$		$\begin{array}{r} 0.3826 \\ (0.0382) \end{array}$	***	$\begin{array}{r} 0.3487 \\ (0.0476) \end{array}$	***	$\begin{array}{r} 0.3960 \\ (0.0453) \end{array}$	${ }^{* * *}$
beta	0.962		0.932		0.946		0.926	
Average Periods	2.818		2.818		2.818		2.818	
Observations	1,056		1,144		1,056		1,144	

Table O.11: Description of Strategies for BoS. We denote by $M E_{i}^{t}$ the choice by player i in period t of $m y$ 'preferred' action. By $Y O U_{i}^{t}$ we denote the choice by player i in period t of your 'preferred' action.

Strategy	Description
Always Preferred	Play always $M E_{i}^{t}$
Always Concede	Play always $Y O U_{i}^{t}$
Forceful Naive Alternation	Start with $M E_{i}^{t}$ and then alternate between $Y O U_{i}^{t}$ and $M E_{i}^{t}$
Submissive Naive Alternation	Start with $Y O U_{i}^{t}$ and then alternate between $M E_{i}^{t}$ and YOU $_{i}^{t}$
Forceful Tit for Tat	Play $M E_{i}^{t}$ in the first period and then copy the choice of the partner in previous period
Submissive Tit for Tat	Play $Y O U_{i}^{t}$ in the first period and then copy the choice of the partner in previous period
Forceful Rev. Tit for Tat	Play $M E_{i}^{t}$ in the first period and then reverse the choice of the partner in previous period
Submissive Rev. Tit for Tat	Play $Y O U_{i}^{t}$ in the first period and then reverse the choice of the partner in previous period
Forceful Alternating Grim	Start with $M E_{i}^{t}$ and then alternate between $Y O U_{i}^{t}$ and $M E_{i}^{t}$. If coordination fails play $M E_{i}^{t}$ from then on
Submissive Alternating Grim	Start with $Y O U_{i}^{t}$ and then alternate between $M E_{i}^{t}$ and $Y O U_{i}^{t}$. If coordination fails play $M E_{i}^{t}$ from then on
Forceful Teaching	Play $M E_{i}^{t}$ unless the last period outcome was $\left(M E_{i}^{t}, Y O U_{j}^{t}\right)$
Submissive Teaching	Play $Y O U_{i}^{t}$ unless the last period outcome was $\left(Y O U_{i}^{t}, M E_{j}^{t}\right)$

Table O.12: Battle of Sexes with Low Inequality: Expanded strategy estimation in the SGs in the first half of the session. Gamma is the error coefficient that is estimated for the choice function used in the ML and beta is the probability estimated that the choice by a subject is equal to what the strategy prescribes. When beta is close to $1 / 2$, choices are essentially random and when it is close to 1 then choices are almost perfectly predicted. Tests equality to 0 using the Waldtest: ${ }^{*} p$-values $<0.1,{ }^{* *} p$-values $<0.05^{* *}$, p-values <0.01 ***

	Own IQ > Partner IQ				Own IQ < Partner IQ			
	No Disclosure		Disclosure		No Disclosure		Disclosure	
Strategy								
Always Preferred	$\begin{array}{r} 0.1245 \\ (0.0453) \end{array}$	***	$\begin{array}{r} 0.1782 \\ (0.0664) \end{array}$	***	$\begin{array}{r} 0.1057 \\ (0.0507) \end{array}$		$\begin{gathered} 0.0823 \\ (0.0638) \end{gathered}$	
Always Concede	$\begin{array}{r} 0.0154 \\ (0.0336) \end{array}$		$\begin{array}{r} 0.0382 \\ (0.0240) \end{array}$		$\begin{array}{r} 0.0269 \\ (0.0320) \end{array}$		$\begin{array}{r} 0.0767 \\ (0.0381) \end{array}$	**
Forceful Naïve Alternation	$\begin{array}{r} 0.0179 \\ (0.0351) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0259) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0260) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0319) \end{array}$	
Submissive Naïve Alternation	$\begin{array}{r} 0.0142 \\ (0.0356) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0158) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0367) \end{array}$		$\begin{array}{r} 0.0197 \\ (0.0456) \end{array}$	
Forceful Tit for Tat	$\begin{array}{r} 0.0211 \\ (0.0319) \end{array}$		$\begin{array}{r} 0.0436 \\ (0.0426) \end{array}$		$\begin{array}{r} 0.0480 \\ (0.0498) \end{array}$		$\begin{gathered} 0.0803 \\ (0.0338) \end{gathered}$	**
Submissive Tit for Tat	$\begin{array}{r} 0.0555 \\ (0.0267) \end{array}$	**	$\begin{array}{r} 0.0154 \\ (0.0069) \end{array}$	**	$\begin{array}{r} 0.0186 \\ (0.0277) \end{array}$		$\begin{array}{r} 0.0282 \\ (0.0377) \end{array}$	
Forceful Rev. Tit for Tat	$\begin{array}{r} 0.3595 \\ (0.0986) \end{array}$	***	$\begin{array}{r} 0.2361 \\ (0.0904) \end{array}$	***	$\begin{array}{r} 0.1806 \\ (0.0934) \end{array}$	*	$\begin{array}{r} 0.0944 \\ (0.0617) \end{array}$	
Submissive Rev. Tit for Tat	$\begin{gathered} 0.2833 \\ (0.0752) \end{gathered}$	***	$\begin{array}{r} 0.1824 \\ (0.0544) \end{array}$	***	$\begin{array}{r} 0.1844 \\ (0.0637) \end{array}$	***	$\begin{gathered} 0.3254 \\ (0.0594) \end{gathered}$	***
Forceful Alternating Grim	$\begin{array}{r} 0.0000 \\ (0.0251) \end{array}$		$\begin{array}{r} 0.0938 \\ (0.0440) \end{array}$	**	$\begin{array}{r} 0.0303 \\ (0.0500) \end{array}$		$\begin{array}{r} 0.0351 \\ (0.0387) \end{array}$	
Submissive Alternating Grim	$\begin{array}{r} 0.0000 \\ (0.0168) \end{array}$		$\begin{array}{r} 0.0530 \\ (0.0283) \end{array}$	*	$\begin{array}{r} 0.0000 \\ (0.0149) \end{array}$		$\begin{array}{r} 0.0637 \\ (0.0428) \end{array}$	
Submissive Teaching	$\begin{array}{r} 0.0172 \\ (0.0343) \end{array}$		$\begin{array}{r} 0.0585 \\ (0.0393) \end{array}$		$\begin{array}{r} 0.1715 \\ (0.0667) \end{array}$	**	$\begin{gathered} 0.0693 \\ (0.0383) \end{gathered}$	*
Forceful Teaching	0.0914		0.1008	*	0.2340	***	0.1251	**
Gamma	$\begin{array}{r} 0.6383 \\ (0.0322) \end{array}$	***	$\begin{array}{r} 0.6838 \\ (0.0470) \end{array}$	***	$\begin{array}{r} 0.8195 \\ (0.0698) \end{array}$	***	$\begin{array}{r} 0.8207 \\ (0.0507) \end{array}$	***
beta	0.827		0.812		0.772		0.772	
Average Periods	3.625		3.625		3.625		3.625	
Observations	1,872		2,208		1,872		2,208	

