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1 Introduction

The oil market has been repeatedly puzzled by the resilience of North American oil production

to low oil prices. It took almost two years for oil production to adjust after the 2014 collapse

in oil prices. During the COVID-19 crisis, the fear that signi�cant supply cuts would not occur

on their own led the regulators of the largest energy-producing state, Texas, to weigh in on the

possibility of imposing state-wide production caps.1 In January 2019, the government of Alberta,

Canada actually implemented a production cap policy in response to a growing and prolonged

price di�erential between the Western Canadian Select (WCS) price of oil and the West Texas

Intermediate (WTI) benchmark price.2

In this paper, we provide the �rst large-scale evidence of oil production resilience driven by

indebtedness. Intuitively, the oil industry is heavily indebted in general, and when oil prices fall,

many producers struggle to service their debt and maintain high production levels to maintain

su�cient cash �ow. We use well-level monthly production data to document the e�ect of �nancial

constraints on US oil production responses to the COVID-19 shock. Lockdowns and travel bans

imposed by the government created the largest demand collapse in history. US oil prices tumbled

to 20-year lows.3 Oil producers responded to low oil prices by shutting down some of their wells

in April and May of 2020. As oil prices improved, the �rms started to return their wells back to

full production.4 For each well we calculate the decrease in production from March to May, when

the oil market was hit the hardest.

Our results show that more �nancially constrained �rms decreased production by about 10

percentage points less than less �nancially constrained �rms - a large di�erence both economically

and statistically. Financially constrained �rms were also 3 pp less likely to completely shut in

1See �Texas' oil and gas regulators aren't ready to cut production yet. They're not even sure how it would work
if they did� by Mitchell Ferman, in the Texas Tribune on April 15, 2020.

2By December 2018, the WCS price of oil fell to an astonishingly low $6 per barrel, while the WTI benchmark
was traded at $50 per barrel. Following the intervention, oil production was reduced by 8.7% and the WCS-WTI
price di�erential dropped to less than $10/bbl in February 2019. The quota was lifted only in December 2020, when
export capacity again reached su�cient levels. See Schaufele and Winter (2021) and Hallak et al. (2021).

3The WTI futures price for May delivery actually turned negative for the �rst time in history and settled at
-$37.63 per barrel on April 20, 2020.

4A shut-in well can be reopened, although not without some loss. 61% of respondents to the Dallas Fed
Energy Survey Q2 2020 expected minor costs when putting wells back online, while 11% expected signi�cant
costs. Executives from 62 E&P �rms answered this question.
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wells. Our approach of using individual well-level production decisions rather than aggregating

production cuts at the �rm level allows us to include a rich set of controls and thus to capture

di�erences in productivity and exposure to the COVID-19 shock across di�erent �rms. Speci�cally,

we include granular geographical �xed e�ects and thereby capture local di�erences in the intensity

of the pandemic, lockdown measures, re�nery utilization rates, and availability of storage facilities,

etc.

To identify more-�nancially-constrained oil �rms, we identify operators that unluckily had

upcoming debt-related payment deadlines right in the midst of the pandemic. To do this, we

rely on synchronization of debt-related payments. We argue that a tendency of multiple forms

of long-term debt to be co-issued and co-dependent creates conditions for various payments to

be scheduled for the same time. Hence, we can use the available data on one type of long-term

debt to reasonably predict the timing of other debt-related payments. We use Dealscan as our

main source of information, because it is available for both public and private �rms. We identify

operators with credit facilities that were, at least once, set to mature in the four months from

March to June of 2020. We provide evidence that such �rms were likely to have other debt-related

deadlines from March to June of 2020 due to synchronization. Using our measure, we show that

�nancially constrained �rms cut production by less. In contrast, we show that �rms with credit

facilities that were, at least once, set to mature from August to December of 2020 cut production

by more. Assuming that payment deadlines that were set a number of years before the pandemic

are orthogonal to the timing of the pandemic, as well as to the �nancial and operational decisions

of the �rms, our results provide strong con�rmation that indebtedness distorts the production

decisions of oil �rms.

To further explore the mechanisms, we conduct two additional exercises. In the �rst exercise, we

focus on secured asset-based lending and investigate �rms' access to credit. We begin by showing

that oil producers heavily utilize their revolving credit facilities. However, during the pandemic

banks severely limited �rms' ability to drawdown on their existing credit lines by signi�cantly

reducing borrowing limits, in line with the �ndings of Chodorow-Reich et al. (2021). We use

borrowing base reductions and actual credit line drawdowns (de�ned as changes in credit utilization
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rates relative to pre-pandemic borrowing limits) to assess �rms' ability to access credit. Our results

imply that the �rms that faced more favorable changes in credit conditions and were able to utilize

their existing credit lines were cutting production by more, in line with our main results.

In our second additional exercise, we exploit a novel measure of failed hedging practices to

identify more exposed �rms with stronger cash needs. Our measure is based on whether a �rm

hedged using three-way collars. In contrast to traditional costless collars, three-way collars pre-

scribe selling an additional, further out-of-the-money put option and thus maintain a substantial

degree of risk. In 2020, three-ways collars failed to pay o� and left producers who used them

exposed to signi�cant losses after oil prices plunged. We show that producers who used three-way

collars also cut production by less.

To rule out alternative channels and provide evidence that immediate cash needs distorted

production decisions, we also investigate well completions. Although a successful well completion

can boost collateral value and facilitate re�nancing, it is extremely costly and thus cannot alleviate

immediate cash needs. We �nd that �nancially more constrained �rms were less likely to complete

their wells, thus supporting our mechanism.

We conduct extensive robustness checks to show that our results are not driven by any obvious

confounding factor. In particular, our results are not driven by shale �rms and cannot be explained

by di�erences in hedging practices, physical delivery commitments, operating costs, ownership of

downstream operations, or by di�erences in the types of credit facilities secured by the �rms.

We show that our results remain unchanged if we extend our analysis to vertical wells. Overall,

our empirical design signi�cantly raises the bar for alternative explanations that are completely

unrelated to the economic mechanisms we test for.

For robustness, we exploit numerous alternative ways to identify �nancially weak operators.

First, we exploit stock price responses to a collapse in the oil price following the sudden and

unexpected failure of Russia-OPEC negotiations in March 2020. As a result of the failed negotia-

tions, the oil price plunged by 24% or $10 per barrel on Monday, March 9, 2020. The price shock

rattled the stock prices of oil producing �rms. We identify �nancially weak �rms as those that

were devalued the most. Indeed, extensive corporate �nance literature documents that the stock
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market rewarded �rms with healthier balance sheets during the COVID-19 pandemic; see Acharya

and Ste�en (2020), Fahlenbrach et al. (2020), and Babenko et al. (2020). Our results con�rm our

previous �ndings that �nancially weaker �rms cut production by less. Second, we use a battery

of traditional measures of �nancial soundness and �nancial constraints. Overall, our results are

consistent with �nancially constrained �rms making suboptimal production decisions to maintain

cash �ows. In particular, our results show that �rms that were less able to fund themselves without

relying on external �nancing (as per the 2021 Huang and Ritter measure) also cut production by

less.

The main takeaway of our paper is that debt matters for oil supply adjustments to low oil prices.

We contribute to the literature by providing the �rst large-scale evidence of production resilience

due to indebtedness. Domanski et al. (2015) was the �rst study to suggest that indebtedness

could be a crucial factor in the lack of production response to low oil prices in 2014-15. Early

evidence was provided by Lehn and Zhu (2016), who documented an inverse relation between

capital expenditures and leverage and a positive relation between oil production and leverage, and

found that these relationships became more pronounced in 2015. Gilje, Loutskina, and Murphy

(2020) show that extremely high leveraged �rms (those in the top quintile of leverage distribution)

did not postpone investment decisions when they faced an upward-sloping futures curve in 2015.

Our paper detects widespread and signi�cant production distortions following the unprecedented

cash �ow shock due to the COVID-19 pandemic.

The idea that debt creates investment distortions has been studied extensively in the litera-

ture. Traditional distortions include debt-overhang-related underinvestment and asset substitu-

tion.5 Myers (1977) argues that underinvestment is not limited to investment in physical capital;

it can also a�ect other discretionary choices such as labor decisions, expenditures on R&D, mar-

keting expenses, e�ciency improvements etc. In contrast, our results highlight a novel debt-related

distortion of production and in the direction of overproduction (not underproduction).

Our second contribution is to the literature on the estimation of oil supply elasticities. In

contrast to existing studies, we document signi�cant adjustments in oil production. We provide

direct evidence that oil producers responded to low oil prices by shutting down some of their wells.

5See Gilje (2016) and Gilje, Loutskina, and Murphy (2020) for an overview as well as oil-market speci�c evidence.
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The existing empirical literature lacks consensus on the size of oil supply elasticities. Many papers

�nd that short-run production responses (intensive margin) are close to zero, and only investment

responses (extensive margin) can be detected, especially if one extends the response period; see, for

example, Anderson et al. (2018) and Newell and Prest (2019); while other papers including Caldara

et al. (2019) and Baumeister and Hamilton (2019) document a positive global oil supply elasticity.

We are also the �rst to highlight heterogeneity in oil supply elasticities across di�erent �rms and

to explain it by heterogeneous indebtedness using microdata. Our results imply that propagation

of negative oil demand shocks depends crucially on the level of indebtedness of individual �rms,

which can vary over time. We discuss our contribution to the estimation of oil supply elasticities

further in section 7.2.

Third, we contribute to the literature by exploring the e�ects of the unprecedented COVID-19

shock on the oil market. In a contemporaneous paper, Gilje, Ready, Roussanov, and Taillard (2020)

investigate well shut-in decisions following the negative WTI price recorded on April 20, 2020. They

argue that WTI benchmarking, which is prevalent in North Dakota, led to more shut-ins than in

California and Alberta, Canada. In addition to asking a di�erent question, our treatment occurs

at the �rm level and not at the state level, which allows us to incorporate geographical �xed e�ects

and control for di�erences in fundamentals across locations.

Finally, from a methodological perspective we create a novel measure of cash �ow pressure

using variation in hedging practices. We also highlight the importance of distinguishing hedging

practices by instrument type. This is not typical in the existing literature, which usually focuses

on hedging ratio and maturity of hedging derivatives; see, for example, Babenko et al. (2020) and

Doshi et al. (2018).

The paper proceeds as follows. In Section 2, we describe the aggregate state of the oil market

following the coronavirus outbreak and provide necessary background information. We describe

our methodology and data construction in Section 3. Section 4 presents our main results, as well

as various robustness checks and placebo tests. In Section 5, we conduct an additional exercise

to highlight and test our mechanism and rule out some alternative channels. Section 6.2 exploits

alternative measures of �nancial constraints to provide additional evidence. Section 7 puts our
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Figure 1: US Oil Production Response to the COVID-19 Shock
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Notes: The �gure uses monthly production data for all producing entities in the US with �rst production

date recorded from January 2005 to December 2020. The black line corresponds to the total production

from all wells in our sample. The red line corresponds to horizontal wells only (as labeled by Drillinginfo).

The two vertical lines depict March 2020 and July 2020.

results into a wider perspective and describes our contribution to the literature on the estimation

of oil supply elasticities. Finally, Section 8 concludes.

2 Background Information

We begin by describing the aggregate state of the oil market following the COVID-19 outbreak.

2.1 Aggregate Oil Production Response to the COVID-19 Shock

In 2020, the global oil industry faced the biggest consumption hit in its history, as governments

imposed lockdowns and travel bans in response to the coronavirus outbreak. The resulting fall of

the price of oil changed the economics of oil production and forced oil �rms to adjust. A Kansas

City Fed Energy Survey shows that over 62% of �rms shut-in wells or curtailed production in

the second quarter of 2020. In a similar survey, the Dallas Fed reports that 82% of �rms cut
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production.6 The production curtailment in both federal districts was primarily driven by low

wellhead prices, as noted by 94% of respondents in the Dallas Fed's Energy Survey and by 60% of

respondents in the Kansas City Fed's Energy Survey.

Figure 1 illustrates the drop in oil production in the US in response to the COVID-19 shock.

The �gure clearly indicates that production declines from March to May 2020 were unprecedented

in magnitude. Indeed, unconventional oil production declined by an astonishing 26% from 8.42

mln bbl/d in March to 6.23 mln bbl/d in May.

Production responses were also quite heterogeneous geographically. While northern states in-

cluding North Dakota, Montana, and Wyoming experienced more than 40% drops in production,

other states including Colorado demonstrated a somewhat muted reaction to the shock with just

a 9% cut in production (see Table 13 in Appendix). Of course, not all states were equally exposed

and lockdown measures were not uniform. Other factors, such as availability of storage facilities,

re�nery utilization rates, productivity di�erences, and di�erences in sales practices (e.g., bench-

marking to WTI or local trading, see Gilje, Ready, Roussanov, and Taillard (2020)) also were

important in shaping production responses across locations. By conducting our analysis at the

well-level rather than at �rm level, we can control for geographical di�erences and focus on another

source of heterogeneity related to the �nancial states of the �rms.

2.2 Shut-ins of Horizontal Wells

In our analysis, we focus on horizontal oil wells. Figure 1 shows that horizontal wells currently

dominate US oil production, accounting for more than 75% of total volume. Horizontal wells have

a quickly deteriorating curve and a relatively short period of life. Thus, the tradeo� between

selling oil today vs. tomorrow should be more acute for such wells. Horizontal wells are also

quite expensive to drill and frack and shale producers are typically heavily indebted. Finally, the

data on horizontal wells are recent and thus potentially more reliable (well design, coverage, �rst

production date etc). For robustness, we repeat the main exercise for vertical wells as well.

Oil producers responded to low oil prices by completely shutting down some of their horizontal

6See Kansas City and the Dallas Fed Energy Surveys, Q2 2020.
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wells.7 A shut-in well can be reopened, although not without some loss. The Q2 2020 Dallas Fed

Energy Survey reported that 27% of surveyed �rms anticipated no costs at all, 61% expected minor

costs, and only 11% of �rms expected signi�cant costs when placing shut-in and/or curtailed wells

back online. Consistent with the survey evidence, the �rms reported no signi�cant costs associated

with restoring production in their second quarter SEC reports.8

Technically, at any point in time a horizontal well can be either producing at its maximal

capacity or it can be temporary or permanently shut-in. However, our production data only comes

at monthly frequency. Thus, unless a decision to shut in a well comes before the �rst calendar day

of a month, some production volumes are still recorded for this well.9 Therefore, in the benchmark

exercise, for each well we calculate the decrease in production from March to May, when the oil

market was hit the hardest. For robustness, we investigate full shut-ins as well.

2.3 Firm-level Heterogeneity in Production Responses

To provide preliminary evidence on �rm-level heterogeneity in production responses, we split the

sample into �nancially constrained and unconstrained operators (see formal de�nition in Section

3.2) and investigate group-level responses.

