Self-enforcing climate coalitions for farsighted countries: integrated analysis of heterogeneous countries

Sareh Vosooghi Oxford Maria Arvaniti Bologna

Rick van der Ploeg Oxford

August 2022

Introduction

- Global warming and three decades of climate negotiations
- Signatories commit to maximising payoffs of all coalition members in choosing their emission reduction levels.
- Different levels of ambition in emission reduction by different climate coalitions
- We model negotiations of countries to form climate coalitions.
- We capture broad incentives of policymakers of countries.
- Our policymakers are **farsighted**.
- We allow for **heterogeneity** across countries.

Introduction

- Global warming and three decades of climate negotiations
- Signatories commit to maximising payoffs of all coalition members in choosing their emission reduction levels.
- Different levels of ambition in emission reduction by different climate coalitions
- We model negotiations of countries to form climate coalitions.
- We capture broad incentives of policymakers of countries.
- Our policymakers are **farsighted**.
- We allow for **heterogeneity** across countries.

- The problem of coalition formation of heterogeneous countries can be **decoupled**:
 - 1. number of coalitions and number of signatories
 - 2. composition of signatories in each coalition
- About numbers: In climate coalition formation + Integrated Assessment Model (IAM), we offer a simple algorithm to **fully characterise** the equilibrium number of climate coalitions and their number of signatories.
- About composition:

we identify the most emission-**efficient** coalitional setting, the countries prefer to give rise to efficient coalitions.

- The problem of coalition formation of heterogeneous countries can be **decoupled**:
 - 1. number of coalitions and number of signatories
 - 2. composition of signatories in each coalition
- About numbers: In climate coalition formation + Integrated Assessment Model (IAM), we offer a simple algorithm to **fully characterise** the equilibrium number of climate coalitions and their number of signatories.
- About composition:

we identify the most emission-**efficient** coalitional setting, the countries prefer to give rise to efficient coalitions.

• The algorithm relies on Tribonacci numbers

 $\{1,2,4,7,13,24,...\}$

• The **policy** message:

- allow multiple climate coalitions!
- ◊ large coalitions can be stable.

Our results are robust to renegotiation and a generalised energy sector.

• The algorithm relies on Tribonacci numbers

 $\{1,2,4,7,13,24,...\}$

• The **policy** message:

- allow multiple climate coalitions!
- ◊ large coalitions can be stable.

Our results are robust to renegotiation and a generalised energy sector.

• The algorithm relies on Tribonacci numbers

 $\{1,2,4,7,13,24,...\}$

• The **policy** message:

allow multiple climate coalitions!

◊ large coalitions can be stable.

• Our results are robust to renegotiation and a generalised energy sector.

Introduction

Model

- The economy
- Climate coalition formation

Analysis

- Action stage
- Membership decision

Conclusion

Setup

- Country $i \in I$, and set of countries is $I \equiv \{1, 2, ..., N\}$
- Time is discrete and infinite, t = 0, 1, 2, ...
- Each country has a planner, who represents it in climate negotiations and can implement desired outcomes in a decentralised economy
- Open membership and binding

Timeline

- Two-stage climate coalition formation
 - ◊ Beginning of period *t*: membership stage
 - ◊ From end of period t onward: action stage
 - \rightarrow emission reduction decisions within coalitions
 - \rightarrow country-level decisions

♦ At the end of each period emissions are observed and payoffs are realised.

The economy of each country *i*

- Planner of *i* maximises the lifetime utility of a representative household: $U(C_{it})$
- Energy is sources from exhaustible fossil fuels, Rit.
- Total emissions, E_t , linearly increase global temperature, which negatively affects TFP of production of final output.
- Heterogeneity with respect to TFP, K_{i0} , R_{i0} .

Golosov et al. (2014, ECTA)

Climate coalition formation

- **Coalition structure** is a partition of set *I* into coalitions, $\mathbb{M} \equiv \{M_1, M_2, ..., M_k\}$.
- *m* is number of signatories of *M*.
- Numerical coalition structure, $\mathcal{M} \equiv \{m_1, m_2, ..., m_k\}$.
- The negotiations at the membership stage are based on a proposal-response based bargaining.

Climate coalition formation

- **Coalition structure** is a partition of set *I* into coalitions, $\mathbb{M} \equiv \{M_1, M_2, ..., M_k\}$.
- *m* is number of signatories of *M*.
- Numerical coalition structure, $\mathcal{M} \equiv \{m_1, m_2, ..., m_k\}$.
- The negotiations at the membership stage are based on a proposal-response based bargaining.

Introduction

Model

- The economy
- Climate coalition formation

Analysis

- Action stage
- Membership decision

Conclusion

Solution concept

• Pure strategy Markov Perfect equilibrium

current state: the formed coalitions (if any); identity (and number) of those negotiating (if any); proposal (if ongoing or signed); cumulative emissions; K_{it} ; and μ_{it} .