Table O.13: Battle of Sexes with Low Inequality: Expanded strategy estimation in the SGs in the second half of the session. Gamma is the error coefficient that is estimated for the choice function used in the ML and beta is the probability estimated that the choice by a subject is equal to what the strategy prescribes. When beta is close to $1 / 2$, choices are essentially random and when it is close to 1 then choices are almost perfectly predicted. Tests equality to 0 using the Waldtest: ${ }^{*} p$-values $<0.1,{ }^{* *} p$-values $<0.05^{* *}$, p-values <0.01 ***

	Own IQ > Partner IQ				Own IQ < Partner IQ			
	No Disclosure		Disclosure		No Disclosure		Disclosure	
Strategy								
Always Preferred	$\begin{array}{r} 0.0764 \\ (0.0424) \end{array}$		$\begin{array}{r} 0.0954 \\ (0.0593) \end{array}$		$\begin{array}{r} 0.1002 \\ (0.0524) \end{array}$		$\begin{array}{r} 0.0599 \\ (0.0537) \end{array}$	
Always Concede	$\begin{array}{r} 0.0000 \\ (0.0032) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0060) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0041) \end{array}$		$\begin{array}{r} 0.0555 \\ (0.0343) \end{array}$	
Forceful Naïve Alternation	$\begin{array}{r} 0.0162 \\ (0.0368) \end{array}$		$\begin{array}{r} 0.0427 \\ (0.0395) \end{array}$		$\begin{array}{r} 0.0612 \\ (0.0432) \end{array}$		$\begin{array}{r} 0.0523 \\ (0.0360) \end{array}$	
Submissive Naïve Alternation	$\begin{array}{r} 0.0264 \\ (0.0365) \end{array}$		$\begin{array}{r} 0.0557 \\ (0.0262) \end{array}$	**	$\begin{array}{r} 0.0921 \\ (0.0465) \end{array}$	**	$\begin{array}{r} 0.0600 \\ (0.0440) \end{array}$	
Forceful Tit for Tat	$\begin{array}{r} 0.0000 \\ (0.0078) \end{array}$		$\begin{array}{r} 0.0006 \\ (0.0087) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0197) \end{array}$		$\begin{array}{r} 0.0440 \\ (0.0534) \end{array}$	
Submissive Tit for Tat	$\begin{array}{r} 0.0192 \\ (0.0252) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0013) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0055) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0110) \end{array}$	
Forceful Rev. Tit for Tat	$\begin{array}{r} 0.4000 \\ (0.1117) \end{array}$	***	$\begin{array}{r} 0.3141 \\ (0.1116) \end{array}$	***	$\begin{array}{r} 0.3233 \\ (0.0907) \end{array}$	***	$\begin{array}{r} 0.3193 \\ (0.0956) \end{array}$	***
Submissive Rev. Tit for Tat	$\begin{array}{r} 0.3049 \\ (0.0745) \end{array}$	***	$\begin{array}{r} 0.1850 \\ (0.0523) \end{array}$	***	$\begin{array}{r} 0.3598 \\ (0.0864) \end{array}$	***	$\begin{array}{r} 0.2904 \\ (0.0870) \end{array}$	***
Forceful Alternating Grim	$\begin{array}{r} 0.0000 \\ (0.0232) \end{array}$		$\begin{array}{r} 0.0561 \\ (0.0436) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0186) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0004) \end{array}$	
Submissive Alternating Grim	$\begin{array}{r} 0.0023 \\ (0.0157) \end{array}$		$\begin{array}{r} 0.0709 \\ (0.0321) \end{array}$	**	$\begin{array}{r} 0.0000 \\ (0.0316) \end{array}$		$\begin{array}{r} 0.0666 \\ (0.0485) \end{array}$	
Submissive Teaching	$\begin{array}{r} 0.0000 \\ (0.0320) \end{array}$		$\begin{array}{r} 0.0620 \\ (0.0382) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0631) \end{array}$		$\begin{array}{r} 0.0519 \\ (0.0499) \end{array}$	
Forceful Teaching	0.1547	*	0.1174		0.0633		0.0000	
Gamma	$\begin{array}{r} 0.5767 \\ (0.0490) \end{array}$		$\begin{array}{r} 0.5537 \\ (0.0418) \end{array}$	***	$\begin{array}{r} 0.6338 \\ (0.0614) \end{array}$	***	$\begin{array}{r} 0.6182 \\ (0.0615) \end{array}$	***
beta	0.850		0.859		0.829		0.834	
Average Periods	2.818		2.818		2.818		2.818	
Observations	1,716		2,024		1,716		2,024	