Figure 2 investigates complete shut-ins. A well is de�ned to be shut-in in month t, if it produces

nothing in month t, but has strictly positive production in month t−1. Of course, well productivity

7This is based on the SEC �lings, earnings call transcripts as well as our conversations with oil drillers and
petroleum engineers. For example, Ring Energy: �Starting the last week of April, the Company curtailed essentially
all production, other than that associated with Ring's Delaware Basin property. The curtailments continued until
early June, when, with commodity prices improving and price di�erentials decreasing, the Company began to ramp
up production, returning to near April levels by the end of the quarter�; Earthstone Energy: �In late April 2020,
WTI crude oil prices fell below $10/Bbl. In response, management began to voluntarily shut-in as much production
as was feasible in an e�ort to conserve reserves in a market where cost exceeded the price�.Oasis Petroleum: �..due to
the current commodity price environment, we have reduced our planned E&P capital expenditures for 2020, curtailed
�ush production on newly completed wells and shut-in certain wells.�. Chesapeake Energy: � Due to the signi�cant
drop in oil prices and midstream constraints in the Current Quarter, we shut-in wells and delayed turn-in-lines,
which reduced our oil production by approximately 50% and 25% in May and June, respectively.�

8For example, Earthstone Energy Inc 10-k report as of June 30, 2020: �In May, approximately 60% of our
total production was shut-in. As oil prices improved considerably since then, we initiated a concentrated e�ort to
return wells to full production in June. We are close to 100% of production capacity on our operated properties and
very little of our non-operated production is curtailed. We have experienced no adverse e�ects from this short-term
curtailment and have incurred no signi�cant costs in restoring production�.

9See also Earthstone Energy Inc (ESTE) Q1 2020 Earnings Call Transcript: �One thing is from the lease agree-
ment standpoint, we're not shutting wells very long, and we're rotating wells throughout our di�erent leases. So in
general, wells will produce, at some point, a little bit during the month�.

9
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Figure 2: Fraction of complete shut-ins by well type and operator type
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Notes: The picture shows the fraction of wells in each category that were shut-in in each month from January

2019 to December 2020. A well is de�ned to be shut-in in month t, if it produces nothing in month t, but has

strictly positive production in month t − 1. For each month t we distinguish wells into three category based on

observed production in the previous month t− 1: large wells must produce more than 3000 barrels, medium wells

must produce from 500 barrels to 3000, and small wells must have production from 100 to 500 barrels. Financially

constrained (unconstrained) operators are depicted by a black solid line (red dashed line) and are identi�ed by

credit expiration dates as described in Section 3.2. The two vertical lines correspond to March 2020 and July 2020.

Figure 3: Production from existing horizontal wells by operator type
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Notes: The picture shows normalized monthly production from a �xed set of horizontal wells from July 2018 to

December 2021. For each group of operators we choose wells that were actively producing for at least 6 months in

March 2020. The production is normalized to 1 in March 2020 (also depicted by the �rst vertical line). Financially

constrained (unconstrained) operators are depicted by a black solid line (red dashed line) and are identi�ed by

credit expiration dates as described in Section 3.2. The second vertical line corresponds to July 2020.
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is an important factor driving shut-in decisions. Therefore, for each month t we split wells into three

categories based on the observed production in the previous month t− 1: large wells produce3000

barrels or more, medium wells produce from 500 to 3000, and small wells produce from 100 to 500

barrels of oil a month.

Figure 2 illustrates three important observations. First, we can see a dramatic increase in shut-

ins during the COVID-19 episode. For example, the probability to shut in a small well jumped

from about 2% to more than 10%. Second, least productive wells were more likely to be shut in.

Finally, there is a clearly seen di�erence in the shut-in behavior of �nancially unconstrained and

constrained �rms. In particular, constrained �rms were less likely to shut in the most productive

and medium wells. At the same time, we �nd that the shut-ins of the least productive wells were

similar. As large wells account for more than 80% of the total production, we mostly focus on

large wells in our formal analysis.

Because some wells could have been shut in for a fraction of month, we separately investigate

production volumes. To focus on production decisions and abstract from new drills, we �x the

set of wells that were actively producing for at least 6 months in March 2020 and trace their

production before and after the pandemic. Figure 3 plots the results. For the sake of presentation,

we normalize the total production volumes of �nancially constrained and unconstrained operators

to 1 in March 2020. The �gure shows that before and after the pandemic episode, constrained and

unconstrained production volumes almost perfectly trace each other. Production volumes initially

increased, as more wells got completed and started to produce. Once all wells were completed,

production began to gradually decline. It is important to note, that we also observe the same drop

in production for �nancially constrained and unconstrained operators in February 2021 a year after

the pandemic episode when extremely cold weather in Texas and some other top producing states

shut in some production.

In contrast, during the pandemic episode, unconstrained operators cut their production by

substantially more than constrained operators. By May 2020 the di�erence in production responses

reached 10 percentage points. Of course, this preliminary exercise does not account for any well-

and �rm-level characteristics. Hence, we proceed to formal analysis in the next section.
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3 Methodology

In this paper, we aim to document heterogeneity in production responses due to indebtednes. In

this section we outline our empirical setting and in the next section we describe how we identify

�nancially constrained operators.

3.1 Empirical Model

We investigate oil production cuts in the US following the coronavirus outbreak. We perform our

analysis at the well level and focus on horizontal wells drilled after 2005 and actively producing at

the beginning of the pandemic.

The main outcome variable is the well-level change in monthly oil production from March to

May 2020. We investigate production cuts that occurred over April and May of 2020, because this

was when the oil market was hit the hardest by the coronavirus outbreak and the demand collapse.

We estimate the following cross-sectional model:

∆yj,i,s,k = δs + γk + α · Constrainedi + β′1Xi + β′2Xj + εj (1)

where ∆yj,i,s,k is one half
10 of the change in monthly oil production from March to May 2020 in well

j operated by �rm i, located in a geographical unit s, aged k. Constrainedi is the operator-level

variable that identi�es �nancially constrained operators, as de�ned in the next section 3.2. The

main coe�cient of interest is α, which measures the extra cut in production that is made by more

�nancially constrained operators relative to less constrained operators. The controls include Xi

and Xj �rm and well level controls, geographical unit s �xed e�ects δs and well age �xed e�ects γk,

which we carefully discuss below in Section 3.3. The standard errors are clustered at the operator

level.

10We divide the actual production cuts over the two months by two to facilitate the comparison of our results
with existing estimates in the literature.
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Figure 4: Illustration of our identi�cation strategy
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Notes: The �gure depicts horizontal oil wells located in North Dakota. The black dots represent wells

owned by unconstrained operators (as de�ned by credit expiry; see Section 3.2) and the red dots represent

wells owned by constrained operators. The top �gure zooms in on one 6 by 6 square mile geographical

unit.
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To provide further evidence, we separately explore complete well shut-ins. For each well in our

sample, we create a ShutIn indicator which equals 1 if a well produced in March 2020, but had

zero production either in April or May 2020. We then estimate the following linear probability

equation model:

ShutInj,i,s,k = δs + γk + α · Constrainedi + β′1Xi + β′2Xj + εj (2)

where ShutInj,i,s,k is the Shut-In indicator for well j, owned by operator i, located in geographical

unit s and of age k. With the exception of the outcome variable, the model is exactly the same as

given by equation 1.

3.2 Identifying Financially Constrained Operators

We use three di�erent ways to identify �nancially more exposed �rms and create a Constrainedi

variable for each operator i. Our �rst two measures characterize �rms' indebtedness and access to

credit. The third measure identi�es �rms with larger cash-�ow pressure.

1. Credit Expiry

Long-term debt has a complex structure. Oil �rms typically issue bonds and notes, take term

loans and enter into revolving credit agreements, either secured or unsecured. Payment schedules

vary for di�erent bonds. Revolving credit agreements are frequently amended to re�ect changes

in loan conditions and maturity extensions.11 To obtain a complete picture of a �rm's payment

deadlines and conditions it is necessary to manually-trace loan paths through multiple rounds

of credit amendments, and to collect data on payment dates of various notes. This information

needs to be hand-collected and often directly taken from the original documents, because annual

and quarterly SEC �lings do not always provide full information. The task becomes even more

complicated for private �rms.

11For example, from 2010 to 2019 Gulfport Energy Corp entered into 25 credit agreements and amendments of
credit agreements. Only 2 out of 25 deals corresponded to new credit agreements. Maturity was extended 3 times,
all these extenstions were recorded as credit amendments. Dealscan contains only 5 observations. From these 5
data entries, 1 corresponds to a new credit agreement and 4 to amendments; 2 out of 3 maturity extensions are not
recorded.
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We create a measure of �nancial constraints that exploits synchronization and periodicity of

debt payments and relies only on standard Dealscan data. We argue that there is a tendency

of multiple forms of long-term debt to be co-issued and co-dependent, which creates a synchro-

nized/correlated pattern of payment deadlines. Hence, we can use the available data on one type

of long-term debt to reasonably predict the timing of all other debt-related payment deadlines.

We use Dealscan for the data on syndicated credit agreements, because it contains information

for both public and private �rms.12 Formally, the indicator variable Constrainedi equals 1 if the

�rm i has any data entries with an expiration date scheduled within 4 months from March to June

2020. The indicator equals 0 if the �rm i has at least one data entry with an expiration date

after January 2020, and does not have any data entries with an expiration date from March to

June 2020. Although by December 31, 2019 most �rms in our sample had extended their credit

revolving facilities beyond 2020, the mere fact that at some point their credit facilities were set

to expire from March to June 2020 increases the probability to observe other payment deadlines

within the same time period. In particular, we argue that exposed �rms (as per our measure) were

more likely to have other forms of debt, such as senior unsecured bonds and notes or term loans

that expired from March to June of 2020, and were more likely to have interest payments on other

forms of debt scheduled for March to June of 2020.

One factor that tends to synchronize payments is the issuance of di�erent forms of debt simula-

taneously to fund large investment projects, including mergers and property acquisitions. Another

factor is issuance of new debt to repay outstanding borrowings under the other, especially as

the maturity of the outstanding debt approaches. More generally, as any debt issuance typically

triggers renegotiation of credit lines, the expiration and payment cycles of di�erent forms of long-

term debt often become aligned. In Appendix A.2 we discuss this further and provide evidence of

synchronization of payments for the �rms in our sample.

Using past credit expiration dates to identify �nancially constrained operators has certain ad-

vantages. Most importantly, it is safe to assume that the past expiration dates of credit agreements

12Dealscan contains both originations and renegotiations, many of which cannot be clearly distinguished. More-
over, many amendments are not recorded in Dealscan. Roberts (2015) �nds that Dealscan observations do not
correspond to any particular type of event; see also footnote 11. As a result, Dealscan provides only partial
information about loan paths of our �rms.
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and payment deadlines that were set a number of years before the pandemic were exogenous to the

timing of the COVID-19 outbreak, as well as to both the operational and �nancial performance

of the �rms. Hence, this approach provides exogenous variation in the timing of debt-related pay-

ments relative to the COVID-19 outbreak. Moreover, data on syndicated lending are available for

both public and private �rms and thus signi�cantly extend and diversify our sample.

Of course, if the synchronization assumption was not correct, then using past credit lines

expiration dates would randomly assign �rms into treatment and control groups, and we would

not be able to �nd any di�erences in production responses.13 To provide additional evidence

against �nite sample �ukes, we follow the same argument to identify the �rms with delayed interest

payments. Formally, we create an additional measure Fall Expirationi that equals 1 if the �rm i

has any credit data entries with an expiration date scheduled from August to December 2020 (and

a start date before the pandemic), and equals 0 otherwise as long as the �rm has any credit facilities

in place at the beginning for the year. It should be noted that we can have all 4 possibilities in the

data, that is, all 4 combinations of {Fall Expirationi, Constrainedi} are possible. We repeat our

main production analysis using this second measure, but now expect to �nd the opposite responses.

2. Access to Credit

In the second exercise, we focus on the subsample of �rms with secured credit facilities and assess

�rms' ability to draw on their existing credit lines.

Many oil and gas producing �rms rely on asset-based lending. Each debt generally has a bor-

rowing limit based on the �rms' oil and gas reserves. The borrowing base amount is redetermined

semiannually (in April-May and October-November), often by the lenders in their sole discretion.

In addition, lenders typically have a right to make an interim redetermination of the �rm's bor-

rowing base at least one time in between regular redeterminations.14 Lenders have substantial

13In section 3.4, we compare treated and control �rms by a large number of observable characteristics. In
particular, we compare typical loan maturities as of the previous 10 years as well as remaining maturities of credit
facilities in place as of December 31, 2019. We �nd no di�erences in credit maturities, thus ruling out a concern
that �rms with shorter maturities were more likely to be assigned into the treatment group.

14For example, see Chaparral Energy Inc. 10-Q �ling as of March 31, 2020: �On April 1, 2020, we bor-
rowed $15,000, and on April 2, 2020, we provided notice to our lenders to borrow an additional $90,000 (the
latter herein referred to as the �Borrowing�) which increased the total amount outstanding under the Credit Agree-
ment to $250,000. The Borrowing was made by the Company as a precautionary measure in order to increase
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�exibility to reduce the borrowing base due to subjective factors. Upon a redetermination, the

�rm could be required to repay a portion of the debt owed under its facility to the extent that its

outstanding borrowings at such time exceeds the redetermined borrowing base.

We hand-collected the data on borrowing limits, borrowings outstanding and issued letters of

credit as of December 31, 2019, March 31 and June 30, 2020 from SEC annual and quarterly �lings.

We make three important empirical observations.

First, oil producers heavily utilize their secured credit facilities. We de�ne the credit utilization

rate as the ratio of borrowings outstanding plus issued letters of credit over the borrowing limit.

The borrowing limit is de�ned as the minimum between the borrowing base and elected commit-

ments. We �nd that the median credit utilization rate as of December 31, 2019 was 45%, the �rst

and third quantiles were 25% and 70%. The median credit utilization increased to 55% by the end

of March, and to 77% by the end of June.

However, the increase in credit utilization rates was driven mostly by the severe cuts in the

borrowing limits. Indeed, the median decrease in the borrowing base was 20%, the �rst and third

quantiles were 11% and 35%.15 Some �rms experienced much larger cuts: Sandridge Energy saw

its borrowing base cut by 67%, Oasis Petroleum was cut by 53%, Chaparral Energy Inc. by

46%, Contango Oil and Gas by 41%. Some companies saw their commitments cut below the

actual amount drawn, requiring them to repay the de�cit. Importantly, many borrowing redeter-

minations occurred before the scheduled dates, as lenders exercised their rights to make interim

redeterminations (see footnote 14). Some lenders prevented extra borrowing until redetermination

was complete.16

Finally, we �nd that the �rms made very limited drawdowns on their credit lines during the

pandemic. To assess the intensity of credit lines drawdowns, we calculate actual drawdowns de�ned

its cash position and thereby provide for �exibility in the current challenging business environment and associated
uncertainties. Subsequent to the Borrowing, we were noti�ed that our lenders had exercised their right to make
an interim redetermination of the Company's borrowing base. The lenders' redetermination notice stated that the
Company's borrowing base was decreased from $325,000 to $175,000, e�ective April 3, 2020.�

15Our �ndings are consistent with existing reports. For example, according to S&P Global Ratings, borrowing
bases were reduced by an average of 23%.

