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Abstract

This paper analyzes participation in international environmental agreements in a

dynamic game in which countries pollute and invest in two types of clean technology

that differ in investment lags. If investments are non-contractible, countries under-

invest in the long-lag technology in the last period of the contract which leads to a

hold-up problem. Countries do not underinvest in the short-lag technology. If the

short-lag technology is sufficiently cheap, the hold-up problem becomes irrelevant,

and significant participation is not feasible. Our paper supplements Battaglini and

Harstad (2016), who point out that the hold-up problem may result in significant

participation and even in the first-best outcome, and shows that the assumptions

required for significant participation may be more limited than expected.
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1 Introduction

The analysis of international environmental agreements (IEAs) has a long tradition in eco-

nomics. The standard tool for analyzing IEAs is static and dynamic game theory.1 IEAs are

essential for many pollution problems that cross national boundaries such as global warming

and climate change. IEAs could help to keep the world mean temperature from rising in the

medium term by 2◦ C above pre-industrial levels and to stabilize the world climate at safe

levels through the reduction of global greenhouse gas emissions. For example, the Montreal

Protocol was quite successful at limiting ozone-depleting chlorofluorocarbons, but the Kyoto

Protocol and related agreements have been less successful at limiting carbon emissions. The

economic literature is quite pessimistic about effective IEAs with many participants, due to

strong free-riding incentives.

An important exception is Battaglini and Harstad (2016, henceforth B&H) who show

in a dynamic game with emissions and investments in a clean technology, that significant

participation and even the first-best outcome is feasible in the case of incomplete contracts,

i.e. when emissions but not investment are contractible. This result is denoted as B&H’s

main result. The driving force for the attractiveness of the incomplete contract is as follows:

During the last period of the contract, coalition countries underinvest, since investments in

this period pay off only in the next period, in which it is uncertain whether a new contract

will materialize. A hold-up problem arises that reduces free-riding incentives, such that

significant participation is feasible.

The present paper investigates the potential of incomplete contracts, especially of the

hold-up problem, to reduce the countries’ free-riding incentives in IEAs. For that purpose

we analyze a dynamic game with pollution and two types of clean technology which differ

in investment lags. The one type builds up new technology in the next period, i.e with

an inter-period investment lag. The other type builds up new technology in the current

period, i.e. with an intra-period investment lag. Hereinafter, we refer to these technologies

as long-lag technology and short-lag technology, respectively. In the case of incomplete

contracts, coalition countries underinvest in the long-lag technology in the last period of the

contract, which leads to a hold-up problem, whereas they do not underinvest in the short-lag

technology. If the short-lag technology is sufficiently cheaper than the long-lag technology,
1The literature on dynamic games of IEAs has been surveyed by Calvo and Rubio (2012), Benchekroun

and van Long (2012) and de Zeeuw (2018). More recently, Karp and Sakamoto (2021) and Kováč and

Schmidt (2021) investigate the role of beliefs about the random consequences of (re)opening negotiations

and the impact of delays in renegotiations, respectively, on the stability of IEAs in dynamic games.
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clean energy is predominantly generated by means of the former technology, the hold-up

problem becomes irrelevant and B&H’s main result does not hold (see Corollary 2(ii)).

Our game is different from B&H’s in two respects. Both differences are consistent with

assumptions in Harstad (2012, 2016). First, in our four-stage game, pollution takes place

after investment decisions are made. Second, we extend B&H’s game by a clean short-lag

technology, i.e. in addition to B&H’s clean technology with an inter-period investment lag,

in our model there is also a technology with an intra-period investment lag. Our game nests

B&H’s game as a special case. Since B&H’s results are robust with respect to changes in the

timing of investments and emissions, B&H’s game coincides with the polar case of our game

in which countries do not invest in the short-lag technology. This happens if the investment

costs of the short-lag technology are prohibitively high (see Corollary 1(i)). Analogously, our

game also entails the polar case in which countries do not invest in the long-lag technology.

This happens if the investment costs of the long-lag technology are prohibitively high. Given

our timing, the hold-up problem disappears and significant participation is not feasible (see

Corollary 1(ii)). B&H’s main result is sensitive to investment lags in combination with the

timing of pollution and investments.

The extension with respect to technologies with different investment lags is motivated

by time lags of emissions and real-world clean investments. In both B&H’s and our model,

emissions build up the pollution stock and cause climate damage in the current period.

There is empirical evidence (Ricke and Caldeira 2014, Zickfeld and Herrington 2014) of lags

between the point in time at which carbon dioxide emissions have ceased and the point at

which the maximum warming and climate damages caused by these emissions set in. In

view of this evidence, a period is a time span of five or ten years. However, Tierney and

Bird (2020) advertises that it takes less than two years to build up solar and onshore wind

capacity. The World Commission on Dams (2000, p. 10) reports that it takes 5 to 10 years

on average to build a large hydroelectric power plant. The realization of offshore wind farms

is between 4 and 13 years (Voormolen et al. 2016, p. 443). The aforementioned arguments

confirm that the length of a period in a dynamic game is somewhat arbitrary, there is no

correct timing of investments and emissions,2 and there are clean technologies with different

investment lags and some of them build their stock faster than emissions.3

2In reality, investments and pollution are made at (multiple) points in time within a period and would

require a continuous game, which is beyond the scope of the present paper but an important task for future

research.
3In addition, there is empirical evidence that short-lag technologies are cheaper than long-lag technologies.

For example, the levelized cost of solar energy is lower than that of offshore wind energy (UNEP).
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The remainder of the paper is organized as follows. Section 2 presents the building

blocks of the model, the timing of the game and derives the countries’ value function.