Table O.14: Battle of Sexes with High Inequality: Expanded strategy estimation in the SGs in the first half of the session. Gamma is the error coefficient that is estimated for the choice function used in the ML and beta is the probability estimated that the choice by a subject is equal to what the strategy prescribes. When beta is close to $1 / 2$, choices are essentially random and when it is close to 1 then choices are almost perfectly predicted. Tests equality to 0 using the Waldtest: ${ }^{*} p$-values $<0.1,{ }^{* *} p$-values $<0.05^{* *}$, p-values <0.01 ***

	Own IQ > Partner IQ				Own IQ < Partner IQ			
	No Disclosure		Disclosure		No Disclosure		Disclosure	
Strategy								
Always Preferred	$\begin{array}{r} 0.1473 \\ (0.0831) \end{array}$		$\begin{array}{r} 0.0359 \\ (0.0394) \end{array}$		$\begin{array}{r} 0.1093 \\ (0.0519) \end{array}$	**	$\begin{array}{r} 0.2088 \\ (0.0721) \end{array}$	***
Always Concede	$\begin{array}{r} 0.0000 \\ (0.0137) \end{array}$		$\begin{array}{r} 0.0340 \\ (0.0213) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0087) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0029) \end{array}$	
Forceful Naïve Alternation	$\begin{array}{r} 0.0000 \\ (0.0288) \end{array}$		$\begin{array}{r} 0.0409 \\ (0.0385) \end{array}$		$\begin{array}{r} 0.0413 \\ (0.0387) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0396) \end{array}$	
Submissive Naïve Alternation	$\begin{array}{r} 0.0801 \\ (0.0399) \end{array}$	**	$\begin{array}{r} 0.0000 \\ (0.0235) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0369) \end{array}$		$\begin{array}{r} 0.0712 \\ (0.0413) \end{array}$	*
Forceful Tit for Tat	$\begin{array}{r} 0.0572 \\ (0.0189) \end{array}$	***	$\begin{array}{r} 0.0496 \\ (0.0329) \end{array}$		$\begin{array}{r} 0.0667 \\ (0.0653) \end{array}$		$\begin{array}{r} 0.0341 \\ (0.0289) \end{array}$	
Submissive Tit for Tat	$\begin{array}{r} 0.0000 \\ (0.0023) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0174) \end{array}$		$\begin{array}{r} 0.0333 \\ (0.0298) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0162) \end{array}$	
Forceful Rev. Tit for Tat	$\begin{array}{r} 0.2619 \\ (0.0774) \end{array}$	***	$\begin{array}{r} 0.3005 \\ (0.0983) \end{array}$	***	$\begin{array}{r} 0.1139 \\ (0.0613) \end{array}$	*	$\begin{array}{r} 0.4213 \\ (0.0851) \end{array}$	***
Submissive Rev. Tit for Tat	$\begin{array}{r} 0.2823 \\ (0.0660) \end{array}$	***	$\begin{array}{r} 0.3204 \\ (0.0666) \end{array}$	***	$\begin{array}{r} 0.3090 \\ (0.0600) \end{array}$	***	$\begin{array}{r} 0.2363 \\ (0.0609) \end{array}$	***
Forceful Alternating Grim	$\begin{array}{r} 0.0177 \\ (0.0324) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0532) \end{array}$		$\begin{array}{r} 0.0753 \\ (0.0635) \end{array}$		$\begin{array}{r} 0.0283 \\ (0.0350) \end{array}$	
Submissive Alternating Grim	$\begin{array}{r} 0.0312 \\ (0.0400) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0188) \end{array}$		$\begin{array}{r} 0.0311 \\ (0.0272) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0383) \end{array}$	
Submissive Teaching	$\begin{array}{r} 0.0000 \\ (0.0749) \end{array}$		$\begin{array}{r} 0.0068 \\ (0.0346) \end{array}$		$\begin{array}{r} 0.0530 \\ (0.0477) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0285) \end{array}$	
Forceful Teaching	0.1223	**	0.2120	**	0.1670	**	0.0000	
Gamma	$\begin{array}{r} 0.6269 \\ (0.0634) \end{array}$	***	$\begin{array}{r} 0.7611 \\ (0.0538) \end{array}$	***	$\begin{array}{r} 0.7822 \\ (0.0544) \end{array}$	***	$\begin{array}{r} 0.7485 \\ (0.0489) \end{array}$	***
beta	0.831		0.788		0.782		0.792	
Average Periods	3.625		3.625		3.625		3.625	
Observations	1,968		1,872		1,968		1,872	

Table O.15: Battle of Sexes with High inequality: Expanded strategy estimation in the SGs in the second half of the session. Gamma is the error coefficient that is estimated for the choice function used in the ML and beta is the probability estimated that the choice by a subject is equal to what the strategy prescribes. When beta is close to $1 / 2$, choices are essentially random and when it is close to 1 then choices are almost perfectly predicted. Tests equality to 0 using the Waldtest: ${ }^{*} p$-values $<0.1,{ }^{* *} p$-values $<0.05^{* *}$, p-values <0.01 ***