16On March 11, 2020 Unit Corp entered into a standstill agreement with regards to the Unit credit facility which
delayed the scheduled borrowing base redetermination from April 1, 2020 to April 15, 2020. Under the agreement,
the company was prevented from withdrawing more than an additional $15.0 million between March 11, 2020 and
the expiration of the agreement on April 15, 2020.
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as the change in credit utilization holding �xed the borrowing limit at the pre-pandemic level as of

December 31, 2019. We �nd that the median actual drawdowns were 6 pp only, with the �rst and

third quantiles of 0 and 17.5 pp. We can see that actual drawdowns are signi�cantly smaller than

observed changes in credit utilization rates due to substantial cuts in the borrowing capacity.

Overall, we �nd that banks severely limited �rms' ability to drawdown on their existing credit

lines during the pandemic. Our �ndings are thus in line with the recent �ndings of Chodorow-

Reich et al. (2021) who document that small �rms were subject to greater lender discretion than

large �rms and thus could not fully utilize their open credit lines.

We use our �ndings to create two additional measures of �nancial constraints. First, we exploit

borrowing base cuts as a measure of �nancial constraints. Second, we use actual drawdowns to

identify operators that could access liquidity through their credit lines during the pandemic and

thus were possibly less �nancially constrained.

3. Failed Hedging

In the third exercise, we approach the issue from the other side and identify the �rms that had

more acute immediate cash needs than others. To do that, we explore a novel variation in the

hedging practices used by oil producing �rms.

Although most �rms use swaps and costless collars to manage oil price risks, some �rms use

three-way collars. A three-way collar is a typical collar (buying a put option and selling a call

option), but in addition the producer sells a further out-of-the-money put option, which makes

hedging cheaper, but at the same time the producer also takes on additional risk of signi�cant

declines in oil prices. Of course, when oil prices plunged in 2020, the three-way collars failed to

pay o�, and left producers exposed to signi�cant losses.17 The controversial hedging practice of

using three-way collars, which failed to mitigate the decline in oil prices in 2020, o�ers another

17For example, Denbury Resources Inc. sold put options with the strike price of $48.25/bbl, purchased put options
at the strike $56.95/bbl, ans sold call options at $62.83/bbl. Hence, at oil prices below $48.25/bbl the payo� of
such a three-way collar equals $8.7/bbl, which is the di�erence between the strike prices of the put options (without
the option premiums). Similarly, Ovintiv Inc. used the 43.44/53.44/61.68 three-way collars. The payo� of such
an instrument for oil prices below $43.44/bbl equals $10/bbl (without the premiums). However, by mid March
2020, the WTI futures price for April delivery was below $30/bbl. On April 20, 2020 the WTI futures price for
May delivery actually turned negative for the �rst time in history and settled at -$37.63/bbl. At such low prices
three-way collars provided little to none compensation, while standard costless collars secured signi�cant payo�s.
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way to identify more �nancially constrained operators.18

We use the fraction of production volume hedged with the three-way collars instead of the

Constrainedi indicator.

3.3 Choice of Controls

Natural decline in well productivity In our analysis, we investigate production changes at

the well level and focus on horizontal oil wells. Horizontal wells are characterized by a quickly

deteriorating production curve. To accurately estimate abnormal production cuts, we need to

carefully model the natural decline in monthly production that would normally be observed in a well

of a particular age, design, and location even in the absence of the COVID-19 shock. We capture

the natural decline in productivity by including a function of the age of a well, either using age

�xed e�ects γk or a cubic function f(k) of the number of production months k. To further capture

individual di�erences in production declines, we include lagged changes in a well's production into

the well-level controls Xj. We also include the logarithm of the cumulative oil production over the

�rst 6 producing months and the horizontal wellbore length to capture productivity of the wells

(in addition to geographical indicators as we discuss next). We expect that operators were more

likely to shut in their least productive wells (as suggested by Figure 2).

Geographical location Second, we include indicators for each geographical unit s. Because we

have data on a large number of wells, we can construct a very �ne grid of unique geographical

locations. Each geographical unit s is the size of a township and represents a 6 by 6 square mile

unit.19 To illustrate, Figure 4 depicts the locations of horizontal oil wells in North Dakota and

zooms in on one of the constructed geographical units. We see that within one unit, there are wells

owned by both constrained and unconstrained operators, and thus we can compare production

18In the existing literature, for example Babenko et al. (2020) and Doshi et al. (2018), it is common to focus
on entering any hedging activity, hedging ratio, and maturity of hedging derivatives. Existing studies document
signi�cant heterogeneity across �rms in hedging intensity. However, to the best of our knowledge none of the
existing studies distinguishes three-way collars from standard hedging instruments.

19It is typical in the oil and gas industry to consider a 6-by-6 square mile unit as a separate drilling location. This
choice can be partially driven by the fact that the Public Land Survey System (PLSS) splits the territory into such
units for most of the states. However, some of the states do not use this system (for example, Texas). To make the
analysis uniform, we divide the entire US territory into 6-by-6 square mile units, not trying to match the original
land division.
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cuts within the same location.

Overall, by including a �ne grid of geographical �xed e�ects, we can capture i) di�erences

in the productivity of wells across locations; ii) di�erences in the intensity of COVID-19 demand

shocks, lockdown measures, re�nery utilization, and etc.; iii) di�erences in the availability of storage

facilities and access to a pipeline network; iv) di�erences in local sales practices (benchmarking to

WTI or local trading, etc), and many other dimensions along which di�erent locations may pose

di�erent incentives to cut production.

Operator-level controls In the benchmark exercise we only include the public status of the

operator as an operator-level control, relying on the assumption of exogeneity in timing of debt-

related payments. Under this assumption, our sample extends to both public and private operators.

However, to show that our results are not driven by any obvious confounding factor we run

a large number of additional speci�cations and include a rich set of operator-level controls, both

physical and �nancial. Physical controls include the fraction of oil production (as opposed to

natural gas) and the fraction of shale oil production. One may be worried that primarily shale

oil producers may run di�erent balance sheets and be generally more indebted etc. Similarly,

the companies which primarily extract and sell natural gas could be less a�ected by the demand

collapse or could adjust di�erently to it. Information on these variables was hand-collected from

the 10-k SEC �lings and annual reports. Formal de�nitions are given in Section A.3.

One can also be worried that less e�cient operators with larger operating costs would have

higher shut-in rates at the same level of oil price. To address this concern, we collect the data on

the average lease operating expenses (LOE), which are the costs incurred by an operator to keep

production �owing. LOE include the costs associated with arti�cial lift and maintaining arti�cial

lift, water disposal costs, costs associated with employees who regularly monitor and maintain

wells etc. The data on operating costs was also hand-collected from SEC �lings. Inclusion of LOE

supplements geographical indicators that also pick up some variation in operating costs that is

associated with di�erences in productivity, well design, well site accessibility etc.

Finally, we hand-collected data on hedging and physical delivery commitments in place as of

December 31 2019 for the year of 2020 from the 10-k SEC �lings. The existence of �nancial hedging
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contracts and/or physical delivery commitments can also have an in�uence on production adjust-

ments.20 If such contracts exist, the company might be more willing to continue producing either

because the price is more favorable, or because there are �nes for non delivering on its obligations.

Moreover, it might be easier for such a �rm to re�nance or attract additional funding, thus im-

proving its �nancial state. On the other hand, hedging and operating decisions are potentially

independent, and thus a �rm can simultaneously enjoy favorable pricing and optimally relocate

production to the future.

In contrast to the previous literature, we argue that it is important to distinguish di�erent

hedging practices. Typically oil �rms use swaps and costless collars to manage oil price risks,

however some �rms use three-way collars. A three-way collar is a typical collar (buying a put

option and selling a call option), but in addition the producer sells a further out-of-the-money put

option, which makes hedging cheaper, but at the same time the producer also takes on additional

risk of signi�cant declines in oil prices. Of course, when oil prices plunged in 2020, the three-way

collars failed to pay o�, and left producers exposed to signi�cant losses. Hence, we separately

calculate the percentage of �rm's projected 2020 oil production that was hedged with standard

instruments and with three-way collars. We use actual oil production in 2019 to forecast oil

production in 2020. See Section A.3 for details.

Similarly, we hand-collect the data on physical delivery commitments to calculate the fraction

of volume committed.21

We also include a battery of standard �nancial outcomes as of December 2019 such as prof-

itability, leverage, fraction of short-term debt, cash holdings etc.

Finally, one might be worried that a subset of �rms, de�ned by some observed or unobserved

characteristics (for example riskier �rms), tend to systematically rely on shorter term �nancing.

Thus, we also include the number of days until the stated maturity date of the �rm's revolving

20In a di�erent setting, Doshi et al. (2018) show that hedging a�ects the sensitivity of capital expenditure to
price uncertainty. Doshi et al. (2018) also document that large �rms have signi�cantly higher hedging intensity
compared to small �rms.

21Both the existence of physical delivery contracts and de�ciencies are normal and customary in the oil E&P
business. The de�ciency fees on long term physical delivery commitments are paid when a �rm fails to deliver the
committed volumes. Such fees are typically around $3-7 dollars per barrel and thus are relatively small compared
to the fall in the oil price during the pandemic episode. See, for example, Whiting Petroleum Corporation, 10-k
�ling for the year ended December 31, 2019, page 24., or Ovinitiv Inc., 10-k �ling for the year ended December 31,
2019, page 66.
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credit facility as of December 31 2019 hand-collected from the annual SEC �lings.

3.4 Data and Descriptive Statistics

Our main source of well-level data is Enverus (previously Drillinginfo). We consider all horizontal

oil wells with �rst production date after 2005 in the US. In our benchmark exercise we focus on

large oil wells, which we de�ne as wells that produced at least 3k barrels of oil in March 2020. Our

initial sample before we match it with �nancial data consists of 21,256 oil wells in total.

Our �nancial data comes from Compustat and DealScan. Data on hedging; physical delivery

commitments; gross and net number of oil and gas wells; maturity of revolving credit facilities,

borrowing limits, outstanding borrowings and issued letters of credit under �rms' credit facili-

ties; lease operating expenses; information about downstream operations were hand-collected from

annual and quarterly SEC �lings (see Variable De�nition Section in Appendix A.3).

Our joint dataset on expiring credit facilities and well-level data contains 106 public and private

operators accounting for 75% of total oil production from all horizontal wells in the US in March

2020 and for 74% of the total number of horizontal oil wells in the US that produced at least 3k

barrels of oil in March 2020.22 The �nal number of large horizontal wells in our dataset is 15,624.

Out of 106 operators, we have 48 public �rms accounting for 88% of production and 87.5% of large

wells, and 58 private �rms accounting for the remaining 12% of production and 12.5% of large

wells.

Descriptive statistics and balance tables

Our main identi�cation assumption is the exogeneity in the timing of debt-related payments which

we capture using the past expiration dates of credit facilities. In what follows we compare well-level,

loan-level, and �rm-level characteristics of treated (constrained) and control (unconstrained) �rms

to provide evidence that no obvious characteristics can predict the expiry of credit agreements.

First of all, Figures 2 con�rms no di�erences in shut-in behavior of treated and control �rms

before and after the pandemic episode. Similarly, Figure 3 shows no di�erences in the dynamics

22These estimates are based on our data from Drillinginfo.
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of production (see Section 2.3).

Table 1 provides information about the portfolio of horizontal oil wells of constrained and

unconstrained �rms at the beginning of the pandemic. The table presents an average number of

wells, average productivity, and location (as measured by the number of unique states, counties,

and unique 6-by-6 square mile unites where the �rms owned wells). We distinguish wells by

productivity into large, medium, and small. The table shows no systematic di�erence in the

composition of the wells of treated and control �rms. Panel B further compares publicly traded

�rms only, and again �nds no signi�cant di�erences.

In our main exercise, we mainly focus on large wells that produced more than 3k barrels of oil

in March 2020. Table 2 provides further information about the number, design, location, age, and

initial and current productivity of large horizontal wells of constrained and unconstrained oper-

ators. The table again con�rms that treated and control operators had almost indistinguishable

wells. The wells had the same initial productivity and the same productivity at the beginning

of the pandemic episode. The average productivity of large wells in March 2020 was about 8000

barrels a month. The average number of wells was 140 for unconstrained operators and 200 for

constrained, however the di�erence was insigni�cant. The wells had produced for about 16 months

on average by that time. Operators had large wells located on average in 1.5 states, 4-6 counties

and 15-20 geographical squares, with a lot of variation in these variables. The only signi�cant

di�erence is that the wells of constrained operators were somewhat shorter. Overall, we do not

�nd any evidence that treated operators had systematically more or less productive wells. Of

course, in our empirical exercises we include granular geographical indicators and a large number

of well-level characteristics to further control for any potential di�erences across wells of treated

and control �rms.

