Introduction	The Model	Complete Contract	Incomplete Contract	Conclusion
000	000000	00	0000000	00

Participation and Duration of Environmental Agreements: Investment lags matter

Thomas Eichner, Gilbert Kollenbach

University of Hagen

August 23, 2022

Introduction	The Model	Complete Contract	Incomplete Contract	Conclusion
●00	000000		0000000	00

Introduction

Introduction	The Model	Complete Contract	Incomplete Contract	Conclusion
○●○	000000		0000000	00

Motivation

- Climate change (and other environmental problems)
 - Global problem
 - National policies
 - \Rightarrow Public good problem
- Without cooperation: Free-riding implies inefficient solution
- No global authority to enforce cooperation
- Cooperation via international environmental agreements (IEA)
 - (Sub)global coalition of countries
 - Cooperation must be self-enforcing
- IEAs are studied since decades
 - Static models: Hoel (1992), Barrett (1994), Hoel & de Zeeuw (2010)
 - Dynamic models: Barrett (1999), Rubio & Casino (2005), Rubio & Ulph (2007)
- Core result: IEAs are either small and deep or large and shallow

Battaglini & Harstad (2016)

- Large IEA can be stable
- \blacktriangleright Incomplete contract \rightarrow only emissions, not green investments
- Important assumptions
 - No time lag with respect to emissions
 - Time lag with respect to green investments
- Real world data
 - Climate damages of CO₂ reach maximum 5-10 years after release of emissions
 - Solar and onshore wind: within 2 years
 - Offshore wind: 4 to 13 years
 - Hydroelectric power: 5 to 10 years or more
- Our approach
 - Two kinds of green investments
 - Long investment lag
 - Short investment lag

Introduction	The Model	Complete Contract	Incomplete Contract	Conclusion
000	●00000		0000000	00

The Model

Introduction	The Model	Complete Contract	Incomplete Contract	Conclusion
000	0●0000	00	0000000	00

Assumptions

- n country model in discrete time with linear-quadratic functions
 - Climate coalition M
 - Fringe L = N M
- Utility of country i in period t depends on sum y_{i,t} of fossil fuel energy g_{i,t} and renewables R_{i,t} + S_{i,t}

$$B_i(y_{i,t}) = -\frac{b}{2} \left[\bar{y}_i - g_{i,t} - R_{i,t} - S_{i,t} \right]^2$$

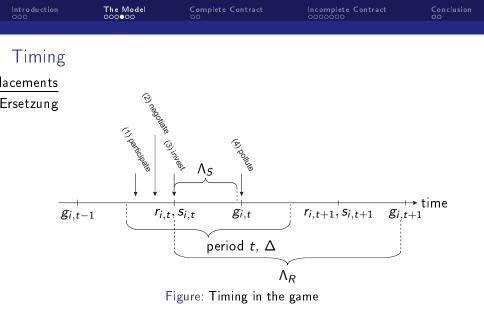
- Climate Damage
 - Climate Damages cG_t depends on CO₂ stock G_t
 - CO₂ accumulates in the atmosphere according to

$$G_t = q_G G_{t-1} + \sum_{j \in N} g_{j,t}$$

Introduction	The Model	Complete Contract	Incomplete Contract	Conclusion
000	00●000		0000000	00

Assumptions

- ▶ Renewables require production capacities $R_{i,t}$ and $S_{i,t}$
 - Long-lag investments: Capacity investments r_i realize in next period


$$R_{i,t} = q_R R_{i,t-1} + r_{i,t-1}$$

Short-lag investments: Capacity investments s_i realize within period

$$S_{i,t} = q_S S_{i,t-1} + s_{i,t}$$

Investment costs

$$\kappa_{R}(R_{i,t}, R_{i,t-1}) = \frac{k_{R}}{2} \left[R_{i,t}^{2} - q_{R}^{2} R_{i,t-1}^{2} \right]$$

$$\kappa_{S}(S_{i,t}, S_{i,t-1}) = \frac{k_{S}}{2} \left[S_{i,t}^{2} - q_{S}^{2} S_{i,t-1}^{2} \right]$$