Section 3 briefly characterizes the first-best outcome and the non-cooperative equilibrium

which is also denoted as business as usual (BAU). Section 4 analyzes incomplete contracts

and Section 5 briefly turns to complete contracts.4 Section 6 concludes.

2 The model

2.1 Utility, pollution, capacity, and technology

We consider a modified version of B&H’s model. At each period in time t, each country

i ∈ {1, ..., N} consumes energy yi,t = gi,t +Ri,t + Si,t, which is generated by means of fossil

fuels gi,t and two clean technologies Ri,t + Si,t, which differ in investment lags and will be

defined more carefully below. The benefit function

Bi(yi,t) = − b

2
(ȳi − yi,t)

2 (1)

of energy consumption satisfies B′
i > 0 and B′′

i < 0 for yi,t < ȳi. The exogenous bliss point

ȳi represents country i’s ideal energy consumption if there were no pollution concerns. The

parameter b measures the disutility of reducing energy consumption relative to the bliss

point.

Greenhouse gas emissions of country i are proportional to its fossil fuel consumption,

such that gi,t denotes both fossil fuel use and greenhouse gas emissions of country i at pe-

riod t. Emissions accumulate in the atmosphere, with Gt representing the stock of pollution

at period t. According to

Gt = qGGt−1 +
∑

j∈N
gj,t, (2)

the stock increases with world-wide emissions, and decreases due to the decay rate (1−qG) ∈
[0, 1]. The stock of pollution causes the climate damage according to the function

D(Gt) = cGt, (3)

where c is a positive parameter. The damage function increases with the stock of accumu-

lated CO2 emissions.
4In the case of complete contracts, i.e. when both emissions and investments are contractible, the stable

coalition consists of at most 3 countries. Complete contracts in our game are equivalent to those in B&H’s

game.
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To substitute fossil fuels, countries can produce clean energy. For sake of simplicity,

clean energy production in country i is proportional to the sum of accumulated stocks of

clean technologies, i.e. Ri,t and Si,t denote both the production of clean energy by means

of technology R and S and the stock of clean technology R and S in country i at period t.

Clean technologies differ with respect to investment lags. Following B&H, investments ri,t−1

in the long-lag technology Ri have an inter-period lag and build up the stock in the next

period t. The corresponding equation of motion is

Ri,t = qRRi,t−1 + ri,t−1, (4)

where (1− qR) ∈ [0, 1] denotes the depreciation rate of technology R. In addition, departing

from B&H,5 there are investments in clean technologies with an intra-period lag. Investments

si,t in the short-lag technology Si are realized within the period of investment t, and the

technology stock evolves over time according to

Si,t = qSSi,t−1 + si,t, (5)

where (1−qS) ∈ [0, 1] denotes the depreciation rate of technology S. Obviously, the difference

between the two types of clean investment is that investments in (4) build up technology

stock in the next period, whereas investments in (5) build up technology stock in the same

period.

The costs κR(·) and κS(·) of technology investments ri,t−1 and si,t depend on both the

technology level and investments. We assume a quadratic relationship between costs κL(·)
and the targeted technology level Li,t for L = R, S such that ∂κL

∂Li,t
= kLLi,t, where kL > 0

is a cost parameter. In addition, we assume that investment costs are nil if no investments

are made, formally κR(·) = 0 for ri,t−1 = 0 and κS(·) = 0 for si,t = 0. These assumptions

imply the cost functions6,7

κR(Ri,t, Ri,t−1) =
kR

2

(

R2
i,t − q2RR

2
i,t−1

)

, (6)

κS(Si,t, Si,t−1) =
kS

2

(

S2
i,t − q2SS

2
i,t−1

)

. (7)

2.2 Timing

The timing of the sequential four-stage game is illustrated in Figure 1. The timing for

complete and incomplete contracts is identical in stage 1 and 4 and different in stage 2
5In B&H there is only one type of technology which is identical to our technology R.
6Solving ∂κL

∂Li,t
= kLLi,t yields κL(·) = kL

2
L2

i,t +QL for L = R,S. κR(·) = 0 for ri,t−1 = 0 and (4) imply

QR = −kR

2
q2RR

2

i,t−1
. κS(·) = 0 for si,t = 0 and (5) imply QS = −kS

2
q2SS

2

i,t−1
.

7Both cost functions κR and κS are identical to B&H’s cost function κ. With regard to cost functions,

our model does not deviate from B&H.
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Figure 1: Timing in the game

and 3. If no coalition exists at the beginning of a period, at stage 1, country i ∈ N decides

whether to participate in a new climate coalitionM . In case of incomplete contracts, at stage

2, the coalition countries first negotiate8 the contract duration T , and then emissions (gi,t)

for all i ∈ M and t ∈ {1, . . . , T}. At stage 3, every country i ∈ N non-cooperatively chooses

investments (ri,t, si,t). In case of complete contracts, at stage 2 the coalition countries first

negotiate the contract duration T , and then both emissions and investments (gi,t, ri,t, si,t) for

all i ∈ M and t ∈ {1, . . . , T}. At stage 3, every non-participant i ∈ N \M non-cooperatively

chooses investments (ri,t, si,t) and every coalition country invests as agreed. Both in case

of the complete and the incomplete contract, at stage 4 every non-participant i ∈ N \ M

non-cooperatively chooses emissions (gi,t) and every coalition country pollutes as agreed.

In Figure 1, ∆ > 0 denotes both the time from one investment/pollution decision to

the next and the length of one period. ΛS > 0 and ΛR > 0 are the investment lags of

investments si,t and ri,t, respectively, i.e. the time the investment needs to build up new

technology. Investments si,t develop new technology after the time ΛS in period t, and before

emissions gi,t are released. Investments ri,t develop new technology after time ΛR in period

t + 1, and before gi,t+1 are emitted. The investment lag ΛS is intra-periodic, whereas the

investment lag ΛR is inter-periodic.