Next we compare �rm-level characteristics of the treated and control �rms starting with the

loans characteristics. We begin by noticing that there are more publicly listed �rms among con-

strained �rms, as indicated by the last raw in Table 1. One potential explanation could be that

data reporting on renegotiations is better for traded �rms and thus the probability to capture an

expiring loan at any given period is larger. Therefore, in our empirical analysis we always include
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Table 1: Horizontal well portfolio of unconstrained and constrained operators at the beginning of
the pandemic

Panel A: All Operators

Unconstrained Constrained Di�erence
Number of Large Oil Wells 139.315 200.500 61.185

(281.851) (351.952) (83.635)
Number of Medium Oil Wells 251.696 440.643 188.947

(458.599) (568.132) (135.887)
Number of Small Oil Wells 127.109 231.714 104.606*

(215.062) (230.826) (62.279)
Average Productivity of Large Wells 8,531.545 7,730.972 -800.574

(3,010.421) (1,715.058) (826.358)
Average Productivity of Medium Wells 1,400.778 1,311.913 -88.865

(339.707) (172.270) (92.862)
Average Productivity of Small Wells 293.648 284.985 -8.662

(43.697) (64.242) (13.529)
Number of States 2.554 3.571 1.017

(2.374) (2.243) (0.676)
Number of Counties 11.446 16.929 5.483

(17.133) (14.642) (4.831)
Number of Geo Squares 46.630 76.286 29.655

(78.062) (59.704) (21.806)
Public Status 0.402 0.786 0.384***

(0.493) (0.426) (0.139)
Number of Operators 92 14 106

Panel B: Publicly Traded Operators

Unconstrained Constrained Di�erence
Number of Large Oil Wells 293.838 253.455 -40.383

(394.919) (382.928) (134.738)
Number of Medium Oil Wells 524.973 555.909 30.936

(625.355) (592.787) (212.377)
Number of Small Oil Wells 252.351 288.455 36.103

(281.091) (229.536) (92.970)
Average Productivity of Large Wells 8,464.278 7,990.046 -474.233

(1,994.091) (1,734.887) (666.468)
Average Productivity of Medium Wells 1,371.285 1,277.779 -93.506

(217.148) (159.023) (70.714)
Average Productivity of Small Wells 291.157 301.969 10.812

(30.876) (51.165) (12.454)
Number of States 4.000 3.273 -0.727

(3.118) (1.902) (0.995)
Number of Counties 21.081 15.818 -5.263

(23.659) (14.757) (7.566)
Number of Geo Squares 89.541 76.455 -13.086

(108.707) (62.575) (34.512)
Number of Operators 37 11 48

Notes: This tables compares the number, average productivity, and location of active horizontal US oil wells of
unconstrained and constrained operators as of March 2020. We split wells into three categories: large wells produced
more than 3000 barrels a month, medium wells produced from 500 barrels to 3000, and small wells produced from
100 to 500 barrels. Average productivity is calculated in barrels of oil per month. The number of states (counties)
calculates the number of unique states (counties) where an operator i owns oil wells. Similarly, the number of geo
squares calculates the number of 6-by-6 square mile units where the operator owns oil wells. Panel A contains
information for all producers in our sample, Panel B provides information on publicly traded operators. All data
were obtained from Drillinginfo. ? p<0.1, ?? p<0.05, ??? p<0.01
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Table 2: Large wells of unconstrained and constrained operators

Unconstrained Constrained Di�erence
Number of Oil Wells in March 2020 139.315 200.500 61.185

(281.851) (351.952) (83.635)
Production in March 2020 8,531.545 7,730.972 -800.574

(3,010.421) (1,715.058) (826.358)
Fraction of Shut-ins April-May 2020 0.134 0.018 -0.116*

(0.252) (0.031) (0.068)
Production Change from March to May 2020 -0.182 -0.109 0.073*

(0.140) (0.114) (0.039)
Log Cumulative Production, T=6m 11.294 11.147 -0.148

(0.354) (0.393) (0.103)
Log Cumulative Production, T=1y 11.818 11.723 -0.095

(0.331) (0.321) (0.098)
Log Cumulative Production, T=2y 12.269 12.105 -0.164

(0.302) (0.437) (0.100)
Log Cumulative Production, T=5y 12.569 12.721 0.152

(0.454) (0.507) (0.179)
Horizontal Length 8,570.405 7,319.125 -1,251.280**

(1,796.029) (2,197.269) (530.993)
Perforated Interval 8,160.927 6,872.766 -1,288.161**

(1,902.830) (2,341.458) (563.720)
Number of Months Producing 16.567 15.487 -1.079

(10.647) (5.519) (2.911)
Number of States 1.511 1.857 0.346

(0.989) (1.027) (0.285)
Number of Counties 4.109 6.000 1.891

(4.809) (5.616) (1.411)
Number of Geo Squares 14.859 20.643 5.784

(21.979) (27.108) (6.507)
Number of Operators 92 14 106

Notes: This tables compares the number, average productivity, initial productivity, and location of large active
horizontal US oil wells of unconstrained and constrained �rms. A well is de�ned as large if it produced more
than 3000 barrels a month in March 2020. Initial productivity is measured by the logarithm of the cumulative
production over the �rms 6 months, 1 year, 2 years, and 5 years of production. Production in March 2020 is
measured in barrels of oil per month. The number of states (counties) calculates the number of unique states
(counties) where an operator i owns wells. Similarly, the number of geo squares calculates the number of 6-by-6
square mile units where a �rm owns wells. Panel A contains information for all producers in our sample, Panel B
provides information on publicly traded operators. All data was obtained from Drillinginfo. ? p<0.1, ?? p<0.05,
??? p<0.01
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an indicator variable for listing status of the �rms. We also repeat the estimation within the

subsample of traded �rms only.

Next we investigate syndicated lending. It should be noted that Dealscan contains both orig-

inations and renegotiations, many of which cannot be clearly distinguished. Moreover, many

amendments are not recorded in Dealscan (see Section A.1 and footnote 11). However, we still

�nd it useful to compare existing data on loans of treated and control �rms. Panel A in Table 3

summarizes information available in Dealscan about loans that were originated/amended within

the last 10 years before the pandemic by the �rms in our sample. In line with our previous ar-

gument, we see that constrained �rms had on average two data entries more, and these facilities

were typically larger. At the same time, Table 3 shows that average maturities of the loans of

treated and control �rms were the same. That is encouraging, because a shorter maturity loan

could indicate larger perceived riskiness of a �rm. Once we control for the listing status in Panel

B, we �nd that the loans of treated and control public �rms become indistinguishable.

Panel C compares revolving credit facilities active as of December 31, 2019 for public operators

using SEC �lings data. We �nd no signi�cant di�erences in time to maturity (calculated as the

number of days until expiration), fraction of secured vs unsecured facilities, and credit utilization.

Interestingly, we �nd that constrained �rms with secured facilities experienced somewhat larger

borrowing base cuts, although the di�erence is not signi�cant.

Overall, once we control for the listed status of the operators, we do not �nd any systematic

di�erences in the types of credit agreements owned by the treated and control �rms.

Next Table 4 compares standard �nancial outcomes of unconstrained and constrained �rms.

This information is only available for a subset of public �rms. The table con�rms that treated and

control �rms have similar size, leverage, pro�tability, Tobin's Q, tangibility, cash �ow, and short

term debt ratio (see also Table 18 in Appendix for further information). We also �nd that the

�rms have similar mixture of oil vs gas revenue and similar fraction of shale oil production.

We �nd that treated �rms have larger average lease operating expenses and the di�erence is

marginally signi�cant. However, if anything, this should push our results in the opposite direction,

as treated �rms should have had more incentives to shut-down production once their costs exceeded
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Table 3: Syndicated loans characteristics of unconstrained and constrained operators

Panel A: All Operators - All Facilities

Unconstrained Constrained Di�erence
Maturity in Years 4.222 4.140 -0.082

(0.894) (0.532) (0.246)
Amount in USD dollars 790.321 1,473.623 683.302**

(1,060.284) (1,698.238) (333.107)
Number of Facilities 3.758 5.929 2.170**

(3.045) (2.814) (0.866)
Number of Operators 92 14 106

Panel B: Publicly Traded Operators - All Facilities

Unconstrained Constrained Di�erence
Maturity in Years 4.330 4.093 -0.237

(0.884) (0.507) (0.281)
Amount in USD dollars 1,458.897 1,691.217 232.320

(1,381.429) (1,863.814) (517.479)
Number of Facilities 5.278 6.364 1.086

(3.058) (2.976) (1.047)
Number of Operators 37 11 48

Panel C: Publicly Traded Operators - Facilities as of December 31, 2019

Unconstrained Constrained Di�erence
Days to Maturity 1,218.353 1,236.455 18.102

(350.370) (305.604) (118.105)
Unsecured 0.324 0.455 0.131

(0.475) (0.522) (0.169)
Credit Util Dec-19 0.298 0.259 -0.039

(0.298) (0.302) (0.104)
Credit Util Mar-20 0.366 0.327 -0.039

(0.327) (0.300) (0.111)
Credit Util Jun-20 0.533 0.508 -0.025

(0.457) (0.406) (0.155)
Borrowing Base Reduction -0.260 -0.339 -0.079

(0.131) (0.243) (0.079)
Actual Drawdowns 0.090 0.093 0.003

(0.141) (0.149) (0.050)
Number of Operators 37 11 48

Notes: This tables compares average maturity, size, and number syndicated loans of constrained and unconstrained
operators. Panel A(B) uses Dealscan data to compare loans originated/amended within the last 10 years before
the pandemic of all (public) constrained and unconstrained operators. Panel C uses SEC �lings to compare open
revolving credit facilities of public operators as of December 31, 2019. See Section A.3 for variable de�nitions.
? p<0.1, ?? p<0.05, ??? p<0.01
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the price. We also directly control for operating costs in our regressions.

Finally, we compare hedging practices. We �nd that unconstrained �rms tend to hedge more

often and tend to hedge a larger fraction of their volume with standard instruments. In particular,

90% of unconstrained �rms had any hedges in place and on average hedged 48% of their volume,

while only 64% of constrained �rms hedged with standard contracts and on average hedged 23%

of volume. However, if anything, the di�erence in hedging coverage should drive the production

responses in the opposite direction, as we discuss in Section 3.3.

At the same time, we do not �nd any signi�cant di�erence in the fraction of volume hedged with

three-way collars, both types of �rms hedged exactly the same 15% of their volume on average with

these controversial contracts. About a third of unconstrained �rms and 45% of constrained �rms

had any three-way collars in place, even though the di�erence is not statistically signi�cant. Thus,

the hedging exercise can be expected to provide additional information into the �rms behavior.

Overall, our �ndings in this section are consistent with the notion that the cross-sectional

variation in credit expiry is not driven by any obvious �rms' characteristics.

4 Main Results

4.1 Credit expiry

Production Responses

The main results are presented in Table 5. The �rst speci�cation does not include any controls;

the second speci�cation adds geographic indicators, well age dummies, and basic well-level controls

(horizontal length and lagged production changes). The third speci�cation adds listing status of

the operators and a measure of well productivity (the logarithm of the cumulative oil production

over the �rst 6 producing months). The forth speci�cation is the same as the third one, but

replaces well age dummies with a cubic function to capture natural declines in well productivity

due to age. Finally, columns (5) and (6) add operator-level data available for public �rms only:

speci�cation (5) controls for hedging, and the last speci�cation (6) controls for hedging, production

characteristics, and future physical delivery commitments.
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Table 4: Financial characteristics of unconstrained and constrained operators

Unconstrained Constrained Di�erence
Volume Hedged with Standard Contracts 0.476 0.230 -0.246**

(0.346) (0.237) (0.112)
Any Hedging with Standard Contracts 0.889 0.636 -0.253*

(0.319) (0.505) (0.127)
Volume Hedged with Three-Way Collars 0.154 0.151 -0.003

(0.286) (0.231) (0.095)
Any Hedging with Three-Way Collars 0.306 0.455 0.149

(0.467) (0.522) (0.165)
Committed Volume 0.265 0.163 -0.102

(0.473) (0.285) (0.151)
Fraction Oil 0.693 0.783 0.090

(0.316) (0.246) (0.104)
Fraction Shale 0.497 0.457 -0.040

(0.284) (0.334) (0.103)
Operating Costs 5.940 8.352 2.412*

(4.007) (2.617) (1.292)
Log Total Assets 8.531 8.625 0.093

(1.595) (1.599) (0.553)
Leverage 1.477 0.879 -0.598

(2.688) (0.681) (0.825)
Tobin's Q 1.035 0.829 -0.206

(0.403) (0.235) (0.129)
Pro�tability 0.054 0.036 -0.017

(0.215) (0.189) (0.073)
Cash Flow 0.022 0.010 -0.012

(0.227) (0.180) (0.075)
Tangibility 0.873 0.883 0.010

(0.086) (0.073) (0.029)
Interest Coverage Ratio 7.305 -0.906 -8.211

(11.928) (21.156) (5.066)
Short Term Debt 0.083 0.031 -0.053

(0.196) (0.044) (0.060)
Number of Operators 37 11 48

Notes: This tables compares �nancial chacteristics of publically traded unconstrained and constrained operators.
Standard �nancial data come from Compustat. Data on hedging volumes and physical delivery commitments was
hand-collected from 10k froms and annual reports. Variable descriptions are provided in Section A.1.
* p<0.1, ** p<0.05, *** p<0.01.
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Table 5: Production Responses and Financial Constraints: Credit Expiration Dates

Oil Well Production Response
(1) (2) (3) (4) (5) (6)

Constrained 0.046∗∗ 0.045∗∗∗ 0.041∗∗∗ 0.040∗∗∗ 0.048∗∗∗ 0.036∗∗∗

(0.023) (0.011) (0.010) (0.010) (0.012) (0.012)

Log Cumulative Production, T=6m 0.008 0.007 0.008 0.008

(0.005) (0.005) (0.005) (0.006)

Public Status 0.020 0.021

(0.019) (0.020)

Hedged Volume 0.017 0.025

(0.023) (0.025)

Committed Volume -0.014

(0.015)

Fraction Oil 0.047

(0.031)

Fraction Shale -0.032

(0.021)

Owns Re�nery -0.042∗

(0.022)

Mean Dep.Var -0.115 -0.120 -0.116 -0.116 -0.112 -0.108

Number of Wells 14523 12488 11351 11362 10077 9591

Number of Operators 115 106 104 104 47 43

R2 0.006 0.284 0.295 0.276 0.308 0.302

Geo FE Y Y Y Y Y

Well Controls Y Y Y Y Y

First Production FE Y Y Y Y

Well Age Function Y

Notes: The table displays the estimates of the following regression: ∆yj,i,s,k = δs + γk + αConstrainedi + β′1Xi +

β′2Xj + εj , where ∆yj,i,s,k is one half of the change in oil production over two months from March to May 2020 in

well j operated by �rm i, located in a geographical unit s, of age k. The indicator variable Constrainedi equals 1 if

�rm i had any credit facilities recorded by the Dealscan that were set to expire in the 4 months from March to June

of 2020, and 0 otherwise (as long as the �rm i had any open credit facilities as of December 31, 2019). The main

coe�cient of interest is α that measures the extra cut in production that is done by more �nancially constrained

operators relative to less �nancially constrained �rms. The controls include geographical unit s �xed e�ects δs

(6 by 6 square miles); well level controls Xj that include 3 lagged production changes, the horizontal length, and

cumulative output over the �rst 6 months of production); and well age �xed e�ects γk or a cubic function of well

age. Operator-level controls Xi include the public status of the �rm, the fraction of oil production, fraction of shale

production, fraction of volume hedged with standard instruments (swaps, futures, collars), and fraction of volume

committed via future physical delivery commitments. The coe�cients must be multiplied by 2 to obtain the total

production response over the two months (April and May). St.err in parentheses are clustered at the �rm level. ?

p<0.1, ?? p<0.05, ??? p<0.01
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We �nd that more �nancially constrained �rms cut production by 4.5 percentage points less

than less constrained �rms (or by 9pp over the two months from the end of March to the end of

May). The e�ect is both statistically and economically large. The e�ect is large relative to the

sample mean of the dependent variable of 11.5 pp. The results are very stable and robust across

di�erent speci�cations. The exogeneity in the timing of debt-related deadlines and past expiration

dates allows us to interpret this relationship as a causal e�ect of �nancial constraints on production

responses.