	Own IQ > Partner IQ				Own IQ < Partner IQ			
	No Disclosure		Disclosure		No Disclosure		Disclosure	
Strategy								
Always Preferred	$\begin{array}{r} 0.1278 \\ (0.0680) \end{array}$		$\begin{array}{r} 0.0289 \\ (0.0309) \end{array}$		$\begin{array}{r} 0.1049 \\ (0.0492) \end{array}$	**	$\begin{array}{r} 0.1469 \\ (0.0711) \end{array}$	**
Always Concede	$\begin{array}{r} 0.0157 \\ (0.0143) \end{array}$		$\begin{array}{r} 0.0169 \\ (0.0146) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0238) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0012) \end{array}$	
Forceful Naïve Alternation	$\begin{array}{r} 0.0000 \\ (0.0219) \end{array}$		$\begin{array}{r} 0.0394 \\ (0.0407) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0332) \end{array}$		$\begin{array}{r} 0.0265 \\ (0.0424) \end{array}$	
Submissive Naïve Alternation	$\begin{array}{r} 0.0284 \\ (0.0258) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0060) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0375) \end{array}$		$\begin{array}{r} 0.0732 \\ (0.0454) \end{array}$	
Forceful Tit for Tat	$\begin{array}{r} 0.0000 \\ (0.0181) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0030) \end{array}$		$\begin{array}{r} 0.0317 \\ (0.0181) \end{array}$	*	$\begin{array}{r} 0.0000 \\ (0.0032) \end{array}$	
Submissive Tit for Tat	$\begin{array}{r} 0.0000 \\ (0.0044) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0017) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0110) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0010) \end{array}$	
Forceful Rev. Tit for Tat	$\begin{array}{r} 0.3748 \\ (0.0901) \end{array}$	***	$\begin{array}{r} 0.4597 \\ (0.1013) \end{array}$	***	$\begin{array}{r} 0.3107 \\ (0.0880) \end{array}$	***	$\begin{array}{r} 0.3808 \\ (0.0919) \end{array}$	***
Submissive Rev. Tit for Tat	$\begin{array}{r} 0.3242 \\ (0.0782) \end{array}$	***	$\begin{array}{r} 0.3002 \\ (0.0709) \end{array}$	***	$\begin{array}{r} 0.3816 \\ (0.0784) \end{array}$	***	$\begin{array}{r} 0.2808 \\ (0.0715) \end{array}$	***
Forceful Alternating Grim	$\begin{array}{r} 0.0000 \\ (0.0081) \end{array}$		$\begin{gathered} 0.0328 \\ (0.0309) \end{gathered}$		$\begin{array}{r} 0.0123 \\ (0.0321) \end{array}$		$\begin{array}{r} 0.0164 \\ (0.0231) \end{array}$	
Submissive Alternating Grim	$\begin{array}{r} 0.0000 \\ (0.0058) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0074) \end{array}$		$\begin{array}{r} 0.0094 \\ (0.0470) \end{array}$		$\begin{array}{r} 0.0000 \\ (0.0332) \end{array}$	
Submissive Teaching	$\begin{array}{r} 0.0000 \\ (0.0602) \end{array}$		$\begin{array}{r} 0.0384 \\ (0.0792) \end{array}$		$\begin{array}{r} 0.0133 \\ (0.0495) \end{array}$		$\begin{array}{r} 0.0309 \\ (0.0476) \end{array}$	
Forceful Teaching	0.1290		0.0837		0.1361	**	0.0446	
Gamma	$\begin{array}{r} 0.5932 \\ (0.0394) \end{array}$	***	$\begin{array}{r} 0.5304 \\ (0.0443) \end{array}$	***	$\begin{array}{r} 0.6936 \\ (0.0401) \end{array}$	***	$\begin{array}{r} 0.6340 \\ (0.0393) \end{array}$	***
beta	0.844		0.868		0.809		0.829	
Average Periods	2.818		2.818		2.818		2.818	
Observations	1,804		1,716		1,804		1,716	

2 Timeline of the Experiment

1. Participants randomly assigned a seat number.
2. Participants sat at their corresponding computer terminals, which were in individual cubicles.
3. Instructions about the Raven task were read together with an explanation on how the task would be paid.
4. The Raven test was administered (36 matrices with a total of 30 minutes allowed). Three randomly chosen matrices out of 36 tables were paid at the rate of 1 Euro per correct answer.
5. The Holt-Laury task was explained verbally.
6. The Holt-Laury choice task was completed by the participants (10 lottery choices). One randomly chosen lottery out of 10 played out to be paid.
7. The game that would be played was explained using en example screen on each participant's screen, as was the way the matching between partners, the continuation probability and how the payment would be made.
8. The infinitely repeated game was played. Each experimental unit earned corresponded to 0.003 Euro.
9. A demographics and personality questionnaire was administered.
10. Calculation of payment was made and subjects were paid accordingly.

3 Session Dates, Size and Characteristics

Tables O.16, O. 17 and 0.18 below summarise the dates and timings of each session across all treatments.

Table O. 21 summarises the statistics about the Raven scores for each session in the PD, table O. 22 for the BoSLI and table O. 23 for the BosHI. Figure O. 1 presents the overall distribution of Raven scores across our treatments. Tables O. 24 until O. 29 present some summary statistics description of the main data across all our treatments. Table O. 30 shows the correlations among individual characteristics.

Table O.16: Dates and details for Prisoners' Dilemma Sessions.

	Date	Time	Subjects	Disclosure	Location
Session 1	$28 / 11 / 2018$	$14: 00$	20	Yes	Heidelberg
Session 2	$10 / 12 / 2018$	$15: 00$	20	No	Heidelberg
Session 3	$11 / 12 / 2018$	$14: 00$	18	Yes	Heidelberg
Session 4	$13 / 12 / 2018$	$14: 00$	16	No	Heidelberg
Session 5	$21 / 01 / 2019$	$11: 00$	14	Yes	Heidelberg
Session 6	$22 / 01 / 2019$	$13: 00$	12	No	Heidelberg

Total Participants 100

Table O.17: Dates and details for Battle of Sexes (low ineq.) Sessions

	Date	Time	Subjects	Disclosure	Location
Session 1	$29 / 11 / 2018$	$10: 00$	20	Yes	Heidelberg
Session 2	$29 / 11 / 2018$	$14: 00$	18	No	Heidelberg
Session 3	$12 / 12 / 2018$	$14: 00$	20	Yes	Heidelberg
Session 4	$19 / 12 / 2018$	$15: 00$	12	No	Heidelberg
Session 5	$19 / 02 / 2019$	$16: 00$	20	Yes	Heidelberg
Session 6	$26 / 02 / 2019$	$16: 00$	16	No	Heidelberg
Session 7	$08 / 07 / 2019$	$10: 00$	14	Yes	Heidelberg
Session 8	$10 / 07 / 2019$	$14: 00$	18	No	Heidelberg
Session 9	$19 / 07 / 2019$	$13: 00$	14	No	Frankfurt
Session 10	$05 / 09 / 2019$	$15: 30$	18	Yes	Frankfurt