Comparing Figure 1 and B&H’s Figure 1 shows the differences in timing and in the

investment lags between our game and B&H’s. With regard to the timing in B&H’s game,

countries first pollute at stage 3 and then invest at stage 4, whereas in our game the timing
8Following the literature on IEAs, we assume that the outcome of the negotiation stage 2 is the cooperative

solution which maximizes the utilitarian welfare of the coalition without any side transfers.
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is in the reverse order, i.e. countries first invest at stage 3 and then pollute at stage 4. With

regard to investment lags, in B&H there is one type of clean technology which is identical

to our technology R, and the corresponding investments ri,t increase the technology stock in

period t+1 according to (4). The investment lag overlaps two periods and is inter-periodic.

In contrast, in our paper, there are two types of clean technology. In addition to the long-lag

technology R, there is also the short-lag technology S. The corresponding investments si,t

build up technology in the same period according to (5). The investment lag of technology S

is intra-periodic, i.e. it is within a period and does not overlap two periods. We augment

B&H’s long-lag technology R by means of the short-lag technology S.

B&H (2016, p. 169) have mentioned that reversing the order of stages 3 and 4 does not

alter their results. Therefore, B&H’s game is included in ours as a special case in which coun-

tries do not invest in technology S. Below we point out that introducing technology S and

corresponding investments si,t and modifying B&H’s timing of emissions and investments,

do not change the size of the stable coalition of complete contracts, but have far-reaching

consequences for the size of the stable coalition of incomplete contracts.

2.3 Value function

Throughout the paper we restrict our attention to Markov-perfect equilibria (MPE) in pure

strategies. Let ρ > 0 denote the time preference rate and define δ = e−ρ∆ ∈ (0, 1) as the

discount factor. The utility of country i of period t is given by9

ui,t = − b

2
(ȳi − gi,t −Ri,t − Si,t)

2 − cGt −
kR

2

(

R2
i,t+1 − q2RR

2
i,t

)

eρ(ΛS+ǫ)

− kS

2

(

S2
i,t − q2SS

2
i,t−1

)

eρ(ΛS+ǫ),

(8)

where ǫ denotes the time from the realization of investments si,t until emissions gi,t are

released.

At Markov-perfect equilibria in pure strategies, the decisions of each country depend

only on the current state of the economy but not its history. The value function of country i

can be written as10

vi =
∞
∑

τ=t

δτ−t

[

− b

2
d2i,τ − C

∑

j∈N

(ȳj − dj,τ) + C
∑

j∈N

Sj,τ + δC
∑

j∈N

Rj,τ+1

− KS

2
S2
i,τ −

KR

2
R2

i,τ+1

]

,

(9)

9We measure utility at the pollution stage.
10Cf. Appendix A.1.
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with di,t := ȳi − gi,t −Ri,t − Si,t as the difference between the bliss point and instantaneous

energy consumption, KR := kR(1 − q2Rδ)e
ρ(ΛS+ǫ) > 0 and KS := kS(1 − q2Sδ)e

ρ(ΛS+ǫ) > 0 as

the effective technology investment cost parameter, and C := c
1−δqG

=
∑∞

τ=t c(δqG)
τ−t as the

social costs of carbon of one emission unit released in period t.

3 First-best outcome and BAU

In this section, we briefly characterize the first-best outcome and the non-cooperative equi-

librium (BAU). Maximizing (9) and
∑

j∈N vj with respect to di,t, Si,t and Ri,t+1, for t ≥ 1,

yield the emission quotas and technology levels

(a) gBAU
i,t = ȳi −

C

KS

− C

b
−Ri,t, (b) gFB

i,t = ȳi − n
C

KS

− n
C

b
− Ri,t, (10)

(a) SBAU
i,t =

C

KS

, (b) SFB
i,t = n

C

KS

, (11)

(a) RBAU
i,t+1 =

δC

KR

, (b) RFB
i,t+1 = n

δC

KR

, (12)

in the cases of non-cooperation (BAU) and first best (FB). Comparing BAU and FB reveals

the underlying dynamic common pool problem. Investments are a public good reducing

climate damage, and emissions are a public bad increasing the climate damage. In the case

of non-cooperation, countries choose their emissions and investments without taking into

account that their action influences the climate damage of other countries. Therefore, BAU

emissions are inefficiently high and BAU investments are inefficiently low.

4 Incomplete contract

Next, we consider incomplete climate contracts. Whereas non-participants always choose

BAU emissions and BAU investments, the members of the coalition only coordinate their

emissions, but not their investments. That is, emissions gi,t for all i ∈ M and all t ∈ {1, ..., T}
are cooperatively set at the negotiation stage 2 (in period t = 1), while the investments si,t
and ri,t are non-cooperatively set by the coalition countries at investment stage 3 in each

period t ∈ {1, ..., T}. The timing of the game implies that a Stackelberg game arises in

which the coalition countries non-cooperatively choose investments as Stackelberg followers,

and the coalition cooperatively sets pollution as a Stackelberg leader. Solving the game by

backward induction, at stage 3 of period t ∈ {1, ..., T}, coalition members maximize vi from

(9) with respect to Si,t and Ri,t+1 for a given negotiated gi,t (from stage 2). In Appendix
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A.2 we show that the first-order conditions yield the reaction functions

Si,1 =
b

b+KS

(ȳi − gi,t − Ri,1) ∀i ∈ M, (13)

Si,t =
bKR

KRKS + bKR + δbKS

(ȳi − gi,t) ∀i ∈ M, t ∈ {2, ..., T}, (14)

Ri,t =
δbKS

KRKS + bKR + δbKS

(ȳi − gi,t) ∀i ∈ M, t ∈ {2, ..., T}. (15)

Recall that investments ri,t increase the technology stock Ri,t+1, whereas investments si,t

increase the technology stock Si,t. According to (14) - (15), the coalition can induce coalition

countries to raise their investments si,t and ri,t−1 and hence their technology stock Si,t and

Ri,t by reducing its pollution gi,t for t ∈ {2, ..., T}. In the first period (t = 1), the technology

stock Ri,1 is exogenous and the coalition can only affect the stock Si,1 with its pollution gi,1

according to (13).