It is important to emphasize that our results are not driven by any obvious �rms' characteristics.

In particular, speci�cations (5) and (6) control for hedging, fraction of oil production, fraction of

unconventional production, and physical delivery commitments. Table 19 in Appendix includes

operating expenses and the number of days until the stated maturity date of the credit facility.

Tables 20 and 21 in Appendix further add a battery of standard �rm-level �nancial controls

(leverage, size, pro�tability, short term debt, interest coverage ratio etc). The tables further

con�rm that our results are not driven by any obvious �rms' characteristics either physical or

�nancial.

Shut-Ins

To provide further evidence we explore complete well shut in decisions. The shut-in results are

reported in Table 6, which has the same structure as Table 5 before.

We �nd that �nancially constrained �rms were about 3 percentage points less likely to fully

shut-in wells than less constrained �rms. The e�ect is large relative to the mean of 7 pp in the

sample. The results are signi�cant in all speci�cations with both private and public operators.

When the sample is reduced to the subsample of public operators only, the size of the coe�cient

remains the same, however it becomes insigni�cant.

Overall, the shut-in results are consistent with our benchmark production results and con�rm

that �nancially constrained �rms were less likely to decrease production in response to a negative

demand shock and low oil prices.
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Table 6: Well Shut-in Decisions and Financial Constraints

Well Shut-In Indicator
(1) (2) (3) (4) (5) (6)

Constrained -0.060∗∗ -0.044∗∗ -0.033∗∗ -0.033∗∗ -0.028 -0.032

(0.025) (0.018) (0.015) (0.015) (0.019) (0.020)

Log Cumulative Production, T=6m -0.028∗∗∗ -0.026∗∗ -0.022∗∗ -0.021∗∗

(0.010) (0.010) (0.009) (0.009)

Public Status -0.109∗∗ -0.112∗∗

(0.047) (0.048)

Hedged Volume -0.045 -0.045

(0.038) (0.046)

Committed Volume 0.003

(0.018)

Fraction Oil -0.092∗

(0.052)

Fraction Shale -0.022

(0.030)

Owns Re�nery -0.018

(0.035)

Mean Dep.Var 0.073 0.071 0.071 0.071 0.060 0.061

Number of Wells 15647 13433 12215 12225 10722 10215

Number of Operators 117 108 106 106 47 43

R2 0.008 0.375 0.389 0.377 0.386 0.390

Geo FE Y Y Y Y Y

Well Controls Y Y Y Y Y

First Production FE Y Y Y Y

Well Age Function Y

Notes: See Table 5 for details. In this exercise, the output variable is ShutInj,i,s,k - the shut-in indicator for well j,

owned by operator i, located in geographical unit s and aged k. The shut-in indicator equals 1 if a well produced in

March 2020, but had zero production either in April or May 2020. The indicator variable Constrainedi equals 1 if

�rm i had any credit facility recorded by the Dealscan that were set to expire in the 4 months from March to June

of 2020, and 0 otherwise (as long as the �rm had any open credit facilities as of December 31, 2019). ? p<0.1, ??

p<0.05, ??? p<0.01
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Fall Expiration

To provide additional evidence we identify �rms with debt-related payments that were likely to

be scheduled more towards the end of 2020. We create an indicator variable Fall Expirationi

that equals 1 if the �rm i has any credit data entries with an expiration date scheduled from

August to December 2020 (and a start date before the pandemic), and equals 0 otherwise as long

as the �rm has any credit facilities in place at the beginning for the year(see Section 3.2). It

should be noted that we can have all 4 possibilities in the data, that is, all 4 combinations of

{Fall Expirationi, Constrainedi} are possible.

The results for both production responses and well shut-ins are presented in Table 7. We

observe the opposite results. These �rms were more likely to cut production and more likely to

completely shut-in wells. The results provide additional evidence for our identi�cation strategy

and our main results.

Robustness

The results so far support the hypothesis that �nancially constrained �rms cut oil production by

less than less constrained �rms. Next, we further explore the robustness of these �ndings.

Restricted set of geographical units To further strengthen an argument that di�erences in

well locations between constrained and unconstrained operators do not drive our results, we repeat

our main analysis on a subset of geographical units that have wells of both types of operators.

Speci�cally, we drop all geographical units that have wells of constrained operators only and all

units that have wells of unconstrained operators only. Table 14 in Appendix shows that our results

remain unchanged.

Placebo test As an additional test to validate our empirical design, we conduct a placebo test.

The basic identifying assumption is that, in the absence of the COVID-19 shock, the operators

in the control and treatment groups would have exhibited similar production behavior. Thus, we

repeat our analysis for the placebo period from the end of March to the end May of 2019, keeping

the designations of the �rms into more and less �nancially constrained (treatment and control
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Table 7: Production Responses and Fall Expiration

Oil Well Production Response Well Shut-In Indicator
(1) (2) (3) (1) (2) (3)

Fall Expiration -0.044∗∗∗ -0.064∗∗∗ -0.057∗∗∗ 0.032∗ 0.043∗∗ 0.043∗

(0.016) (0.013) (0.012) (0.019) (0.018) (0.022)

Log Cumulative Production, T=6m 0.007 0.007 0.007 -0.029∗∗∗ -0.021∗∗ -0.020∗∗

(0.005) (0.005) (0.006) (0.011) (0.009) (0.009)

Hedged Volume -0.017 -0.002 -0.023 -0.023

(0.020) (0.021) (0.037) (0.042)

Committed Volume -0.027∗ 0.012

(0.015) (0.017)

Fraction Oil 0.029 -0.077

(0.021) (0.049)

Fraction Shale -0.037∗ -0.018

(0.020) (0.030)

Owns Re�nery -0.046∗∗ -0.012

(0.020) (0.036)

Mean Dep.Var -0.116 -0.112 -0.108 0.071 0.060 0.061

Number of Wells 11351 10077 9591 12215 10722 10215

Number of Operators 104 47 43 106 47 43

R2 0.294 0.311 0.305 0.380 0.387 0.391

Geo FE Y Y Y Y Y Y

Well Controls Y Y Y Y Y Y

First Production FE Y Y Y Y Y Y

Notes: In this exercise, we estimate the same cross-sectional regressions as in Tables 5 and 6, but we replace
Constrainedi with Fall Expirationi. The indicator variable Fall Expirationi equals 1 if �rm i had any credit
facilities recorded by the Dealscan that were set to expire from August to December of 2020, and 0 otherwise (as
long as the �rm had any open credit facilities as of December 31, 2019).
See Table 5 and 6 for details.? p<0.1, ?? p<0.05, ??? p<0.01
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groups, respectively) unchanged.

The results are presented in Table 15. The coe�cients of interest are now small and insigni�cant

in all speci�cations except one. In speci�cation (2) for the production responses in the smaller

subsample of public operators, the coe�cient is barely signi�cant at 10% level, but small and

negative. If anything, the results are the opposite of our �ndings for the benchmark period. The

mean fraction of shut-ins was just 0.007 in 2019, which is a magnitude smaller than during the

pandemic episode in 2020 (the same result can be seen graphically in Figure 2).

Vertical wells In the benchmark case, we only consider horizontal wells. Our choice is discussed

in Section 2.2. For robustness we repeat the main exercise for vertical wells. Vertical wells have

worse productivity on average than horizontal wells, even thought the top vertical well produced

2.5 more than the top horizontal well in March 2020. In this exercise, we consider all vertical wells

with more than 100 barrels of oil per month, although our results are robust to this choice. The

results are shown in Table 16. We �nd that constrained operators decreased production by 4-5 pp

less than less constrained �rms (or by 9 pp over the two months of April and May).23 Thus, our

�ndings for vertical wells are consistent with our main results.

Overall, our empirical design signi�cantly raises the bar for alternative explanations that are

completely unrelated to the economic mechanisms we test for.

4.2 Access to credit

In the second exercise, we use observed borrowing base redeterminations and actual credit lines

drawdowns (relative to initial borrowing capacity) to investigate the e�ects of access to credit on

production responses.

The results are presented in Table 8. Panel A investigates the e�ects of borrowing base cuts.

We �nd that the �rms that faced larger reductions in borrowing capacity cut production by less.

An interquartile range increase in borrowing base redetermination (more negative borrowing base

reduction) is associated with a 3-4 pp smaller production cuts.

23The results become stronger, if we increase the threshold.
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Table 8: Production Responses and Access to Credit

Panel A: Reduction in the Borrowing Base

Oil Well Production Response Well Shut-In Indicator
(1) (2) (3) (1) (2) (3)

Borrowing Base Reduction -0.168∗ -0.211∗∗∗ -0.184∗∗ 0.131 0.086 0.042

(0.084) (0.077) (0.080) (0.103) (0.081) (0.081)

Operating Costs -0.015∗ -0.022 -0.011 -0.004

(0.008) (0.014) (0.012) (0.013)

Hedged Volume -0.081∗∗∗ -0.056 0.035∗∗ -0.083∗∗

(0.027) (0.036) (0.017) (0.031)

Mean Dep.Var -0.094 -0.094 -0.094 0.076 0.076 0.080

Number of Wells 7049 7049 6597 7628 7628 7169

Number of Operators 35 35 29 35 35 29

R2 0.314 0.316 0.315 0.362 0.362 0.377

Geo FE Y Y Y Y Y Y

Well Controls Y Y Y Y Y Y

First Production FE Y Y Y Y Y Y

Operator Controls Y Y

Panel B: Credit Line Drawdowns

Oil Well Production Response Well Shut-In Indicator
(1) (2) (3) (1) (2) (3)

Credit Line Drawdowns -0.208∗ -0.194∗ -0.344∗∗ 0.533∗∗ 0.509∗∗ 0.201

(0.112) (0.104) (0.144) (0.214) (0.208) (0.163)

Operating Costs -0.006 -0.013 -0.008 -0.006

(0.007) (0.009) (0.010) (0.012)

Hedged Volume -0.076∗∗ -0.071∗ 0.022 -0.073∗

(0.031) (0.038) (0.023) (0.036)

Mean Dep.Var -0.094 -0.094 -0.094 0.076 0.076 0.080

Number of Wells 7049 7049 6597 7628 7628 7169

Number of Operators 35 35 29 35 35 29

R2 0.314 0.315 0.316 0.366 0.367 0.377

Geo FE Y Y Y Y Y Y

Well Controls Y Y Y Y Y Y

First Production FE Y Y Y Y Y Y

Operator Controls Y Y

Notes: In this exercise, we estimate the same cross-sectional regressions as in Tables 5 and 6 for the subsample of
�rms with secured reserves-based credit agreements. Panel A uses borrowing base reductions at the operator level
as the main treatment variable. Panel B uses actual drawns de�ned as the change in credit utilization holding �xed
the borrowing limit at the pre-pandemic level as of December 31, 2019. To enlarge the sample, we consider large
and medium wells in this exercise. See Table 5 and 6 for further details.? p<0.1, ?? p<0.05, ??? p<0.01
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Panel B explores actual credit line drawdowns. The results show that the �rms that were able

to draw more from their credit lines cut production by more. An interquartile range increase in

actual drawdowns is associated with a 3-6 pp larger production cuts.

Our results imply that more �nancially �exible �rms that faced more favorable changes in

credit conditions and were able to utilize their existing credit lines were cutting production by

more, in line with our main mechanism.

Of course, borrowing base redeterminations were driven by many factors including variation

in production technology (by type and location of �rms' assets), and not just �nancial state

of the �rms or lenders' discretion in lending. However, our outcome variable is a production

cut in a horizontal well located in a certain geographical area. A non-trivial explanation would

be required to explain the connection between borrowing base cuts and production responses in

speci�c horizontal wells that is completely unrelated to access to credit and our mechanism in

general. We also control for the most obvious �rms' characteristics.

Similarly, the lack of drawdowns might re�ect low demand for credit. However, we �nd it

unlikely. The data show heavy utilization of credit lines even before the pandemic. An over-

whelming wave of bankruptcies followed the pandemic and the worst cash �ow shock in history.

Our results are also consistent with the recent empirical evidence in Greenwald et al. (2021) and

Chodorow-Reich et al. (2021).

4.3 Failed Hedging

The results are shown in Table 9. We �nd that �rms which used three-way collars more extensively

also cut production by less, thus further reinforcing our main conclusions.

Graphically, the results are also presented in Figure 5 in the Appendix. We see that production

dynamics both before and after the pandemic episode is exactly the same for �rms with and without

three-way collars. However, the �rms that had three-way collars in place, cut production by less

and were less likely to shut down wells in line with the formal results in Table 9.

The failed hedging exercise suggests that the �rms that we more exposed to cash �ow shocks

due to unfortunate choice of hedging instruments, were forced to maintain production. Note
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Table 9: Production Responses and Failed Hedging

Oil Well Production Response Well Shut-In Indicator
(1) (2) (3) (1) (2) (3)

Volume Hedged with Three-Way Collars 0.046∗∗∗ 0.061∗∗ 0.041 -0.042∗∗∗ -0.073∗∗ -0.092∗

(0.016) (0.023) (0.026) (0.014) (0.029) (0.046)

Log Cumulative Production, T=6m 0.008 0.007 0.007 -0.022∗∗ -0.021∗∗ -0.020∗∗

(0.005) (0.005) (0.006) (0.009) (0.009) (0.009)

Hedged Volume 0.028 0.029 -0.059 -0.066

(0.024) (0.026) (0.042) (0.051)

Committed Volume 0.017 -0.022

(0.021) (0.022)

Fraction Oil 0.027 -0.046

(0.031) (0.035)

Fraction Shale -0.026 -0.025

(0.026) (0.032)

Owns Re�nery -0.032 -0.037

(0.024) (0.036)

Mean Dep.Var -0.109 -0.109 -0.105 0.058 0.058 0.059

Number of Wells 11083 11083 10581 11758 11758 11235

Number of Operators 56 56 50 56 56 50

R2 0.278 0.279 0.272 0.373 0.375 0.381

Geo FE Y Y Y Y Y Y

Well Controls Y Y Y Y Y Y

First Production FE Y Y Y Y Y Y

Notes: In this exercise, we estimate the same cross-sectional regressions as in Tables 5 and 6, but we replace the

main indicator Constrainedi with a V olumeHedgedwith Three−Way Collarsi variable, which is the percentage

of �rm i′s projected 2020 oil production that was hedged using three-way collars. See Table 5 and 6 for details.?

p<0.1, ?? p<0.05, ??? p<0.01
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also that the depth of hedging with three-way collars was exactly the same for constrained and

unconstrained operators when de�ned by past credit expiration dates (see Table 4). Therefore,

our failed hedging exercise provides additional independent evidence in support of our mechanism.