Introduction The Model Complete Contract Incomplete Contract Conclusion

Value function and contract types

Value of Country i given by

$$v_{i} = \sum_{\tau=t}^{\infty} \delta^{\tau-t} \left[-\frac{b}{2} (\bar{y}_{i} - g_{i,\tau} - R_{i,\tau} - S_{i,\tau})^{2} - C \sum_{j \in \mathbb{N}} g_{j,\tau} - \frac{K_{S}}{2} S_{i,\tau}^{2} - \frac{K_{R}}{2} R_{i,\tau+1}^{2} \right]$$

- Complete Contract: Coalition countries coordinate emissions g_{i,t} and capacities (investments) R_{i,t+1}, S_{i,t}
- Incomplete Contract: Coalition countries only coordinate emissions g_{i,t}
- Coalition contract signed for T periods
- Markov-perfect equilibria and stability concept of d'Aspremont et al. (1983)

Introduction 000	The Model 00000●	Complete Contract 00	Incomplete Contract 0000000	Conclusion 00

Benchmark

► First best (FB)

$$g_{i,t}^{FB} = \bar{y}_i - n\frac{C}{K_S} - n\frac{C}{b} - R_{i,t}$$
$$S_{i,t}^{FB} = n\frac{C}{K_S}$$
$$R_{i,t+1}^{FB} = n\frac{\delta C}{K_R}$$

Business as usual (BAU) - Fringe

$$g_{i,t}^{BAU} = \bar{y}_i - \frac{C}{K_S} - \frac{C}{b} - R_{i,t}$$
$$S_{i,t}^{BAU} = \frac{C}{K_S}$$
$$R_{i,t+1}^{BAU} = \frac{\delta C}{K_R}$$

lntroduction	The Model	Complete Contract	Incomplete Contract	Conclusion
000	000000	●0	0000000	00

Complete Contract

Policy and Stability

► Coalition's Policy

$$g_{i,t} = \bar{y}_i - m\frac{C}{K_S} - m\frac{C}{b} - R_{i,t}$$
$$S_{i,t} = m\frac{C}{K_S}$$
$$R_{i,t+1} = m\frac{\delta C}{K_R}$$

▶ Stable coalition of $m^* \in \{2,3\}$

Introduction	The Model	Complete Contract	Incomplete Contract	Conclusion
000	000000		●000000	00

Incomplete Contract

Timing of Decisions

- Coalition signs T period-contract
- Contract coordinates emissions g_{j,t} for all j ∈ M and for all t ∈ {1,..., T}
- Coalition members choose investments r_{i,t} and s_{i,t} at investment-stage (3) in every period t ∈ {1,..., T}
- Stackelberg game with coalition as leader and members as followers
- Solution via backward induction

Introduction	The Model	Complete Contract	Incomplete Contract	Conclusion
000	000000		00●0000	00

Policy

Emissions and Investments

$$g_{i,t} = \bar{y}_i - m\frac{C}{K_S} - m\frac{C}{b} - R_{i,t}, \quad t \in \{1, \dots, T\}$$
$$S_{i,t} = m\frac{C}{K_S}, \quad t \in \{1, \dots, T\}$$
$$R_{i,t} = m\frac{\delta C}{K_R}, \quad t \in \{2, \dots, T\}$$
$$R_{i,T+1} = \frac{\delta C}{K_R}$$

- Hold-up problem in last contract period with respect to long-lag investments
- No hold-up problem with respect to short-lag investments

Introduction 000	The Model 000000	Complete Contract	Incomplete Contract 000●000	Conclusion 00

Contract Length

- Contract holds for
 - $T^* = 1$ period if $m < \hat{m}$
 - ▶ $T^* \in \{1, ..., \infty\}$ periods if $m = \hat{m}$
 - $T^* = \infty$ periods if $m > \hat{m}$
- ▶ Stable coalition signs unlimited contract $(m^* > \hat{m})$