Because a coalition country i ∈ M does not know whether the coalition will persist in

period T + 1, it chooses BAU investments rBAU
i,T in period T such that

Ri,T+1 =
δC

KR

∀i ∈ M. (16)

The underinvestment in technology R in the last contract period leads to a hold-up problem.

At the negotiation stage 2, the coalition takes into account the reaction functions (13)

- (15) and maximizes
∑

j∈M vj with respect to gi,t. Appendix A.2 proves that the resulting

MPE is characterized by

gi,t = ȳi −m
C

KS

−m
C

b
− Ri,t ∀i ∈ M, t ∈ {1, ..., T}, (17)

Si,t = m
C

KS

∀i ∈ M, t ∈ {1, ..., T}, (18)

Ri,t = m
δC

KR

∀i ∈ M, t ∈ {2, ..., T}. (19)

Comparing (16) - (19) for m = n with (10)(b) - (12)(b) shows that the incomplete contract

implements the first-best outcome for all t ∈ {1, ..., T} with the exception of excessively low

investments ri,T in the last contract period. For 1 < m < n, a coalition country’s investments

and emissions internalize the climate externalities inside the coalition, but not outside it.

This holds for emissions and investments in all periods t ∈ {1, ..., T} of the contract except

for ri,T .

The technology stocks Ri,t in (16) and (19) are as in B&H, whereas the technology

stocks Si,t in (18) are different from those of B&H. In the case of investments ri,t, which
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are realized with an inter-period lag, the coalition can influence the coalition members’

investments for all periods t ∈ {1, . . . , T − 1}, apart from the last contract period T . As a

consequence, coalition countries underinvest in period T such that Ri,T+1 =
δC
KR

and a hold-

up problem arises. In the case of investments si,t, which are realized with an intra-period

lag, the coalition can influence the coalition members’ investments for all contract periods

such that Si,t = m C
KS

for all t ∈ {1, . . . , T}. With respect to technology S, there is no

underinvestment in the last contract period and no hold-up problem.

To make our results comparable with B&H, we introduce the relative cost xL = KL

bδ
of

technology L = R, S. Lemma 1, which is proven in Appendix A.2, characterizes the optimal

contract length.

Lemma 1. Suppose coalition members negotiate only their emissions, but not their

investments (incomplete contract). Let m∗ denote the stable coalition size.

(i) The optimal contract length for the coalition of size m is

• T ∗ = 1, if m < m̂,

• T ∗ ∈ {1, ...,∞}, if m = m̂,

• T ∗ = ∞, if m > m̂,

where

m̂ := m∗ − (m∗ − 1)

(

1−
√

xR + xR

δxS
+ δ

xR + xR

δxS
+ 1

)

< m∗.

(ii) The optimal contract length for the stable coalition of size m∗ is T ∗ = ∞.

In view of Lemma 1(i), there is a threshold m̂ at which a coalition of size m is indifferent

between all contract lengths. Because of m̂ < m∗, it is optimal for the participants of a stable

coalition to sign a long-term agreement (T = ∞, see Lemma 1(ii)). If a country abandons

the stable coalition m∗, the remaining countries sign a short-term agreement (T = 1) only

if m∗ − 1 ≤ m̂, or equivalently only if

m∗ ≤ mM(xR, xS) := 1 +
1

1−
√

xR+
xR
δxS

+δ

xR+
xR
δxS

+1

. (20)

(20) is referred to as discipline constraint. If (20) is satisfied, the defection of a country

induces the remaining coalition to sign an one-period contract and coalition countries un-

derinvest in technology R. If the discipline constraint is violated, the remaining coalition

signs a long-term contract T = ∞ and there is no underinvestment. Proposition 1, which is

proven in Appendix A.2, characterizes the size of the stable coalition.
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Proposition 1 . Suppose coalition members negotiate only their emissions, but not

their investments (incomplete contract). The stable coalition size is then given by

(i) If m∗ ≥ mM , then m∗ ∈ {2, 3}.
(ii) If m∗ < mM and

(a) and xR ≤ δ

1+ 1

δxS

, then m∗ ≤ min{mM , n},
(b) and xR > δ

1+ 1

δxS

, then m∗ ≤ min{mM , mI , n},

where

mI(xR, xS) := 3 +
2δ

xR + xR

δxS
− δ

≥ 3. (21)

(21) is the internal stability condition.11 In view of Proposition 1(i), a significant participa-

tion is not feasible if the discipline constraint (20) is violated, because only small climate

coalitions of maximal 3 countries are stable. Otherwise, larger coalitions can be stable. If

the relative cost of technologies R and S satisfy xR ≤ δ

1+ 1

δxS

, either the grand coalition is

stable or the stable coalition conforms to the discipline constraint mM . If xR > δ

1+ 1

δxS

, the

stable coalition is given by the minimum of n, mM or mI . Proposition 1 is illustrated in

Figure 2 for δ = 0.95 and n = 60. Ignore for the moment the mM(xR, 0.5)-line and the

mI(xR, 0.5)-curve. For xS = 10, the blue line reflects the discipline constraint mM(xR, 10),

and the violet curve reflects the internal stability condition mI(xR, 10). Observe that in the

example of Figure 2, the discipline constraint is satisfied and it holds that δ

1+ 1

δxS

= 0.86.