Of course, the choice of hedging instruments is hardly exogenous. However, jointly with our

previous results, our �ndings paint a consistent picture of more-�nancially-constrained �rms dis-

torting their production decisions to preserve cash.

5 Testing the mechanism

5.1 Cash needs and well completions

We aim to highlight the importance of immediate cash needs during the pandemic episode. Another

way to illustrate our mechanism is to explore well completion decisions. Both well drillings and

well completions are costly and thus cannot alleviate immediate cash �ow needs. Indeed, even

completing an already drilled well costs a few million dollars that cannot be recovered over a few

months. At the same time, new successful well completions can potentially improve the value of

the land and thus the collateral value and facilitate re�nancing, if a �rm relies on collateral based

lending common in the oil and gas sector (see Gilje, Loutskina, and Murphy (2020)). Thus, if

immediate cash �ow needs shaped �rms decisions in 2020, we can expect to either see no di�erence

in well completion decisions between �nancially constrained and unconstrained �rms (suggesting

that all �rms similarly cut well completions), or we should even see that constrained �rms were

less likely to complete their wells.

To investigate the e�ect of �nancial constraints on new well completions, we focus on drilled but

uncompleted wells, also known as DUCs. DUCs are oil wells that have been drilled but have not

yet undergone various well completion activities, such as hydraulic fracturing. For our purposes,

we identify all wells that were spud before March 1, 2020 but that were completed after that date.

For each well we create a well completion indicator denoted by WellCompletionj,i,s,k equal to 1 if

a well j owned by �rm i, spud k months ago, and located in a geographical unit s was completed

in March or April 2020, and equal to 0 if it was completed at a later date or if it has not been
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completed yet. Focusing on a well completion decision is easier, because the drilling location is

already set before the start of the pandemic. Thus, we can maintain the same empirical setting as

in our benchmark exercise, in particular, we can conduct the analysis at the well level and again

include geographical indicators to capture various di�erences across locations.

Table 10 presents the results. Indeed, we �nd that �nancially constrained �rms were less likely

to complete wells in the midst of the pandemic thus supporting our mechanism of the immediate

cash needs.

We �nd it useful to further highlight the di�erence of our results from those of Gilje, Loutskina,

and Murphy (2020) who studied investment decisions of extremely high leveraged �rms during the

contango episode in 2015. At that time, the futures curve became extremely upward sloping

suggesting that it could be optional to move production into the future. Gilje, Loutskina, and

Murphy (2020) document that extremely high leverage �rms (those in the top quintile of the

leverage distribution) did not delay well completions in order to boost their collateral values and

thus enhance their negotiation position during re�nancing. In contrast, our results indicate that

�nancially constrained �rms were less likely to complete wells in the midst of the pandemic and

maintained higher production from existing wells. Our channel is distinct from Gilje, Loutskina,

and Murphy (2020). We also document widespread production distortions.

Speculating, the di�erence in �ndings could highlight a di�erent nature of the pandemic episode.

The cash �ow shock in 2020 was large and sudden. As a result of failed OPEC-Russia negotiations,

the oil price plunged 24% or $10 per barrel on Monday, March 9, 2020; see Section 6.1. On March

19, the State of California became the �rst to mandate a state-wide shelter-in-place order; by

that time the oil price fell to $20/bbl. Lenders of reserves-based credit facilities quickly reacted

by initiating redeterminations. Many lenders sped up this process by exercising their right for

an interim redetermination; some lenders prevented extra borrowings until redetermination was

complete (see Section 3.2 and footnotes 14 and 16). Oil producers had very limited time to make

a decision and not enough time to manipulate their collateral values as in Gilje, Loutskina, and

Murphy (2020). Moreover, most credit agreements require that a borrower prepares a Reserve

Report or an Engineering Report evaluating its oil and gas properties as of December 31 (June
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Table 10: Well Completions

Well Completion Indicator
(1) (2) (3) (4)

Constrained -0.279∗∗∗ -0.258∗∗∗ -0.241∗∗∗ -0.218∗∗

(0.067) (0.077) (0.083) (0.106)

Public Status -0.114

(0.127)

Hedged Volume 0.070 0.128

(0.066) (0.103)

Committed Volume -0.100

(0.162)

Fraction Oil 0.254

(0.192)

Fraction Shale -0.211

(0.225)

Owns Re�nery -0.165

(0.106)

Mean Dep.Var 0.445 0.445 0.424 0.428

Number of Wells 2467 2467 2030 1686

Number of Operators 87 87 43 37

R2 0.727 0.728 0.730 0.735

Geo FE Y Y Y Y

Spud Month FE Y Y Y Y

Notes: The table displays the estimates of the following regression: WellCompletionj,i,s,k = δs + γk +

αConstrainedi + β′1Xi + εj , where WellCompletionj,i,s is the well completion indicator of well j owned by �rm i,

spud k months ago, and located in a geographical unit s. For this exercise, we only consider drilled but uncompleted

(DUCs) wells that were spud before March 1 2020 and completed after that date. The well completion indicator

equals 1 if the well j was completed during March and April of 2020, and zero if it was completed at a later date

or if it has not been completed yet. The indicator variable Constrainedi equals 1 if �rm i had any credit facilities

recorded by the Dealscan that were set to expire in the 4 months from March to June of 2020, and 0 otherwise (as

long as the �rm had any open credit facilities as of December 31, 2019). The controls include geographical unit s

�xed e�ects δs (6 by 6 square miles) and the number of months since the spud date �xed e�ects γk. Operator-level

controls Xi include the public status of the �rm, the fraction of oil production, fraction of shale production, fraction

of volume hedged with standard instruments (swaps, futures, collars), and fraction of volume committed via future

physical delivery commitments. ? p<0.1, ?? p<0.05, ??? p<0.01
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30) to be submitted for the spring (fall) borrowing base redeterminations.24 Hence, the �rms

could not make any changes to their reserves that would a�ect the 2020 spring borrowing base

redeterminations.

We argue that facing a dramatic cash �ow shock in 2020, it was not enough for the constrained

�rms to simply cut investment. The exposed �rms had to distort production from existing wells

in order to cover their immediate cash needs to remain solvent.

5.2 Covenant violations

A signi�cant part of our sample consists of �rms with secured credit facilities. Secured credit

facilities typically contain a number of �nancial covenants, including restrictions on the debt-to-

income ratio, current ratio, and interest coverage ratio. The covenant metrics typically rely on

trailing 12-month EBITDAX numbers. Thus, short-term changes in operating activity cannot

signi�cantly a�ect a �rm's �nancial covenant ratios.

The �rms with unsecured credit facilities either have to maintain a low enough debt-to-capital

ratio, or have no �nancial covenants at all. Moreover, our results remain to be true in the subsample

of �rms with unsecured facilities only (can be sent by request).

Overall, several speci�c contractual features make our �ndings inconsistent with the direct

covenant channel.

6 Alternative Measures of Financial Constraints

In this section, we use a battery of alternative ways to identify �nancially weak �rms. In particular,

we use i) stock market reaction to the unexpected failure of OPEC-Russia negotiations; and ii)

and a number of typical measures of �nancial constraints and �nancial distress.

24See, for example, PDC Eenergy Inc., credit agreement as dated as of May 23, 2018, Section 8.12 or Sandridge
Energy Inc., credit agreement dated as of June 21, 2019, de�nition of the "Engineerign Report" on page 13 and
section 2.05 .
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6.1 Stock Market Reaction to OPEC's Announcement of the Price War

with Russia

First, we use a natural experiment to identify �nancially weak operators. We investigate the stock

market reaction to the unexpected announcement that OPEC-Russia negotiations had failed. We

argue that �nancially weak operators can be identi�ed as �rms that were devalued the most

following the announcement. Below we describe the details.

At a Friday, March 6 2020 meeting in Vienna, Russia rejected an agreement with OPEC on cuts

in oil production to bolster oil prices. On Saturday, Saudi Arabia announced massive discounts to

its o�cial selling prices for April, thus initiating a price war with Russia. As a result of the failed

negotiations, the oil price plunged 24% or $10 per barrel on Monday, March 9, 2020. It was the

worst day for the oil market in decades, second only to the Gulf War shock on January 17, 1991.

The oil price shock surprised the stock market and rattled the stock prices of oil producing

�rms. Figure 6 zooms in to the time of the announcement and illustrates how large and abrupt

devaluation was.

Figure 6 also suggests that price devaluations were quite heterogeneous across �rms. Indeed,

although some operators lost up to 70% of their value (such as Oasis Petroleum - 75%, Apache

Corporation - 61%, and Continental Resources - 60%), some �rms loss much less (Devon Energy

lost 47%, Berry Corporation lost 31%, and Exxon Mobil - only 16%).

We argue that �nancially weak operators can also be identi�ed as �rms that were devalued the

most. Intuitively, the �nancial market accounts for various factors, both operational and �nancial,

when recalculating the value of a �rm. For example, on average, large integrated �rms and �rms

focused mainly on natural gas exploration lost less of their value. Similarly, �nancial factors such

as hedging, unused debt capacity, debt maturity, and etc. shaped stock price sensitivity to the

announcement. This argument is based on extensive CF literature documenting that the stock

market rewarded �rms with healthier balance sheets during the COVID-19 pandemic. Acharya

and Ste�en (2020) construct a measure of balance sheet liquidity of U.S. non�nancial �rms as

the sum of undrawn credit lines and cash minus short-term liabilities over total assets. Using this

measure, they show that the stock price performance of �rms with liquidity bu�ers was better upon
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the onset of the pandemic. Individual measures of liquidity produce the same result: �rms with

lower initial cash holdings and short-term investments and higher initial levels of short-term debt

(both scaled by total assets) experienced larger drops in returns in March 2020. Similar results

are found by Fahlenbrach et al. (2020), who show that �rms with greater �nancial �exibility (as

measured by a large amount of cash, unused debt capacity, limited exposure to debt rollover risk,

etc.) experienced smaller stock price drops in March 2020; similar results were found for CDS

spreads. Babenko et al. (2020) show that U.S. oil and gas producers with contractual hedging

commitments in their loan contracts performed better during the Covid-19 pandemic, showing

that hedges are e�ective for reducing exposure to commodity prices.

Formally, to identify �nancially weak �rms (as perceived by the market), for each operator i,

we calculate the return over the period from Thursday, March 5 to Monday, March 9, 2020, which

covers the escalation of the price war between OPEC and Russia. We use the calculated returns

to create an indicator BigStockLossi that equals 1 if the realized return is below the median and

0 otherwise (the median is taken over the oil producing �rms in our sample).

The results are presented in Table 11. The estimates of the main coe�cient are positive for

production cuts, negative for well shut-ins, and statistically signi�cant in all speci�cations. The

results imply that �nancially weak �rms cut oil production by about 5 percentage points less than

less constrained �rms (or by 10 pp over the two months of April and May). These �rms were also

3.5-6 pp less likely to completely shut-in wells. The results are both statistically and economically

large.

For robustness, Table 17 in Appendix repeats the estimation with the realized returns over the

period of failed OPEC-Russia negotiations from Thursday, March 5 to Monday, March 9, 2020,

instead of just a dummy variable as in Table 11. For the production cuts, the coe�cients on

realized returns are negative and signi�cant across all speci�cations, in line with our main results

that �nancially weaker �rms (those with more negative realized returns) cut production by less.

The results on complete shut-ins have the right sign, but are insigni�cant.

Overall, the results for stock devaluations are similar in magnitude with our main results and

provide strong support for a relationship between �nancial constraints and production responses.

44



Table 11: Production Responses and Financial Constraints: Stock Price Devaluations

Oil Well Production Response Well Shut-In Indicator
(1) (2) (3) (1) (2) (3)

Big Stock Loss 0.040∗∗∗ 0.054∗∗∗ 0.041∗∗ -0.035∗∗ -0.049∗∗∗ -0.099∗∗

(0.012) (0.015) (0.017) (0.014) (0.016) (0.039)

Log Cumulative Production, T=6m 0.006 0.006 0.006 -0.021∗∗ -0.021∗∗ -0.019∗∗

(0.006) (0.006) (0.006) (0.009) (0.009) (0.009)

Hedged Volume 0.001 0.019 -0.036 -0.061

(0.023) (0.024) (0.033) (0.043)

Committed Volume 0.012 -0.016

(0.023) (0.019)

Fraction Oil 0.064∗ -0.110∗∗∗

(0.036) (0.039)

Fraction Shale -0.053∗ 0.044

(0.027) (0.043)

Owns Re�nery -0.018 -0.079∗

(0.026) (0.041)

Mean Dep.Var -0.107 -0.109 -0.104 0.057 0.059 0.060

Number of Wells 11931 10969 10483 12641 11641 11134

Number of Operators 55 51 47 55 51 47

R2 0.263 0.282 0.269 0.375 0.380 0.387

Geo FE Y Y Y Y Y Y

Well Controls Y Y Y Y Y Y

First Production FE Y Y Y Y Y Y

Notes: In this exercise, the indicator variable BigStockLossi equals 1 if the �rm i is �nancially weak from the

market point of view. To be labeled �nancially weak, the realized return of �rm i over the period of OPEC-Russia

failed negotiations from Thursday, March 5 to Monday, March 9, 2020 must be below the median. See Table 5

for details. See Table 17 for additional results. St.err in parentheses are clustered at the �rm level. ? p<0.1, ??

p<0.05, ??? p<0.01
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6.2 Standard Measures Of Financial Constraints

We use a battery of traditional measures of �nancing constraints that potentially capture di�erent

aspects of the �nancial state of oil �rms: leverage, interest coverage ratio, pro�tability, ratio of

short term debt, and cash holdings measures. Next, we use 2 traditional measures of �nancial

constraints: the Kaplan-Zingales (KZ) index and the Whited-Wu (WW) index. We also use an

additional measure recently put forward by Huang and Ritter (2021) (HR). Finally, we also use

Altman's Z-score as a measure of �nancial distress. In total, this yields 9 di�erent measures; see

appendix A.3 for details. We repeat our main analysis for each of these measures.

The results are summarized in Table 6.2. We �nd that interest coverage ratio and short-

term debt have strong explanatory power. The traditional measures of �nancial constraints show

insigni�cant results. In contrast, the Huang-Ritter index shows a signi�cant result in the same

direction (more constrained �rms have more negative HR index and thus decrease production by

less). The HR measure is tailored to capture the ability of �rms to fund their activity out of their

existing cash holdings and thus, perhaps, better serves our purposes. Similar to us, Fahlenbrach

et al. (2020) �nds that traditional measures have no explanatory power for predicting which �rms

are more a�ected by the COVID-19 shock, while �rms identi�ed by the HR index as being at risk

of running out of cash unless they access outside funds are more a�ected by the COVID-19 shock.

Finally, the z-score also shows a signi�cant result in the same direction (more distressed �rms

have smaller z-score and cut production by less).