- Strategies of country *i*: as P; as R; action stage strategies: {*E_{it+τ}*(*M*, M), *C_{it+τ}*(*M*, M), *K_{it+τ+1}*(*M*, M), *R_{it+τ+1}*(*M*, M)}[∞]_{τ=0}
- Farsightedness (Ray and Vohra, 1997)

Action stage

The *m* member of coalition *M* maximise,

subject to: resource constraint and feasibility constraint

 $\hat{\Lambda}(m)\equivrac{\xi\gamma m}{1-eta}$ is per-unit SCC

 μ_{it} : per-unit scarcity rent

Proposition

- ◇ Optimal unique emission of *i* ∈ *M*, *E_{it}(m*) negatively depends on $\hat{\Lambda}(m)$, and μ_{it} .
- ◊ Emission strategies are **dominant** against what other coalitions choose.

Membership decision

• Optimum-value function of $i \in M$ is $V_i(M, \mathbb{M})$

Farsighted countries

- $\circ~\mathbb{M}^*$ is immune to unilateral and multilateral deviations by
 - ◊ the deviating group
 - the active players in the negotiation room
- $\circ~$ The equilibrium \mathbb{M}^* needs to be found recursively:

if N = 2, then $\mathbb{M}^* =$?. Then if N = 3, $\mathbb{M}^* =$?. Then, if [if symmetric: \mathcal{M}^*]

• We check for which group of countries, a grand coalition forms in equilibrium.

• In a stage of recursion, suppose *j* is initial P and compares $M \in \{M_1, M_2, ..., M_k\}$ versus $\{I\}$:

$$\sum_{i=1}^m V_i^j(M,\mathbb{M}) - \sum_{i=1}^m V_i^j(I)$$

- This is independent of any stocks and TFP.
 - \Rightarrow membership decisions are independent of heterogeneity w.r.t. K_{i0} and TFP.
- This linearly depends on **emissions** only.
- membership decisions are independent of heterogeneity w.r.t. μ_{it} if β → 1 ⇒ the comparison reduces to

$$V_i^j(m,\mathcal{M})-V_i^j(N)$$

• This is as if they were symmetric.

1. focus on equilibrium numerical coalition structure

2. composition and efficiency

• In a stage of recursion, suppose *j* is initial P and compares $M \in \{M_1, M_2, ..., M_k\}$ versus $\{I\}$:

$$\sum_{i=1}^m V_i^j(M,\mathbb{M}) - \sum_{i=1}^m V_i^j(I)$$

- This is independent of any stocks and TFP.
 - \Rightarrow membership decisions are independent of heterogeneity w.r.t. K_{i0} and TFP.
- This linearly depends on **emissions** only.
- membership decisions are independent of heterogeneity w.r.t. μ_{it} if β → 1 ⇒ the comparison reduces to

$$V_i^j(m,\mathcal{M})-V_i^j(N)$$

• This is as if they were symmetric.

1. focus on equilibrium numerical coalition structure

2. composition and efficiency

• In a stage of recursion, suppose j is initial P and compares $M \in \{M_1, M_2, ..., M_k\}$ versus $\{I\}$:

$$\sum_{i=1}^m V_i^j(M,\mathbb{M}) - \sum_{i=1}^m V_i^j(I)$$

• This is independent of any stocks and TFP.

 \Rightarrow membership decisions are independent of heterogeneity w.r.t. K_{i0} and TFP.

- This linearly depends on **emissions** only.
- membership decisions are independent of heterogeneity w.r.t. μ_{it} if $\beta \rightarrow 1$ \Rightarrow the comparison reduces to

$$V^j_i(m,\mathcal{M}) - V^j_i(N)$$

• This is as if they were symmetric.

1. focus on equilibrium numerical coalition structure

2. composition and efficiency

• \mathcal{T}^* is the set of **N** for which a grand coalition forms in equilibrium.

- $D(N) = \{m_1, m_2, ..., m_k\}$ is **decomposition** of *N*, such that m_k is the largest integer in \mathcal{T}^* that is strictly smaller than *N*. Then any other element is the largest integer that is no greater than $N \sum_{j=i+1}^{k} m_j$.
- Example: if N = 3, and $\mathcal{T}^* = \{1, 2\}$, in equilibrium $\{3\}$ forms or $\{2, 1\}$ or $\{1, 1, 1\}$?
 - ♦ Because $D(3) = \{1, 2\}$, then $\{1, 1, 1\}$

Lemma

Let $D(N) = \{m_1, m_2, ..., m_k\}$, such that m_1 is the smallest element of D(N). If $\beta \to 1$, then independent of source of heterogeneity, a grand coalition forms in equilibrium if

$$\frac{N}{m_1} < \mathrm{e}^{(k-1)}$$

- \mathcal{T}^* is the set of **N** for which a grand coalition forms in equilibrium.
- $D(N) = \{m_1, m_2, ..., m_k\}$ is **decomposition** of *N*, such that m_k is the largest integer in \mathcal{T}^* that is strictly smaller than *N*. Then any other element is the largest integer that is no greater than $N \sum_{j=i+1}^k m_j$.
- Example: if N=3, and $\mathcal{T}^{*}=\{1,2\},$ in equilibrium $\{3\}$ forms or $\{2,1\}$ or $\{1,1,1\}?$