For xR < 0.44, we have min{mM , n} = mM , and the stable coalition lies on the line AB.

For 0.44 < xR < 0.89, we have min{mM , mI , n} = n and the stable coalition lies on the

n = 60-line. For xR > 0.89, the stable coalition is characterized by the internal stability

condition mI(xR, 10) and lies on the segment CD. To sum up, for xR = 10, the stable

coalition is on the polyline ABCD.

Proposition 1 resembles B&H’s Proposition 8. The driving force behind larger climate

coalitions is the hold-up problem associated with technology R. If one coalition country

defects and the discipline constraint holds, the remaining coalition countries sign a short-

term agreement, in order to wait for the deviant to return in the next period. Due to the

hold-up problem, the coalition countries reduce their investments in technology R to the
11Both the discipline constraint (20) and the internal stability condition (21) are written in such a way

that they are easily comparable with B&H’s discipline constraint in the Corollary to Proposition 7 and with

B&H’s internal stability condition in Proposition 8. Setting xR

δxS
≡ 0 in (20) and (21) yields B&H’s discipline

constraint and internal stability condition, respectively.
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Figure 2: The size of the stable coalition m∗ for δ = 0.95 and n = 60

BAU-level, implying higher climate damages in the next period. Because all countries suffer

from these additional damages, they counter the free-riding incentives of the deviant. In

other words, the hold-up problem leads to a credible threat which stabilizes larger climate

coalitions. However, in contrast to B&H, the size of the stable coalition not only depends

on the relative costs of long-lag technology xR, but also on the relative costs of short-lag

technology xS.

To explain the driving forces most clearly, consider the extreme cases of prohibitively

costly technology S (xS → ∞) and prohibitively costly technology R (xR → ∞). If xS → ∞,

countries invest only in technology R and not in technology S, with the consequence that

Proposition 1 is identical to B&H’s Proposition 8.12 The hold-up problem reduces free-riding

incentives. When a country leaves the coalition, the remaining countries sign a short-term

agreement while they wait for the deviant to return to the coalition in the next period. With

that short-term agreement, investments in technology R are as in BAU, due to the hold-up

problem. The underinvestment of the short-term agreement is a credible threat that reduces

free-riding incentives, and significant participation is feasible.

If xR → ∞, countries invest only in technology S and not in technology R. For xR → ∞
it holds limxR→∞mM (xR, xS) = ∞ and limxR→∞mI(xR, xS) = 3. Hence, Proposition 1(ii)

applies withm∗ ≤ min{mM , mI , n} = mI = 3. Since investments in S build up technology in

the same period, there is no underinvestment in the last contract period. Consequently, the

credible threat of underinvestment in short-term agreements that stabilizes larger coalitions

is lacking. Therefore, significant participation is not feasible and only small coalitions with
12For xS → ∞ it holds limxS→∞

xR

δxS
= 0, and the discipline constraint (20) and the internal stability

condition (21) are equal to those of B&H, see footnote 11.
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maximal 3 members are stable. We summarize these results in

Corollary 1 . Suppose coalition members negotiate only their emissions, but not their

investments (incomplete contract).

(i) If xS → ∞, the stable coalition size is characterized by B&H’s Proposition 8.

(ii) If xR → ∞, the stable coalition size is given by m∗ ∈ {2, 3}.

Next, consider the simultaneous use of technologies R and S. Differentiating mM and

mI with respect to xS yields

dmM

dxS

< 0,
dmI

dxS

> 0. (22)

A cheaper technology S relaxes the discipline constraint, while it tightens the internal sta-

bility condition. Figure 2 shows the movement of curves in the transition from xS = 10 to

xS = 0.5. The curve of the discipline constraint mM rotates upwards, whereas the curve

of the internal stability condition shifts to the left. As a consequence, the stable coalition

moves from the polyline ABCD to the polyline AB′C ′D. If the technology S becomes

cheaper, the technology stock Si,t and, therefore, total energy consumption gi,t +Ri,t + Si,t

increase. In contrast, the technology stock Ri,t is not affected, implying that the absolute

strength of the hold-up problem, and therefore of the additional climate damages that arise

from signing a short-term contract, remain constant. However, the greater benefit from

total energy consumption reduces the relative strengths of both the hold-up problem and

of (additional) climate damages. With regard to coalition countries, the reduced relative

strength of (additional) climate damages relaxes the discipline constraint. With regard to

the defecting country, the reduced relative strength of (additional) climate damages tightens

the internal stability condition. In the transition from xS = 10 to xS = 0.5, the parameter

set of large coalitions becomes smaller.13 This result can be generalized beyond the numer-

ical example of Figure 2. Denoting the set of economies in which the cost parameter xS is

given and the size of the stable coalition is m∗ = h, by E(xS, h) :=
{

(δ, n, xR)
∣

∣

∣
m∗ = h

}

we

prove in Appendix A.4 for14 h ∈]3, n]

d
∣

∣

∣
E(xS, h)

∣

∣

∣

dxS

≥ 0. (23)

According to (23), the set of economies in which the stable coalition is m∗ = h becomes

smaller when the relative cost xS is reduced. The effect of tightening the internal stability

condition overcompensates for the effect of relaxing the discipline constraint.
13Increasing xS from xS = 10 to xS → ∞ shifts the mI(xR, 10)-curve of Figure 2 slightly to the right and

rotates the mM (xR, 10)-line slightly downwards. As a consequence, Figure 2 turns into B&H’s Figure 2.
14
∣

∣A
∣

∣ denotes the cardinality of the set A.
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Figure 3: The threshold x̄S(xR) for δ = 0.95

Finally, suppose that technology S is sufficiently cheaper than technology R (xS ≪
xR).15 For any given cost parameter xR, there is a threshold x̄S(xR) :=

xR

(3δ−xR)δ
such that

the size of the stable coalition is at most 3 if xS < x̄S. In that case, the share of clean energy

S is so large relative to the clean energy R that the hold-up problem becomes irrelevant.