Overall, the results in this section support the view that cash �ow problems were the likely

drivers of �rm's suboptimal decisions to maintain production despite catastrophically low oil prices.

7 Discussion

In this section we put our �ndings into perspective.
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Table 12: Alternative Measures

Oil Well Production Response
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Leverage 0.000

(0.006)

Interest Coverage Ratio -0.019∗∗

(0.008)

Pro�tability -0.102

(0.086)

Short Term Debt -0.017∗∗

(0.007)

Almeida 0.007

(0.008)

Kaplan-Zingales -0.002

(0.007)

Whited-Wu -0.013

(0.010)

Huang-Ritter -0.010∗

(0.006)

Altman Z-score -0.012∗

(0.007)

Mean Dep.Var -0.104 -0.104 -0.104 -0.104 -0.104 -0.104 -0.104 -0.104 -0.104

Number of Wells 10483 10438 10483 10483 10483 10483 10483 10483 10483

Number of Operators 47 46 47 47 47 47 47 47 47

R2 0.268 0.270 0.268 0.270 0.268 0.268 0.268 0.269 0.268

Geo FE Y Y Y Y Y Y Y Y Y

Well Controls Y Y Y Y Y Y Y Y Y

First Production FE Y Y Y Y Y Y Y Y Y

Notes: In this exercise we reestimate the speci�cation (6) in Table 5 but replace Contrainedi indicator with other
�nancial measures. All �nancial measures were standardized. The �rst �ve columns correspond to leverage,
interest coverage ratio, pro�tability, and short term debt. The next 3 columns correspond to the 3 indices of
�nancial constraints: Kaplan-Zingales, Whited-Wu, and Huang-Ritter. The last column uses the Altman's Z-score
as a measure of �nancial distress. See appendix A.3 for variable de�nitions. All �nancial data are taken as of
December 31, 2019. The �rm-level controls include the fraction of oil production, fraction of shale production,
fraction of production hedged with standard instruments, and fraction of volume committed using physical delivery
commitments. See speci�cation (6) in Table 5 for further details. ? p<0.1, ?? p<0.05, ??? p<0.01
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7.1 External Validity

In the paper, we investigate oil production responses to the COVID-19 outbreak. The demand

collapse caused by the pandemic is useful for our purposes, as it was sudden, large, and unrelated

to the oil market. However, one may argue that our �ndings are limited because COVID-19

represents a once-in-a-lifetime shock. We believe that although the shock itself is indeed quite

unique, production distortions due to indebtedness represent a general pattern.

The oil market has repeatedly been puzzled by the resilience of North American oil production

to low oil prices. Of all such episodes, the WCS-WTI divergence in 2018-19 is of particular impor-

tance. By December 2018 the WCS (Western Canadian Select) price of oil fell to an astonishingly

low $6 per barrel, while the WTI (West Texas Intermediate) benchmark was trading at $50 per

barrel. In response to a growing and prolonged price di�erential and the apparent impotence of

market forces to adjust oil supplies, in January 2019, the government of Alberta, Canada decided

to implement a production cap policy. Oil production was forcefully reduced by 8.7%; following

the intervention, the WCS-WTI price di�erential dropped from more than $40/bbl in December

2018 to less than $10/bbl in February 2019; see Schaufele and Winter (2021) and Hallak et al.

(2021). The nature of the WCS-WTI divergence has not been well studied or understood. Al-

though not directly tested in our paper, indebtedness may have played a signi�cant role in why

local oil producers did not adjust production in the face of export bottlenecks and extremely low

well-head oil prices. Interestingly, a relatively modest production cut was su�cient to signi�cantly

decrease the price di�erential.

Similarly, the resilience of US oil production in 2014-15 has raised a lot of questions. The oil

price plunged in the second half of 2014 (although not as much as in 2020 or as WCS did in 2018),

while fears of oversupply overwhelmed the market. Despite a general consensus that the oil market

was extremely oversupplied, oil production only gradually leveled out, and only because comple-

tions of new oil wells nearly ceased. Production from existing wells was not adjusted and decreased

only slowly, following a natural production decline. Our results complement Gilje, Loutskina, and

Murphy (2020), who �nd that debt and credit frictions distorted investment decisions of extremely

high leveraged �rms to delay well completion during the brief contango episode in early 2015.
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Jointly, our �ndings imply that indebtedness and credit market frictions can distort production

outcomes, both by distorting production decisions on how much to extract from existing wells

and/or by distorting investment decisions on whether to drill and complete new wells.

7.2 Relation to the Literature on Estimation of Oil Supply Elasticities

Our results contribute to the extensive literature on estimation of oil supply elasticities. Although

we do not directly estimate oil supply elasticity, we do investigate oil production responses to

the unprecedented demand shock triggered by the COVID-19 pandemic, which resulted in a huge

negative oil price shock.

In contrast to existing studies, we document signi�cant adjustments in oil production to low

oil prices. We provide direct evidence that oil producers responded to low oil prices by shutting

down some of their wells. The existing empirical literature lacks consensus on the size of oil

supply elasticities. Many papers �nd that short-run production responses (intensive margin) are

close to zero, and only investment responses (extensive margin) can be detected, especially if one

extends the response period; see, for example, Anderson et al. (2018) and Newell and Prest (2019);

while other papers including Caldara et al. (2019) and Baumeister and Hamilton (2019) document

positive global oil production responses to oil prices. Of course, we focus on a huge negative

demand shock. The COVID-19 shock is unique in both nature and magnitude. Typically, event

study papers exploit smaller oil price �uctuations, while structural VARs are typically estimated

over long periods and thus basically estimate a di�erent elasticity; see Kilian (2020) and Baumeister

and Hamilton (2021) for a recent literature review and discussion.

Importantly, we show that shut-in decisions were not driven solely by operating costs. Of

course, not surprisingly we �nd that the least productive wells were shut in more frequently.

However, we do �nd di�erences in production cuts made by di�erent operators in wells drilled at

the same location, that is within a 6 by 6 square mile unit. Keeping the location �xed allows us to

control for many factors that could a�ect a well's operating costs and relevant local oil prices (and

access to storage). We also carefully control for hedging, both physical and �nancial, and include

a measure of average lease operating costs at the �rm level.
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We contribute to the literature by exploring heterogeneity in production responses using mi-

crodata. There are almost no prior studies using microdata: the rare exceptions are Newell and

Prest (2019) and Bjornland et al. (2021); none of the studies explores heterogeneity in responses.

We are the �rst to highlight heterogeneity in oil supply elasticities across di�erent �rms and to

explain it by heterogeneous indebtedness. Overall, our results complement existing studies.

One may argue that our �ndings are limited because we focus on US regional production

responses as opposed to global oil production, as is typical in this literature. Although oil shale

production is still a relatively small fraction of global oil production, shale oil development with

all of its frictions and bottlenecks undoubtedly a�ects the West Texas Intermediate benchmark.

As long as benchmarking to the WTI is an everyday reality of the oil market and as long as price

discovery at least partially occurs on the WTI futures market, any local �uctuations driven by the

behavior of shale oil producers will be an important factor in global oil price dynamics.

8 Conclusion

Our results shed light on the puzzling production resilience observed repeatedly in the North

American oil market throughout the last decade. We document signi�cant heterogeneity in the

production responses of individual oil producing �rms to low oil prices and relate it to heterogeneity

in �nancial constraints. Our results imply that propagation of negative oil demand shocks depends

crucially on the level of indebtedness of individual �rms, which can vary over time.

At the same time, we document signi�cant adjustments in oil production to low oil prices,

implying that oil supply elasticities can be much greater than zero even in the short run.25 The

literature has long argued that oil production is completely inelastic in the short-run, regardless of

whether oil is extracted using conventional or unconventional production technologies (see Ander-

son et al. (2018), Newell and Prest (2019), and Kilian (2020)). Our results therefore suggest the

presence of signi�cant nonlinearities in production responses that need to be adequately captured

in empirical work.

25This does not contradict the �rst �nding, as we document large average adjustments and large heterogeneity
in individual responses at the same time.
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Going forward, our �ndings raise a question of the role of indebtedness in achieving US energy

security. For years shale oil investors were eager to invest in the oil sector despite its relatively

poor performance. However, the trend may have changed as U.S. producers remain reluctant to

drill more oil despite sky-high gasoline prices and oil prices beyond $100/bbl in 2022 following

the Russia�Ukraine crisis. Whether the reluctance to drill is driven by cautious expectations and

labor/rigs shortages that occurred after the pandemic, or by the lack of �nancing either due to

the poor recent �nancial performance or due to lenders' ESG commitments, remains an important

open question for further research.
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A Appendix

A.1 Dealscan

Dealscan contains both originations and renegotiations, many of which cannot be clearly distin-

guished. Roberts (2015) �nds that Dealscan observations do not correspond to any particular

type of event. Using a 2010 extract of Thomson Reuters-Dealscan database and hand-collected

SEC �lings Roberts (2015) creates a sample of 501 loan paths for a randomly chosen 114 �rms.

For 817 unique Dealscan observations contained in the sample 59% correspond to an origination,

29% correspond to an amended and restated contract, and 13% correspond to an amendment.

Covenant modi�cations are the plurality (45.91%) of renegotiation outcomes.
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As Dealscan misses a substantial fraction of credit extensions, we cannot use it to accurately

identify the state of credit facilities at the beginning of the pandemic. We also do not aim to

hand-collect a comprehensive data on the loan paths of our oil producing �rms, even public ones.

In contrast, we create a measure that uses synchronization in long-term debt payment deadlines

and relies only on the observable data from Dealscan. We discuss the details in the next section.

A.2 Path-dependence and synchronization of debt-related deadlines

We create a measure that exploits periodicity of debt-related deadlines and only relies on standard

Dealscan data that are available for both public and private �rms. We argue that a tendency of

multiple forms of long-term debt to be co-issued and co-dependent creates conditions for various

payments to be scheduled for the same time. Hence, we can use the available data on one type of

debt to reasonably predict the timing of other debt-related payments.

In this section, we provide additional institution details and examples. We begin building our

argument by providing evidence of periodicity and path-dependence of debt payments.

1. Periodicity and path-dependence of long-term debt

Long-term debt has a complex structure. However, issuance and service of long term debt has a

certain degree of periodicity and path-dependence.

Credit lines are often extended periodically keeping the same maturity month. As an extreme

example, SEC annual reportsCrescent Point Energy Corporation have had a syndicated credit

facility renewed annually with maturity dates set sequentially to June 10, 2016, June 10, 2017,

June 8, 2018, June 10, 2019, June 10, 2020, and June 10, 2021.26 Similarly, PDC Energy entered

into an amended credit agreement on May 21, 2013; the maturity of this credit facility was set

to May 21, 2018; in 2015 the maturity credit facility was extended to May 21, 2020; in 2018 the

maturity was further extended to May 23, 2023.27 Although not all �rms renegotiate their credit

revolving facilities with such precision the general pattern exists. Periodicity in debt renegotiations

26See annual reports prepared by Crescent Point Energy Corp. and available at their website.
27See SEC annual reports �led by PDC Energy Inc.and Fourth Amended and Restated Credit Agreement dated

as of May 23, 2018.
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was also documented by Roberts (2015).

In addition, unsecured loans typically provide extension options. Usually the �rms have a

narrow window to apply for a credit line extension, which is typically set around the anniversary

of the e�ective date. 28,29,30

Payments associated with senior bonds and notes are also periodic. Interest payments are often

made semiannually; on the maturity date, the bond nominal value is paid out together with the

last interest payment.

Firms tend to issue debt securities in series that may have di�erent maturity years but often the

same maturity months. To illustrate, Pioneer Natural Resources tends to issue notes that mature

in January and July and pay interest semiannually on January 15 and July 15. At the year end

of 2019, Pioneer Natural Resources had 7.50% senior notes due January 15, 2020; 3.45% senior

notes due January 15, 2021; 3.95% senior notes due July 15, 2022; 4.45% senior notes due January

15, 2026 - all with interest payments scheduled on January 15, 2020. The company's 7.50% senior

notes matured on January 15, 2020 and the �rm funded the payment of the $450 million principal

balance with cash on hand.31

Large oil �rms often sign indentures with large banks to issue debt securities from time to

time.32

2. Synchronization of payments

In principle, periodic payments associated with di�erent types of long-term debt do not need to

be synchronized. However, a number of factors create conditions for synchronization. We discuss

28See EOG Resources, Inc., Revolving Credit Agreement dated as of July 21, 2015: �Not earlier than 60 days
prior to, nor later than 30 days prior to, each anniversary of the date hereof, the Borrower may, upon notice to
the Administrative Agent (which shall promptly notify the Banks), request a one-year extension of the Termination
Date provided that the Borrower may not exercise this right more than two times prior to the Termination Date.�

29See Pioneer Natural Resources Company, Credit Agreement dated as of October 24, 2018: �The Borrower may,
by delivery of a Maturity Date Extension Request to the Administrative Agent (which shall promptly deliver a copy
to each of the Lenders) not less than 45 days and not more than 75 days prior to any anniversary of the E�ective
Date, request that the Lenders extend the Maturity Date for an additional period of one year; provided that, only
two such extensions will be granted during the tenure of the credit facility�.

30See Ovintiv Inc. 10-K �ling for the �scal year ended December 31, 2019: �At December 31, 2019, the Company
had in place committed revolving U.S. dollar denominated bank credit facilities totaling $4.0 billion ... The facilities
are extendible from time to time, but not more than once per year, for a period not longer than �ve years plus 90 days
from the date of the extension request, at the option of the lenders and upon notice from the Company.�.

31See second supplemental indenture as of December 7, 2015; see also here.
32For example, see the indenture between Pioneer and Wells Fargo dates as of June 26, 2012.
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them next.

Re�nancing activity One of the reasons for synchronization is issuance of new debt to repay

outstanding borrowings under the other. For example, on May 31, 2019 EQT borrowed $1.0 billion

under a new term loan facility to repay the company's $700 million in aggregate principal amount

of 8.125% senior notes maturing on June 1, 2019, and repay outstanding borrowings under the

company's $2.5 billion revolving credit facility which expires in July 2022. During the �rst quarter

of 2019, the maximum amounts of outstanding borrowings at any time under the credit facility

were $1.1 billion. The term loan stated maturity was set on May 31, 2021.33 On April 28, 2020, the

company issued $500 million aggregate principal amount of 1.75% convertible senior notes due May

1, 2026 to repay $450 million of the term loan facility. In this case, we observe active re�nancing

activity and debt transformations, however, all payment and expiration dates are clustered around

the same months of May, June, and July.