Total Participants 170

Table O.18: Dates and details for Battle of Sexes (high ineq.) Sessions

	Date	Time	Subjects	Disclosure	Location
Session 1	$05 / 07 / 2019$	$10: 00$	22	Yes	Frankfurt
Session 2	$05 / 07 / 2019$	$13: 00$	24	No	Frankfurt
Session 3	$05 / 07 / 2019$	$16: 00$	20	Yes	Frankfurt
Session 4	$12 / 07 / 2019$	$10: 00$	22	No	Frankfurt
Session 5	$12 / 07 / 2019$	$13: 00$	18	Yes	Frankfurt
Session 6	$12 / 07 / 2019$	$16: 00$	22	No	Frankfurt
Session 7	$21 / 10 / 2019$	$15: 00$	14	No	Heidelberg
Session 8	$23 / 10 / 2019$	$16: 00$	18	Yes	Heidelberg

Total Participants
160

Table O.19: Maximal period (T) of each SG for all treatments.

SG	T
1	1
2	4
3	2
4	2
5	1
6	2
7	12
8	4
9	4
10	5
11	8
12	2
13	1
14	7
15	2
16	4
17	4
18	1
19	4
20	1
21	5
22	7
23	3
24	1
25	1
26	4

Figure O.1: Distribution of Raven scores. Top-left panel shows Raven distribution for all participants in the PD treatments, top-right shows Raven distribution for all participants in the BoS (low ineq.) treatments and bottom left panels shows Raven distribution for all participants in the BoS (high ineq.) treatments.

Table O.20: Comparing Characteristics across the subject pool in Heidelberg and Frankfurt

Variable	Heidelberg	Frankfurt	Differences	Std. Dev.	N
Raven	23.726	23.694	0.032	0.526	430
Age	23.137	23.456	-0.319	0.385	430
Female	0.537	0.475	0.062	0.050	430
Openness	3.718	3.649	0.069	0.054	430
Conscientiousness	3.451	3.504	-0.054	0.059	430
Extraversion	3.373	3.268	0.105	0.077	430
Agreeableness	3.746	3.637	$0.109^{* *}$	0.055	430
Neuroticism	2.864	2.923	-0.059	0.073	430
Risk Aversion	5.674	5.705	-0.031	0.181	366

Table O.21: Raven Scores by Session in Prisoner's Dilemma Treatments

Variable	Mean	Std. Dev.	Min.	Max.	\mathbf{N}
PD Disclosure - Session 1	24.3	4.824	13	30	20
PD Non-disclosure - Session 1	22.55	7.729	2	36	20
PD Disclosure - Session 2	25.056	4.952	17	32	18
PD Non-disclosure - Session 2	23.625	4.193	18	32	16
PD Disclosure - Session 3	25.786	4.98	16	32	14
PD Non-disclosure - Session 3	22.5	4.777	13	29	12

Table O.22: Raven Scores by Session in Battle of Sexes (low ineq.) Treatments

Variable	Mean	Std. Dev.	Min.	Max.	\mathbf{N}
BoS Disclosure - Session 1	22.5	4.407	14	30	20
BoS Non-disclosure - Session 1	22.444	5.305	14	34	18
BoS Disclosure - Session 2	23.85	5.019	10	30	20
BoS Non-disclosure - Session 2	23.417	4.907	17	32	12
BoS Disclosure - Session 3	22.45	5.336	3	28	20
BoS Non-disclosure - Session 3	22.313	6.107	10	31	16
BoS Disclosure - Session 4	26.5	3.322	21	32	14
BoS Non-disclosure - Session 4	24.944	4.345	17	33	18
BoS Non-disclosure - Session 5 (FRA)	25.786	5.221	16	32	14
BoS Disclosure - Session 5 (FRA)	24.556	4.866	15	33	18

Table O.23: Raven Scores by Session in Battle of Sexes (high ineq.) Treatments

Variable	Mean	Std. Dev.	Min.	Max.	\mathbf{N}
BosHI Disclosure- Session 1	22.545	5.18	8	32	22
BosHI Non-disclosure - Session 1	22.958	5.599	10	33	24
BosHI Disclosure - Session 2	23.65	5.509	14	33	20
BosHI Non-disclosure - Session 2	24.455	4.021	15	31	22
BosHI Disclosure - Session 3	23.722	4.496	11	29	18
BosHI Non-disclosure - Session 3	22.864	5.462	12	33	22
BosHI Non-disclosure - Session 4 (HD)	26.5	6.111	12	35	14
BosHI Disclosure - Session 4 (HD)	22.222	6.916	7	33	18

Table O.24: PD Non-disclosure, Main Variables

Variable	Mean	Std. Dev.	Min.	Max.	\mathbf{N}
Choice	0.729	0.449	0	1	48
Partner Choice	0.729	0.449	0	1	48
Age	22.563	3.5	18	36	48
Female	0.646	0.483	0	1	48
Round	92	0	92	92	48
Openness	3.767	0.48	3	4.9	48
Conscientiousness	3.486	0.511	2.556	4.333	48
Extraversion	3.424	0.763	1.875	4.625	48
Agreableness	3.826	0.513	2.889	4.778	48
Neuroticism	2.927	0.642	1.75	4.5	48
Raven	22.896	5.947	2	36	48
Risk Aversion	5.167	2.319	0	10	48
Final Profit	3624.792	419.604	2796	4380	48
Profit x Period	39.4	4.561	30.391	47.609	48
Total Periods	92	0	92	92	48