The threshold x̄S(xR) is illustrated in Figure 3. We summarize these results in

Corollary 2 . Suppose coalition members negotiate only their emissions, but not their

investments (incomplete contract).

(i) The set of economies, in which the stable coalition is m∗ = h with h ∈]3, n], becomes

smaller when xS reduces.

(ii) If xS < x̄S(xR), the stable coalition size is m∗ ∈ {2, 3}.

5 Complete contract

Finally, we briefly turn to complete contracts. Whereas non-participants act non-cooperatively

and always set their BAU emissions and BAU investments, coalition countries choose emis-

sions and investments cooperatively. Formally, they maximize
∑

j∈M vj with respect to di,t,

15According to UNEP (2020), in 2019 the levelized cost of energy are: solar 57 $/MWh, onshore wind en-

ergy 50 $/MWh and offshore wind energy 89 $/MWh. Solar and onshore wind energies belong to technology

S and offshore wind to technology R.

13



Si,t and Ri,t+1, for all t ∈ {1, ..., T}. The first-order conditions yield

gi,t = ȳi −m
C

KS

−m
C

b
−Ri,t ∀i ∈ M, t ∈ {1, ..., T}, (24)

Si,t = m
C

KS

∀i ∈ M, t ∈ {1, ..., T}, (25)

Ri,t+1 = m
δC

KR

∀i ∈ M, t ∈ {1, ..., T} (26)

(24) - (26) are identical to emissions and technologies of incomplete contracts with the

exception of the last contract period T , in which coalition countries build up the technology

Ri,T+1 = m δC
KR

> RBAU
i,t+1 = δC

KR
. In the case of complete contracts there is no underinvestment

and no hold-up problem. In Appendix A.5 we prove

Proposition 2 . Suppose that coalitions members negotiate both emissions and invest-

ments. The stable coalition size is m∗ ∈ {2, 3}

Because the hold-up problem is absent in the case of complete contracts, significant partici-

pation is not feasible. The complete contract of our game has the same properties as B&H’s

complete contract.

6 Concluding remark

Dynamic games map real-world international environmental agreements at a high level of

abstraction. In this paper, we extend B&H’s game by a short-lag technology and reverse

the order of pollution and investments. The aim of our paper is to point out how robust the

size of the stable coalition is with respect to the modeling of timing and investment lag. If

the short-lag technology is cheaper than the long-lag technology, the potential of incomplete

contracts to yield large and effective stable climate coalitions may be more limited than

expected.
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A Appendix

A.1 Value Function

The value of country i at time t reads v̂i =
∑∞

τ=t δ
τ−tui,t. We use the definition of di,t,

− c

∞
∑

τ=t

δτ−tGτ = −
∞
∑

τ=t

δτ−t

[

C
∑

j∈N

(ȳj − dj,τ)− C
∑

j∈N

Sj,τ − δC
∑

j∈N

Rj,τ+1

]

− CqGGt−1 + C
∑

j∈N

Rj,t,

−
∞
∑

τ=t

δτ−tkS

2

(

S2
i,τ − q2SS

2
i,τ−1

)

eρ(ΛS+ǫ) = −
∞
∑

τ=t

δτ−tKS

2
S2
i,τ +

kS

2
q2SS

2
i,t−1e

ρ(ΛS+ǫ),

−
∞
∑

τ=t

δτ−tkR

2

(

R2
i,τ+1 − q2RR

2
i,τ

)

eρ(ΛS+ǫ) = −
∞
∑

τ=t

δτ−tKR

2
R2

i,τ+1 +
kR

2
q2RR

2
i,te

ρ(ΛS+ǫ)

to get

v̂i =

∞
∑

τ=t

δτ−t

[

− b

2
d2i,τ − C

∑

j∈N
(ȳj − dj,τ) + C

∑

j∈N
Sj,τ + δC

∑

j∈N
Rj,τ+1 −

KS

2
S2
i,τ −

KR

2
R2

i,τ+1

]

− CqGGt−1 + C
∑

j∈N

Rj,t +
kS

2
q2SS

2
i,t−1e

ρ(ΛS+ǫ) +
kR

2
q2RR

2
i,te

ρ(ΛS+ǫ).

Because Sj,t−1, Rj,t and Gt−1 are given values at period t, they are pay-off irrelevant. There-

fore, the last four terms can be omitted, which gives (9). �

A.2 Incomplete contract

A.2.1 Derivation of (13) - (16)

The value function (9) can be rewritten as

vi =
1

1− δT

{

T
∑

t=1

δt−1

[

− b

2
(ȳi − gi,t − Si,t − Ri,t)

2 − C
∑

j∈N

gj,t −
KS

2
S2
i,t −

KR

2
R2

i,t+1

]

+ δT−1δC
∑

j∈N
Rj,T+1 − C

∑

j∈N
Rj,1

} (27)

At every point in time t ∈ {1, ..., T} a coalition member maximizes (27) with respect to Si,t

and Ri,t+1. The first-order conditions give

Si,t =
b

b+KS

(ȳi − gi,t − Ri,t), t ∈ {1, ..., T}, (28)