• Because
$$D(3) = \{1, 2\}$$
, then $\{1, 1, 1\}$

Lemma

Let $D(N) = \{m_1, m_2, ..., m_k\}$, such that m_1 is the smallest element of D(N). If $\beta \to 1$, then independent of source of heterogeneity, a grand coalition forms in equilibrium if

$$\frac{N}{m_1} < \mathrm{e}^{(k-1)}$$

- \mathcal{T}^* is the set of **N** for which a grand coalition forms in equilibrium.
- $D(N) = \{m_1, m_2, ..., m_k\}$ is **decomposition** of *N*, such that m_k is the largest integer in \mathcal{T}^* that is strictly smaller than *N*. Then any other element is the largest integer that is no greater than $N \sum_{j=i+1}^k m_j$.
- Example: if N = 3, and $\mathcal{T}^* = \{1, 2\}$, in equilibrium $\{3\}$ forms or $\{2, 1\}$ or $\{1, 1, 1\}$?

• Because
$$D(3) = \{1, 2\}$$
, then $\{1, 1, 1\}$

Lemma

Let $D(N) = \{m_1, m_2, ..., m_k\}$, such that m_1 is the smallest element of D(N). If $\beta \to 1$, then independent of source of heterogeneity, a grand coalition forms in equilibrium if

$$\frac{N}{m_1} < \mathrm{e}^{(k-1)}$$

Proposition

If $\beta \to 1$, for any number of heterogeneous countries, a grand coalition occurs in equilibrium if **N** is an element of

$$\mathcal{T}^* = \{1, 2, 4, 7, 13, 24, 44, 81, 149, 274, ...\}$$
(1)

which is the Tribonacci sequence.

- if $N \in \mathcal{T}^*$, then $\mathcal{M}^* = \{N\}$
- if $N \notin \mathcal{T}^*$, then $\mathcal{M}^* = D(N)$

The equilibrium number of signatory, m^* , in any coalition is a Tribonacci number.

```
Example. If N = 195 then \mathcal{M}^* = \{149, 44, 2\}.
```

Proposition

If $\beta \to 1$, for any number of heterogeneous countries, a grand coalition occurs in equilibrium if **N** is an element of

$$\mathcal{T}^* = \{1, 2, 4, 7, 13, 24, 44, 81, 149, 274, ...\}$$
(1)

which is the Tribonacci sequence.

- if $N \in \mathcal{T}^*$, then $\mathcal{M}^* = \{N\}$
- if $N \notin \mathcal{T}^*$, then $\mathcal{M}^* = D(N)$

The equilibrium number of signatory, m^* , in any coalition is a Tribonacci number.

Example. If N = 195 then $\mathcal{M}^* = \{149, 44, 2\}$.

Composition of countries in coalitions

- \circ Assume countries are heterogeneous w.r.t. μ_{it}
- Equilibrium payoffs and global temperature depend on identity of P and the composition of countries in coalition.

Example. $I = \{1, 2, 3, 4, 5, 6\}$ and $\mu_{it} > \mu_{i+1t}$ The most efficient $\mathbb{M}^* = \{\{1, 2\}, \{3, 4, 5, 6\}\}$

Proposition. Assume that the grand coalition is not stable, and the initial proposers make acceptable offers with probability one. Then for any β , countries prefer coalitions with lowest global emissions among all possible coalition structures with the same numerical coalition structure.

Composition of countries in coalitions

- \circ Assume countries are heterogeneous w.r.t. μ_{it}
- Equilibrium payoffs and global temperature depend on identity of P and the composition of countries in coalition.

Example. $I = \{1, 2, 3, 4, 5, 6\}$ and $\mu_{it} > \mu_{i+1t}$ The most efficient $\mathbb{M}^* = \{\{1, 2\}\{3, 4, 5, 6\}\}$

Proposition. Assume that the grand coalition is not stable, and the initial proposers make acceptable offers with probability one. Then for any β , countries prefer coalitions with lowest global emissions among all possible coalition structures with the same numerical coalition structure.

Composition of countries in coalitions

- \circ Assume countries are heterogeneous w.r.t. μ_{it}
- Equilibrium payoffs and global temperature depend on identity of P and the composition of countries in coalition.

Example: $I = \{1, 2, 3, 4, 5, 6\}$ and $\mu_{it} > \mu_{i+1t}$ The most efficient $\mathbb{M}^* = \{\{1, 2\}, \{3, 4, 5, 6\}\}$

Proposition. Assume that the grand coalition is not stable, and the initial proposers make acceptable offers with probability one. Then for any β , countries prefer coalitions with lowest global emissions among all possible coalition structures with the same numerical coalition structure.

Introduction

Model

- The economy
- Climate coalition formation

Analysis

- Action stage
- Membership decision

Conclusion

Conclusion

- $\diamond~$ Decoupling result: characterising \mathcal{M}^* independent of composition
- Capturing various aspects of climate negotiations:
 farsightedness + heterogeneity + economic growth + general equilibrium + climate dynamics
- $\diamond~$ A simple algorithm to fully characterise \mathcal{M}^* in climate coalition + IAM
- Climate coalitions with Tribonacci number of signatories in equilibrium
- Suggesting a more ambitious architecture for climate treaties