Disciplinary constraint: If

$$m^* < m_M = 1 + rac{1}{1 - \left[rac{K_R}{b\delta} + rac{K_R}{\delta K_S} + \delta}{rac{K_R}{b\delta} + rac{K_R}{\delta K_S} + 1}
ight]^{0.5}}$$

deviation of one coalition country leads to $T^* = 1$

Stability

- ▶ If disciplinary constraint violated, $m^* \in \{2, 3\}$
- If disciplinary constraint satisfied, either m^{*} ≤ min{m_M, n} or m^{*} ≤ min{m_M, m_I, n} with

$$m_I = 3 + \frac{2\delta}{\frac{K_R}{b\delta} + \frac{K_R}{\delta K_S} - \delta}$$

Mechanism

- If disciplinary constraint holds, coalition countries credibly threaten to sign short-term contract if one country defects
- Hold-up problem arises: Long-lag investments reduced
- Increase of climate damages
- Incentive to stay in coalition

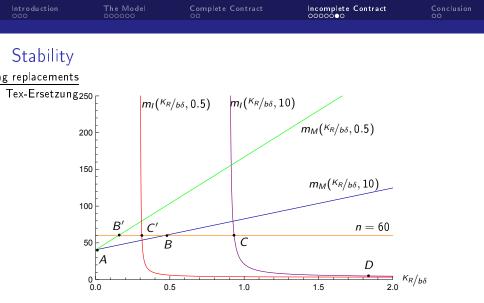


Figure: The size of the stable coalition m^* for $\delta = 0.95$ and n = 60

Stability

- Disciplinary constraint is relaxed if short-lag investments become cheaper
- Internal stability constraint is tightened if short-lag investments become cheaper
 - More short-lag investments, long-lag investments unchanged
 - Hold-up problem exists and unchanged
 - Relative strength of hold-up problem reduced due to more energy usage
 - Coalition countries: Disciplinary constraint relaxed
 - Defecting country: Internal stability condition tightened
- Effect of dK_S on internal stability conditions outweighs effect on disciplinary constraint

• Threshold
$$\bar{K}_S(K_R) = \frac{K_R}{3\delta^2 - \frac{K_R}{b}}$$
 for $m^* \in \{2, 3\}$

Introduction	The Model	Complete Contract	Incomplete Contract	Conclusion
000	000000		0000000	©©

Conclusion

Introduction	The Model	Complete Contract	Incomplete Contract	Conclusion
000	000000	00	0000000	

Conclusion

- Capacity with short investment lag in Battaglini and Harstad (2016)
- Incomplete contracts: Stability negatively affected by cheap short-lag investments
- Potential of incomplete climate contracts may be more limited than expected

lntroduction	The Model	Complete Contract	Incomplete Contract	Conclusion
000	000000		0000000	●0

Thank You

Introduction	The Model	Complete Contract	Incomplete Contract	Conclusion
000	000000	00	0000000	OO

Literature

- Barrett, S. 1994. Self-enforcing international environmental agreements. Oxford economic papers 46, 878-894.
- Barrett, S. 1999. A theory of full international cooperation. Journal of Theoretical Politics 11, 519-541.
- Battaglini, M., Harstad, B., 2016. Participation and duration of environmental agreements. Journal of Political Economy 124, 160-204.
- d'Aspremont, C., Jacquemin, A., Gabszewicz, J.J., Weymark, J.A. 1983. On the stability of collusive price leadership. Canadian Journal of economics 16, 17-25.
- Hoel, M. 1992. International Environment Conventions: The Case of Uniform Reductions of Emissions. Environmental and Resource Economics 2, 141-159.
- Hoel, M., de Zeeuw, A., 2010. Can a focus on breakthrough technologies improve the performance of international environmental agreements? Environmental and Resource Economics 47, 395-406.
- Rubio, S.J., Casino, B., 2005. Self-enforcing international environmental agreements with a stock pollutant. Spanish Economic Review 7, 89-109.
- Rubio, S.J., Ulph, A., 2007. An infinite-horizon model of dynamic membership of international environmental agreements. Journal of Environmental Economics and Management 54, 296-310.