Ri,t+1 =
δb

δb+KR

(ȳi − gi,t+1 − Si,t+1), t ∈ {1, ..., T − 1}, (29)

Ri,T+1 =
δC

KR

. (30)

Using (28) and (29) yields (13) - (15), while (30) is identical with (16). �
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A.2.2 Derivation of (17) - (19)

The coalition takes account of (13) - (16) when maximizing
∑

j∈M vj for all t ∈ {1, ..., T}.
By substituting into (27) we can write the value function of a coalition member as

vi =
1

1− δT

{

− b

2

K2
S(ȳi − gi,1 − Ri,1)

2

(KS + b)2
− C

∑

j∈N

gj,1 −
KS

2

b2(ȳi − gi,1 − Ri,1)
2

(KS + b)2

+

T
∑

t=2

δt−1

[

− b

2

K2
SK

2
R(ȳi − gi,t)

2

(KSKR + bKR + δbKS)2
− C

∑

j∈N

gj,t

− KS

2

b2K2
R(ȳi − gi,t)

2

(KSKR + bKR + δbKS)2
− KR

2

δb2K2
S(ȳi − gi,t)

2

(KSKR + bKR + δbKS)2

]

+ δT−1
∑

j∈N

Rj,T+1 − δT−11

2

δ2C2

KR

− C
∑

j∈N

Rj,1

}

(31)

The first-order conditions of the coalition’s maximization give

gi,1 = ȳi −m
C

KS

−m
C

b
−Ri,1, (32)

gi,t = ȳi −m
C

KS

−m
C

b
−m

δC

KR

. (33)

Substituting into (28) and (29) yields (18) and (19). �

A.2.3 Proof of lemma 1

Suppose that the stable coalition has the sizem∗ and lasts for T ∗ periods. When the contract

expires, an identical contract is implemented. By substituting (10)(a) - (12)(a) and (16) -

(19) into (27), the value function of a coalition country reads

vc(m
∗, T ∗) =

1

1− δ

[

(

m∗2

2
+ (n−m∗)

)(

C2

KS

+
δ2C2

KR

+
C2

b

)

− C
∑

j∈N

ȳj

]

− δT
∗−1

1− δT
∗

δ2C2

KR

(m∗ − 1)2

2
.

(34)

For T ∗ → ∞ the last term vanishes, so that vc(m∗,∞)− vc(m
∗, T ) > 0 implying T ∗ = ∞.

Consider an arbitrary coalition (m, T ). When the contract expires, the stable coalition

is established. The value function of a coalition country reads

vc(m, T ) =
1− δT

1− δ

[

(

m2

2
+ (n−m)

)(

C2

KS

+
δ2C2

KR

+
C2

b

)

− C
∑

j∈N

ȳj

]

− δT−1 δ
2C2

KR

(m− 1)2

2
+ δTvc(m

∗, T ∗).

(35)
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Differentiating with respect to T yields

∂vc

∂T
=

|ln(δ)|δT
2(1− δ)

[

(m− 1)2 − (m∗ − 1)2
]

(

C2

KS

+
δ2C2

KR

+
C2

b

)

+ |ln(δ)|δT−1δ
2C2

KR

(m− 1)2

2
.

The optimal contract length equals 1 if ∂vc
∂T

< 0, which yields m < m̂. The optimal contract

is T ∈ {1, ...,∞} if ∂vc
∂T

= 0, which yields m = m̂. The contract is signed forever if ∂vc
∂T

> 0,

which yields m > m̂. �

A.3 Proof of proposition 1

For the determination of the stable coalition size consider the value function of a non-

participant for one period and for T periods, respectively. By using (10)(a) - (12)(a) and

(17) - (19) we get

uf(m) =

(

m2 + n−m− 1

2

)(

C2

KS

+
δ2C2

KR

+
C2

b

)

− C
∑

j∈N

ȳj −
δ2C2

KR

m(m− 1), (36)

vf(m, T ) =
1− δT

1− δ

[

(

m2 + n−m− 1

2

)(

C2

KS

+
δ2C2

KR

+
C2

b

)

− C
∑

j∈N

ȳj

]

− δT−1 δ
2C2

KR

m(m− 1) + δTvf(T + 1).

(37)

Suppose that one coalition member defects from the coalition m∗ and that the disci-

plinary constrain (20) does not hold. Then, the defection does not pay-off if vc(m∗,∞) ≥
vf (m

∗ − 1,∞), which yields

m∗ ≤ 3. (38)

The accession of one fringe country to the coalition does not pay-off if vc(m∗ + 1,∞) ≤
vf (m

∗,∞), which yields

m∗ ≥ 2. (39)

(38) and (39) prove proposition 1(i).

Suppose that one coalition member defects from the coalition m∗ and that the disci-

plinary constrain (20) holds. Then, the defection does not pay-off if vc(m∗,∞) ≥ uf(m
∗ −

1) + δvc(m
∗,∞), which yields

m∗
(

1 +
1

δxS

− δ

xR

)

≤ 2

(

1 +
1

δxS

)

+

(

1 +
1

δxS

− δ

xR

)

. (40)

If 1+ 1
δxS

> δ
xR

⇔ xR > δ

1+ 1

δxS

, the inequality (40) yields m∗ ≤ mI . If 1+ 1
δxS

< δ
xR

⇔ xR <

δ

1+ 1

δxS

, the inequality (40) yields

m∗ ≥ 1 + 2
1 + 1

δxS

1 + 1
δxS

− δ
xR

< 1, (41)
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which holds for all m∗. If 1 + 1
δxS