Table O.25: PD Disclosure, Main Variables

Variable	Mean	Std. Dev.	Min.	Max.	\mathbf{N}
Choice	0.769	0.425	0	1	52
Partner Choice	0.769	0.425	0	1	52
Age	23.25	3.793	19	35	52
Female	0.442	0.502	0	1	52
Round	92	0	92	92	52
Openness	3.742	0.625	2.5	4.8	52
Conscientiousness	3.382	0.675	1.556	4.889	52
Extraversion	3.531	0.815	1.5	5	52
Agreableness	3.682	0.66	2.111	4.889	52
Neuroticism	2.748	0.763	1.375	4.5	52
Raven	24.962	4.851	13	32	52
Risk Aversion	5.192	1.951	0	8	52
Final Profit	3573.154	443.977	2676	4384	52
Profit x Period	38.839	4.826	29.087	47.652	52
Total Periods	92	0	92	92	52

Table O.26: BoS (low ineq.) Non-disclosure, Main Variables

Variable	Mean	Std. Dev.	Min.	Max.	\mathbf{N}
Choice	0.551	0.501	0	1	78
Partner Choice	0.551	0.501	0	1	78
Age	23.038	3.068	18	33	78
Female	0.564	0.499	0	1	78
Round	92	0	92	92	78
Openness	3.676	0.494	2.3	4.8	78
Conscientiousness	3.46	0.679	2	4.778	78
Extraversion	3.304	0.781	1.5	4.75	78
Agreableness	3.781	0.59	2.222	4.667	78
Neuroticism	2.904	0.759	1.25	4.875	78
Raven	23.744	5.256	10	34	78
Risk Aversion	4.795	2.337	0	9	78
Final Profit	2268.615	345.573	1498	2964	78
Profit x Period	24.659	3.756	16.283	32.217	78
Total Periods	92	0	92	92	78

Table O.27: BoS (low ineq.) Disclosure, Main Variables

Variable	Mean	Std. Dev.	Min.	Max.	\mathbf{N}
Choice	0.565	0.498	0	1	92
Partner Choice	0.565	0.498	0	1	92
Age	23.457	4.321	18	57	92
Female	0.478	0.502	0	1	92
Round	92	0	92	92	92
Openness	3.668	0.566	2.3	4.9	92
Conscientiousness	3.502	0.544	2.111	4.556	92
Extraversion	3.357	0.71	1.875	4.875	92
Agreableness	3.763	0.497	2.333	4.778	92
Neuroticism	2.772	0.673	1.375	4.625	92
Raven	23.793	4.823	3	33	92
Risk Aversion	5.163	2.108	0	10	92
Final Profit	2180.478	381.597	1048	2812	92
Profit x Period	23.701	4.148	11.391	30.565	92
Total Periods	92	0	92	92	92

Table O.28: BoS (high ineq.) Non-disclosure, Main Variables

Variable	Mean	Std. Dev.	Min.	Max.	\mathbf{N}
Choice	0.561	0.499	0	1	82
Partner Choice	0.561	0.499	0	1	82
Age	23.841	4.744	18	45	82
Female	0.488	0.503	0	1	82
Round	92	0	92	92	82
Openness	3.737	0.507	2.5	4.7	82
Conscientiousness	3.514	0.566	2.333	4.556	82
Extraversion	3.306	0.736	1.75	4.75	82
Agreableness	3.648	0.498	1.889	4.667	82
Neuroticism	2.927	0.776	1.125	4.625	82
Raven	23.939	5.350	10	35	82
Risk Aversion	5.268	2.155	0	10	82
Final Profit	1707.073	321.213	792	2424	82
Profit x Period	18.555	3.491	8.609	26.348	82
Total Periods	92	0	92	92	82

Table O.29: BoS (high ineq.) Disclosure, Main Variables

Variable	Mean	Std. Dev.	Min.	Max.	\mathbf{N}
Choice	0.603	0.493	0	1	78
Partner Choice	0.603	0.493	0	1	78
Age	23.051	3.154	17	34	78
Female	0.5	0.503	0	1	78
Round	92	0	92	92	78
Openness	3.612	0.549	2.3	4.7	78
Conscientiousness	3.447	0.599	2.111	4.556	78
Extraversion	3.178	0.815	1.625	5	78
Agreableness	3.564	0.578	2.222	4.889	78
Neuroticism	3.029	0.752	1.625	4.625	78
Raven	23.026	5.501	7	33	78
Risk Aversion	5.244	2.071	0	10	78
Final Profit	1705.385	291.184	1032	2472	78
Profit x Period	18.537	3.165	11.217	26.87	78
Total Periods	92	0	92	92	78

Table O.30: All participants: Correlations Table ($\mathrm{p}-$ values in brackets)

Variables	Raven	Female	Risk Aversion	Openness	Conscientiousness	Extraversion	Agreableness	Neuroticism
Raven	1.000							
Female	$\begin{aligned} & -0.152 \\ & (0.002) \end{aligned}$	1.000						
Risk Aversion	$\begin{gathered} 0.180 \\ (0.000) \end{gathered}$	$\begin{gathered} 0.022 \\ (0.649) \end{gathered}$	1.000					
Openness	$\begin{gathered} 0.101 \\ (0.036) \end{gathered}$	$\begin{gathered} 0.044 \\ (0.361) \end{gathered}$	$\begin{gathered} -0.031 \\ (0.520) \end{gathered}$	1.000				
Conscientiousness	$\begin{gathered} 0.100 \\ (0.039) \end{gathered}$	$\begin{gathered} 0.180 \\ (0.000) \end{gathered}$	$\begin{gathered} -0.004 \\ (0.938) \end{gathered}$	$\begin{gathered} 0.098 \\ (0.043) \end{gathered}$	1.000			
Extraversion	$\begin{aligned} & -0.031 \\ & (0.524) \end{aligned}$	$\begin{gathered} 0.000 \\ (0.994) \end{gathered}$	$\begin{gathered} 0.017 \\ (0.719) \end{gathered}$	$\begin{gathered} 0.292 \\ (0.000) \end{gathered}$	$\begin{gathered} 0.202 \\ (0.000) \end{gathered}$	1.000		
Agreableness	$\begin{gathered} 0.090 \\ (0.063) \end{gathered}$	$\begin{gathered} 0.071 \\ (0.139) \end{gathered}$	$\begin{gathered} 0.032 \\ (0.512) \end{gathered}$	$\begin{gathered} 0.204 \\ (0.000) \end{gathered}$	$\begin{gathered} 0.202 \\ (0.000) \end{gathered}$	$\begin{gathered} 0.132 \\ (0.006) \end{gathered}$	1.000	
Neuroticism	$\begin{aligned} & -0.148 \\ & (0.002) \end{aligned}$	$\begin{gathered} 0.340 \\ (0.000) \end{gathered}$	$\begin{gathered} -0.018 \\ (0.717) \end{gathered}$	$\begin{gathered} 0.005 \\ (0.920) \end{gathered}$	$\begin{gathered} -0.137 \\ (0.004) \end{gathered}$	$\begin{gathered} -0.260 \\ (0.000) \end{gathered}$	$\begin{gathered} -0.166 \\ (0.001) \end{gathered}$	1.000