= δ
xR
, the inequality (40) holds for all m∗. The accession

of one fringe country to the coalition does not pay-off if vc(m∗ + 1,∞) ≤ vf(m
∗,∞), which

yields (39). The results are summarized by proposition 1. �

A.4 Proof of (23)

Solving mM = n and mI = n with respect to xR we obtain

xMn
R =

[n2(1− δ)− 2n(2− δ) + 4− δ] δxS

(2n− 3)(1 + δxS)
, (42)

xIn
R =

(n− 1)δ2xS

(n− 3)(1 + δxS)
> 0. (43)

xMn
R > 0 if n ≥ 2−δ+

√
δ

1−δ
=: n. Subtracting xMn

R from xIn
R yields

xIn
R − xMn

R =
[−(1− δ)n2 + n(5− δ)− 6] (n− 2)δxS

(n− 3)(2n− 3)(1 + δxS)
. (44)

xIn
R − xMn

R > 0 if n > 5−δ−
√
1+14δ+δ2

2(1−δ)
=: n and n < 5−δ+

√
1+14δ+δ2

2(1−δ)
. Differentiating xIn

R − xMn
R

with respect to xS leads to

d(xIn
R − xMn

R )

dxS

=
[−(1− δ)n2 + n(5− δ)− 6] (n− 2)δ

(n− 3)(2n− 3)(1 + δxS)2
. (45)

Presupposed xIn
R − xMn

R > 0 we get d(xIn
R

−xMn
R

)

dxS
> 0.

Solving mM = mI with respect to xR we obtain

xMI
R =

(

1 + δ +
√
1 + 14δ + δ2

)

δxS

6(1 + δxS)
. (46)

Inserting xMI
R in turn in mI we get

mI

(

xMI
R , xS

)

=
3
(

1− δ +
√
1 + 14δ + δ2

)

1− 5δ +
√
1 + 14δ + δ2

. (47)

In the following we make a case distinction. Since we argue with the movement of curves,

it may be helpful to consider Figure 2.

If n ≤ n, then mM > n for all xR and xS . In that case the mM -line lies above the n-line. It

applies Proposition 1(ii) with

m∗ ≤ n, forxR ≤ δ

1+ 1

δxS

,

m∗ ≤ min {mI , n} , forxR > δ

1+ 1

δxS

.
(48)
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dmI

dxS
> 0 establishes (23).

If n < n < n, there exists an intersection point of the mM -line with the n-line and

an intersection point of the n-line with the mI-curve. The grand coalition is stable for all

xR ∈ [xMn
R , xIn

R ]. Due to (45) the set of economies in which the grand coalition is stable

becomes larger and we get
d

∣

∣E(xS ,h)

∣

∣

dxS
≥ 0 for 3 < h < n.

If n ≥ n, there exists an intersection point of the mM -line with the mI -curve. This

intersection point is determined by
(

xMI
R , mI

(

xMI
R , xS

))

in (46) and (47) and lies below the

n-line implying that the grand coalition is never stable. Increasing xS enhances xMI
R but

leaves mI

(

xMI
R , xS

)

. Hence, we conclude
d

∣

∣E(xS ,h)

∣

∣

dxS
≥ 0 for 3 < h ≤ n.

A.5 Complete contract

Suppose that the stable coalition has the sizem∗ and lasts for T ∗ periods. When the contract

expires, an identical contract is implemented. By substituting (10)(a) - (12)(a), (24) - (26)

into (9) we get

vc(m
∗, T ∗) =

1

1− δ

[

(

m∗2

2
+ (n−m∗)

)(

C2

KS

+
δ2C2

KR

+
C2

b

)

− C
∑

j∈N

ȳj

]

. (49)

Consider an arbitrary coalition (m, T ). When the contract expires, the stable coalition is

established. The value function of a coalition country reads

vc(m, T ) =
1− δT

1− δ

[

(

m2

2
+ (n−m)

)(

C2

KS

+
δ2C2

KR

+
C2

b

)

− C
∑

j∈N
ȳj

]

+ δTvc(m
∗, T ∗).

Differentiating with respect to T yields

∂vc

∂T
=

|ln(δ)|δT
2(1− δ)

[

(m− 1)2 − (m∗ − 1)2
]

(

C2

KS

+
δ2C2

KR

+
C2

b

)

.

We get ∂vc
∂T

< 0 ⇔ m < m∗, ∂vc
∂T

= 0 ⇔ m = m∗, and ∂vc
∂T

> 0 ⇔ m > m∗.

For the determination of the stable coalition consider the value function of a non-

participant for one period and for T ∗ periods, respectively. By using (10)(a) - (12)(a) and

(24) - (26) we get

uf(m) =

(

m2 + n−m− 1

2

)(

C2

KS

+
δ2C2

KR

+
C2

b

)

− C
∑

j∈N

ȳj, (50)

vf (m, T ) =
1− δT

1− δ

[

(

m2 + n−m− 1

2

)(

C2

KS

+
δ2C2

KR

+
C2

b

)

− C
∑

j∈N

ȳj

]

+ δTvf(T + 1).

(51)
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Suppose that one coalition member defects from the stable coalition. The remaining mem-

bers will sign an one-period contract. After that period the coalition (m∗, T ∗) is estab-

lished. The defection does not pay-off if the internal stability condition vc(m
∗, T ∗) ≥

uf(m
∗−1)+δvc(m

∗, T ∗) holds, which is equivalent to (38). Suppose that one non-participant

accedes the coalition, such that the contract lasts forever. The accession does not pay-off

if the external stability condition vf(m
∗, T ∗) ≥ vc(m

∗ + 1,∞) holds, which is equivalent to

(39). Consequently, m∗ ∈ {2, 3}. �
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