4 Experimental Instructions \& Invitation Email
 BoS: Experimental instructions

Thank you everyone for coming to our experiment today.
Before coming into the room, each one of you received a card number. This card corresponds to your seat number. Please make sure you are seated on the correct seat. If you're not on the correct seat, the money you end up receiving will not correspond to your own decisions.

The first section is to solve some puzzles, a pattern game. On the screen, you will see a set of abstract pictures with one of the pictures missing. You need to choose a picture from the choices below to complete the pattern. You will have a total of 30 minutes to complete 36 such puzzles. During these 30 minutes you will be able to move forwards and backwards and change your answers using the red buttons on your screens. Once the 30 minutes have passed you will no longer be able to change any answers. You can submit all your answers and wait for the others to finish once you reach the last puzzle by clicking on the grey button that will appear and be labelled 'DONE WITH PATTERN GAME'. The first picture you will see will only be an example. You will be paid for a random choice of three out of these 36 puzzles. For each correct choice, you will receive 1 Euro. [In disclosure sessions only:] A range including the number of your correct answers will be shown to other participants during a task later in the session. This will be presented anonymously, and there is no way others can trace the score back to you.

If you have any questions, please raise your hand and we will come to help you. Please remain silent while we are running the exercise, as otherwise we will be forced to terminate the session!

START RAVEN

The second section now is a choice task. On your screen, you will see a list of 10 lottery choices and for each case; you will be asked to indicate which of the lotteries you would prefer to play. One out of these 10 lottery choices will be randomly picked and then the choice you have made will be played out and you will be paid according to the probabilities indicated.

START HL

I will explain the next task while you look at an example screen on your monitors. Please feel free to ask any questions you might have. But make sure the questions are only clarifying questions. Any comments during the explanation will force me to terminate the session.

In this task, each of you will be randomly matched with someone in this room to make decisions in several rounds.

On your screen, you will a similar screen like what you see now. [In disclosure sessions only:] On the top of your screen, there is a graph that shows the results of the pattern game. The shaded grey line represents the possible range of 0 to 36 correct answers. You can also see a solid black line; this indicates the actual range of scores of people in this room, from lowest to highest score. The number of your correct answers will be highlighted by a yellow point on the line, the yellow point you see now is only for the example, your true own score will be revealed once we load that actual task. Finally, the green range you see indicates a series of scores within which your partner's score is in.

In the center of the screen, the computer will ask you to make a choice between R and Q. Your payoff will be presented on the left table, left side of the screen, and your partner's payoff will be presented on the right table, right side of the screen. In each table, your decisions (R or Q) are represented in the rows, looking up or down on either side of the screen, and your partner's decisions are represented in the columns, looking left or right on either side of the screen.

The payoffs of each round will depend on both your decisions as well as your partner's. I will now go through an example following the table on your screens. As I am doing so, please keep in mind that the numbers are for example purposes, this is meant to help you understand how to read the table and determine payoffs within each round.

- If you choose R, that is up, and your partner chooses Q, that is left, your payoff, looking at the left table, will be 48 and your partner's payoff, looking at the right table, will be 25.
- If you choose Q, that is down, and your partner chooses R, that is left, your payoff, looking at the left table, will be 0 and your partner's payoff, looking at the right table, will be 0 .
- If you choose R, that is up, and your partner chooses Q, that is right, your payoff, looking at the left table, will be 0 and your partner's payoff, looking at the right table, will be 0 .
- And finally, if you choose Q, that is down, and your partner chooses Q, that is right, your payoff, looking at the left table, will be 25 and your partner's payoff, looking at the right table, will be 48.

For each sequence of rounds (match) you will be randomly matched with someone from this room. This is done completely anonymously and no-one will ever know who you have been matched with.

After each round, there is a 75% probability that the match will continue for at least another round. That is, if there were 100 trials, in 75 of these the match would be repeated and in 25 the match would stop. So, for example, if you are at the second round of the match, the probability there will a third round is 75% and similarly if you are at round 9 , there will be a 75% probability for a further round. Once each match is finished, you will again be randomly matched with someone from this room and play a new sequence of rounds accordingly to the $75-25$ probability. Whenever this happens, I will be announcing 'New Partners', if I say nothing that means you are still playing with the same person as in the previous round.

The sum of the units that you will collect through all the matches, will determine your payoff. Each unit corresponds to 0.3 cents. Keep in mind that the game will be repeated many times and so you can potentially earn a lot of money!

Any questions? If you have any questions during the experiment, please raise your hand and we will come to help you. Please remain silent throughout the session as otherwise, we will be forced to terminate the exercise.

Again, let me remind you that the length of each match is randomly determined. After each round, there is a 75% probability that the match will continue for at least another round. You will play with the same person for the entire match. In addition, once a match is finished you will be randomly matched with another person for a new match.

START BoS

The fourth and last section is a questionnaire. It is relevant to your background and a personality. Your payment is not affected by these. Again I would like to remind you that everything is anonymous so please answer as truthfully as possible as this is critically important for our research.

If you have any questions, please raise your hand and we will come to help you.
START QUESTIONAIRE

Invitation Email
Dear \%FIRST NAME\% \%LAST NAME\%!
Earn money for less than 90 minutes of your time, by participating in our research project "AMRE Study".

You will be asked to solve some puzzles and complete a questionnaire and some decision tasks. The sessions will be run in English.

We have a session running this next Wednesday $23^{\text {rd }}$ October at 16:00-17:30.
All sessions will take place in the AWI-Experimentallabor.
If you want to participate, you can sign up by clicking the below link:
https://heidelberg-awi.sona-systems.com/default.aspx?p_return_experiment_id=195
(If you can not directly click on the link in your e-mail program, just mark it and copy it to the clipboard by right-clicking and selecting "Copy", then launch your web browser and paste the address there in the address window by clicking right there and choosing "Paste".)

For any further questions, please contact the researcher, Andis Sofianos (A.Sofianos@uniheidelberg.de)

Kind Regards,
Andis Sofianos

[^0]: *Hanken School of Economics \& Helsinki GSE; email: marco.lambrecht@hanken.fi
 ${ }^{\dagger}$ University of Glasgow, CEPR, IZA and CesIfo; email: eugenio.proto@gmail.com
 ${ }^{\ddagger}$ University of Minnesota; email: aldo.rustichini@gmail.com
 ${ }^{\S}$ University of Heidelberg; email: andis.sofianos@uni-heidelberg.de
 ${ }^{\text {I }}$ The authors thank several colleagues for discussions on this and related research, in particular Larbi Alaoui, Pierpaolo Battigalli, Maria Bigoni, Marco Casari, Pedro Dal Bo, Guillaume Frechette, Drew Fudenberg, David Gill, Fabio Maccheroni, Salvatore Nunnari, Joerg Oechssler, Emel Ozbay, Erkut Ozbay, Antonio Penta, Victoria Prowse, Daniela Puzzello, Andy Schotter. We also thank the conference and seminar participants at the University of Alabama, New York University, Radboud University Nijmegen, University of Surrey, Behavioural Game Theory Conference 2021, BSE Summer Forum Workshop on Coordination and Social Interaction, Cooperation Colloquia, M-BEES 2021. The University of Heidelberg provided funding for this research. AR thanks the National Science Foundation, grant NSF 1728056, and the US Department of Defense, grant W911NF2010242 for financial support.

[^1]: ${ }^{1}$ For example Aumann (1995) shows that backward induction outcome is reached under common knowledge of rationality in extensive form games of perfect information.

[^2]: ${ }^{2}$ Brocas and Carrillo (2021a) refer to the Subgame Perfect Equilibria that are Pareto optimal and give equal payoff to both players as the Efficient and Fair Outcome (EFO). The EFO in the BoS is achieved when players perfectly alternate between the two pure strategy Nash Equilibria of the stage game.

[^3]: ${ }^{3}$ The Prisoners' dilemma payoffs are the same as the ones adopted in Dal Bó and Fréchette (2011); Proto et al. (2019, forthcoming).

[^4]: ${ }^{4}$ This pre-drawn realisation is the same as the one used in Proto et al. (forthcoming). In table O. 19 in the supplementary material we list the length of each supergame.

[^5]: ${ }^{5}$ We use the 44 -item version that was developed by John et al. (1991), and was further investigated by John et al. (2008).
 ${ }^{6}$ This is appended at the end of this manuscript.

[^6]: ${ }^{7}$ In cases where there is exactly a one point difference between own and partner score, to ensure distinct positions of the yellow circle and green range, the position of the green range is specified non-randomly to extend away from the yellow circle.

[^7]: ${ }^{8}$ See also our estimations in tables O. 9 and O .10 in the online supplementary material.

[^8]: ${ }^{9}$ As argued in detail in the online appendix of Proto et al. (2019), in such a panel data environment expressing results in odds ratios makes interpretation easier and more precise. Hence, across all our regression results we report these in terms of odds rations when applicable.

[^9]: ${ }^{10}$ We use the same method used in Dal Bó and Fréchette (2011). The likelihood of each strategy is estimated by maximum likelihood, assuming that the subjects have a fixed probability of choosing one of the four strategies in the time horizon under consideration. The likelihood that the data correspond to a given strategy was obtained by allowing the subjects some error in their choices in any round, where error is defined as a deviation from the prescribed action according to their strategy. A detailed description of the estimation procedure is in the online appendix of Dal Bó and Fréchette (2011).
 ${ }^{11}$ Tables O. 9 and O. 10 in the online supplementary material report estimations where we consider all the strategies commonly considered in the game theory literature for infinitely repeated PD. These results confirm the empirical regularity of AD, TfT, and GT being the predominant strategies used.

[^10]: ${ }^{12}$ In table O. 1 we present separately the results for the data collected in Heidelberg and Frankfurt. Even though the estimated results are not statistically significant due to the lower power of each test, the direction of the effect is qualitatively similar in the two different locations.
 ${ }^{13}$ In table O. 2 we present separately the results for the data collected in Heidelberg and Frankfurt. The table shows a consistently negative effect for the less intelligent both in Frankfurt and in Heidelberg.

[^11]: ${ }^{14}$ Accordingly, disclosure results in a significantly negative impact on payoffs for lower intelligence subjects as we note from table O. 3 in the online supplementary material, where we analyse the effect of disclosure on payoffs separately for the higher and lower intelligence subject in a pair.

[^12]: ${ }^{15}$ In table O.4, where we present the same regressions of columns 1 and 3 for Heidelberg and Frankfurt separately, we note that in both locations the effect of disclosure is negative.

[^13]: ${ }^{16}$ The change in outcomes for the lower and higher intelligence subjects is further evident from the results in table O.5 of the online supplementary material. We find that the lower intelligence subjects of a pair earn significantly higher payoffs under disclosure.