Financing of investment projects Di�erent types of debt can also be synchronized by the

necessity to fund a large investment project or an acquisition. For example, Occidental Petroleum

Corporation issued $21.8 billion in debt in 2019 to fund its acquisition of Anadarko. In pariticular,

on June 3, 2019, Occidental entered into a 364-day term loan agreement and a two-year term

facility. On August 8, 2019, Occidental closed on its acquisition of Anadarko, hence the conditions

to funding of the term loan facilities were satis�ed and the loans thereunder were funded. On June

3, 2019, Occidental also entered into a new revolving facility which matures on January 31, 2023.

Finally, on August 6, 2019, Occidental issued $13.0 billion of new senior unsecured notes. Out of

10 series of these notes, one matured in February 2021, and the rest were scheduled to mature in

August of di�erent years from 2021 to 2049. Interest on all �xed rate notes are payable semiannually

in February and August; interest on �oating rate notes are payable quarterly in February, May,

August, and November. As a result, many di�erent future payments were synchronized to occur

in February and August of each year.34

33See EQT 8-k form as of May 31, 2019.
34Other recent examples of credit amendments following mergers and acquisitions: acquisition of SRC Energy

Inc by PDC Energy, Inc. in 2019; acquisition Carrizo by Callon Petroleum Company in 2019; acquisition of White
Star Petroleum by Contango Oil & Gas Company in 2019. Similarly, in connection with the closing of the sale
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Similarly, on March 1, 2019, Cimarex Energy completed the acquisition of Resolute Energy

Corporation. On February 5, 2019, Cimarex Energy amended its credit agreement and extended

the maturity date to February 5, 2024. On March 8, 2019, Cimarex issued $500 million aggregate

principal amount of 4.375% senior unsecured notes due March 15, 2029. The interest is payable

semiannually on March 15 and September 15. Cimarex used the net proceeds to repay borrow-

ings that were outstanding under the credit facility that were used to help fund the Resolute

acquisition.35 Again, many payments were synchronized to occur in March-February.

As another example, in June 2019, Murphy Oil Corporation announced the completion of

a transaction with LLOG Exploration O�shore L.L.C. and LLOG Bluewater Holdings, L.L.C.,

(LLOG). As of June 30, 2019, the company had a $1.6 billion revolving credit facility, which

expires in November 2023. At June 30, 2019, the company had outstanding borrowings of $1.4

billion under the 2018 facility. On May 30, 2019, the Company entered into a $500 million term

loan credit facility. The term credit facility was a senior unsecured guaranteed facility with an

original maturity date of December 2, 2019. In 2019, the cash provided by �nancing activities was

principally from borrowings on the revolver and short-term loan to fund the LLOG acquisition. In

addition, in November 2019, the �rm issued $550 million of new notes that bear interest at a rate of

5.875% and mature on December 1, 2027 and pay interest semi-annually on June 1 and December

1 of each year. The proceeds were used to repurchase and cancel $239.7 million of the Company's

4.00% notes due June 2022 and $281.6 million of the Company's 4.45% notes due December 2022.

Again many payments occur in December-November and June of each year.

Other reasons More generally, issuance of notes and bonds as well as other commitments and

liabilities often triggers renegotiations of revolving credit agreements. Among other things, issuance

of new debt typically reduces the borrowing base.36 Issuance of debt can also increase the debt-

to-EBITDA ratio beyond its maximal value and thus require renegotiation; seeRoberts (2015). A

of its Canadian business in 2019, Devon terminated its Canadian credit subfacility and entered into a new credit
agreement.

35See Cimarex Energy Co. 10-Q �ling as of March 31, 2019.
36For example, PDC Energy, credit agreement as of May 23, 2018, section Section 2.06 (e) Adjustment for Debt

Incurrence. See also Oasis Petroleum, credit agreement as of September 3, 2013, section 2.2 (e) Reduction of
Borrowing Base Upon Issuance of Senior Notes.
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credit amendment can also be sometimes required to permit the �rm to repurchase, re�nance or

repay the �rm's outstanding senior notes.37 As a result of triggered renegotiations, the maturity

dates can be realigned.

An additional technical reason for synchronization is the maturity acceleration clause. The

actual maturity date of the credit facility depends on the ability of the �rm to repay or otherwise

re�nance its other liabilities in a timely manner. The maturity of the credit revolving facility can

be accelerated forward and aligned with the maturity date of outstanding notes. For example, as

of December 31, 2019 HighPoint Resources Corporation had a credit facility with stated maturity

of September 14, 2023. However, the company also had more than $100 million of debt that

matures prior to December 14, 2023, because it had outstanding 7.0% Senior Notes with maturity

of October 15, 2022. As a result, the actual maturity date of the credit facility was July 16, 2022

(91 days prior to the maturity date of those notes) as the company reported in its 10-k �lings.38,39

3. Exploiting synchronization

Overall, co-dependence of di�erent types of long-term debt, co-issuance and re�nancing activities

create conditions for synchronization of debt-related payments. Of course, we do not argue that all

�rms necessarily have all of their payments perfectly synchronized. Instead, we argue that there

is a tendency for a certain degree of synchronization due to a certain degree of path-dependence.

Synchronization of payments allows us to identify oil �rms that were more likely to face various

payment deadlines from March to June of 2020. To do this, we use Dealscan data and search for

any data entries with an expiration date from March to June 2020. Although by December 31,

2019 all �rms in our sample had extended their credit revolving facilities beyond 2020, the mere

37See Whiting Petroleum Corporation 10-k �ling for the �scal year ended December 31, 2019: �On September 13,
2019, we amended the credit agreement to, among other things, permit the repurchase, redemption, prepayment or
other acquisition or retirement for value of any senior notes (as de�ned in the credit agreement) .� See also First
Amendment to Seventh Amended and Restated Credit Agreement dated as of September 13, 2019.

38See HighPoint Resources Corporation 10-k �ling for the �scal year ended December 31, 2019.
39See Unit Corporation 10-K �ling for the �scal year ended December 31, 2019: �The October 18, 2023 scheduled

maturity date of the loans under the Unit credit agreement will accelerate to November 16, 2020 to the extent that, on
or before that date, all the 2021 Senior Notes are not repurchased, redeemed, or re�nanced with indebtedness having
a maturity date at least six months following October 18, 2023 (the "Credit Agreement Extension Condition�). If
we are not able to successfully restructure our indebtedness, doubt may arise about our ability to timely repay our
outstanding senior subordinated notes�.
See also HighPoint Resources Corporation , Penn Virginia Corporation, SM Energy Company, Extraction Oil &

Gas Inc., Denbury Resources Inc. and many others.
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fact that at some point their credit facilities were set to expiry from March to June 2020 increases

the probability to observe other payment deadlines within the same time period.

A.3 Variable De�nitions

Well-level outcome variables created using Drillinginfo data and used in the main regressions:

• Production Cut is the one half of the change in monthly oil production from March to May

2020.40

• Shut-in Indicator equals 1 if a well produced in March 2020, but had zero production either

in April or May 2020.

• Well Completion Indicator is de�ned only for wells that were spud before March 1 2020, but

that were completed after that date. The indicator equals 1 if a was completed between

March and April 2020, and equal to 0 if it was completed at a later date.

Treatment indicators were created using Dealscan:

• Constrained is an indicator variable that equals 1 if �rm i had any credit facilities recorded

by the Dealscan that were set to expire in the 4 months from March to June of 2020, and 0

otherwise (as long as the �rm had any open credit facilities as of December 31, 2019).

• Fall Expiration is an indicator variable that equals 1 if �rm i had any credit facilities

recorded by the Dealscan that were set to expire from August to December of 2020, and 0

otherwise (as long as the �rm had any open credit facilities as of December 31, 2019).

The following operator-level variables use data that was hand-collected from 10-k SEC �lings and

annual reports as of December 31 2019:

• Gross Wells means the wells in which a �rm has a working interest.

• Net Wells is the sum of the fractional working interests owned in gross wells, as the case may

be, expressed as whole numbers and fractions thereof.

40We divide the actual production cuts over the two months by two to facilitate the comparison of our results
with existing estimates in the literature.
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• Fraction Oil the ratio of the number of �net� oil producing wells to the total number of �net�

oil and gas producing wells. This measure captures whether a �rm primarily extracts oil or

natural gas.

• Fraction Shale is the number of horizontal oil wells operated by �rm i in December of 2019

(based on Drilliginfo data) to the �gross� number of producing oil wells (from 10-k �lings).

This measure captures a degree to which a �rm is a conventional or unconventional/shale

producer.41

• Hedged Volume(also called Volume Hedged with Standard Contracts) is the the percentage

of �rm's projected 2020 oil production that was hedged with standard instruments such as

swaps, collars, and futures (as opposed to three-way collars, see below). We use production

recorded in 2019 to estimate projected volume.

Any Hedging with Standard Contracts is an indicator variable equal to 1 if the �rm hedged

any non zero volume with standard contracts.

• Volume Hedged with Three-Way Collars is the percentage of �rm's projected 2020 oil produc-

tion that was hedged using three-way collars. A three-way collar is a typical collar (buying a

put option and selling a call option), but in addition the producer sells a further out-of-the-

money put option, which makes hedging cheaper, but at the same time the producer also

takes on additional risk of signi�cant declines in oil prices. We use production recorded in

2019 to estimate projected volume.

Any Hedging with Three-Way Collars is an indicator variable equal to1 if the �rm hedged

any non zero volume with three-way collars.

• Committed Volume is the fraction of projected for 2020 volume committed forward by physi-

cal delivery commitments. We use production recorded in 2019 to estimate projected volume.

We use 10-k �lings to identify physical delivery commitments that require delivery of a min-

imum amount of oil through 2020.

41We could have used total production instead of the number of wells. However, it would be harder to account
for the wells that are owned by one �rm, but are operated by the other. Although this problem is not completely
solved by using the total number of wells, but at least we can distinguish gross and net number of wells owned by
each �rm.
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• Owns Re�nery is an indicator variable equal 1 if a �rm runs any downstream operations in

addition to oil and gas extractions and 0 otherwise.

• Operating Costs is the costs incurred by an operator to keep production �owing and typically

reported as the lease operating expenses. LOE include the costs associated with arti�cial

lift and maitaining arti�cial lift, water disposal costs, costs associated with employees who

regularly monitor and maintain wells etc.

• Days to Maturity is the number of days until the stated maturity date of the �rm's revolving

credit facility as of December 31, 2019 (from annual SEC �lings).

All �nancial variables are constructed as of the 2019 year end:

• Leverage is the ratio of long term debt and debt in current liabilities (Compustat items DLTT

and DLC) to stockholders' equity (Compustat item SEQ).

• Interest Coverage Ratio (ICR) is the ratio of operating income before depreciation (Compu-

stat item OIBDP) to interest expense (Compustat item XINT).

• Pro�tability is the ratio of operating income before depreciation (Compustat item OIBDP)

to total assets (Compustat item AT).

• Cash Flow is the sum of income before extraordinary items (Compustat item IBC) and

depreciation and amortization (Compustat item DP) to total assets (Compustat item AT).

• Short Term Debt is the ratio of debt in current liabilities (Compustat item DLC) to total

debt (the sum of Compustat items DLTT and DLC).

• Tobin's Q is the ratio of total assets (Compustat item AT), the market value of equity as of

the year end (multiplication of Compustat items PRCC and CSHO), minus the book value

of equity (Compustat item CEQ) to total assets.

• The Kaplan and Zingales (1997) index is constructed following Lamont et al. (2001) as

KZ = −1.002
CF

lagged PPENT
− 39.368

Div

lagged PPENT
− 1.315

Cash

lagged PPENT
+ 3.139

Lev

Lev + 1
+ 0.283Q,
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where cash �ow (CF) is the sum of income before extraordinary items (Compustat item

IB) and depreciation and amortization (Compustat item DP), dividends (Div) are measured

as common and preferred dividends (Compustat items DVC and DVP), Cash is cash and

short term investments (Compustat item CHE), leverage (Lev) is the ratio of long term debt

and debt in current liabilities (Compustat items DLTT and DLC) to stockholders' equity

(Compustat item SEQ), and Q is the ratio of total assets (Compustat item AT), the market

value of equity as of the �scal year end (multiplication of Compustat items PRCCf and

CSHO), minus the book value of equity and deferred taxes (Compustat items CEQ and

TXDB) to total assets. The �rst three variables are normalized by the lagged net value of

property, plant, and equipment (Compustat item PPENT).

• The Huang and Ritter (2021) measure is the cash position at the end of the prior �scal year,

plus the net cash �ow of the prior year (used as a projection for the current year's net cash

�ow):

Cashex ante = Cash+NCF

where Cash is cash and short term investments (Compustat item CHE) and the net cash

�ow is de�ned as NCF = ∆Cash−∆D −∆E, where ∆D is the change in interest-bearing

debt measured as long-term debt issuance (Compustat item DLTIS) minus long-term debt

reduction (Compustat item DLTR) and plus current debt changes (Compustat item DL-

CCH), and ∆E is the change in equity from the statements of cash �ow measured as the

sale of common and preferred stock (Compustat item SSTK) minus purchases of common

and preferred stock (Compustat item PRSTKC). We set missing DLCCH2019 to DLC2019

� DLC2018, and we set missing SSTK, PRSTKC, DLTIS, and DLTR to zero.

• The Whited and Wu (2006) index is constructed according to the following formula:

WW = �0.091
CF

AT
�0.062DIV POS + 0.021

DLTT

AT
�0.044ln(AT )�0.035SG

where cash �ow (CF) is the sum of income before extraordinary items (Compustat item IB)

and depreciation and amortization (Compustat item DP), DIVPOS is an indicator that takes
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the value of one if the �rm pays cash dividends (Compustat item DVT is positive), DLTT

is long term debt. Cash �ow and long term debt are normalized by total assets (Compustat

item AT). ln(AT ) is the natural log of total assets and SG is the �rm's sales growth (using

compustat item SALE). We drop ISG which is the �rm's three-digit SIC industry sales

growth, because we consider �rms from the same industry.

• The Altman Z-Score is calculated as

Z-score =3.3
EBIT

AT
+ 0.99

SALE

AT
+ 0.6

ME

LT
+ 1.2

ACT

AT
+ 1.4

RE

AT

in which the variable names correspond to the respective Compustat items. EBIT is earnings

before interest and taxes, SALE measures sales or turnover net, ME is the market value of

equity at year end calculated using Compustat item PRCC_C at the calendar year end

and the number of shares outstanding (Compustat item CSHO), ACT is the total current

assets or working capital, and RE stands for retained earnings. The market value of equity

is normalized by total liabilities (LT), and all other variables are normalized by total assets

(AT). We set missing retained earnings and missing current assets �gures to zero.
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A.4 Additional Figures

Figure 5: Failed Hedging and Production Responses.
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Notes: The top picture shows normalized monthly production from a �xed set of horizontal wells from July 2018 to
December 2021. For each group of operators we choose wells that were actively producing for at least 6 months in
March 2020. The production is normalized to 1 in March 2020 (also depicted by the �rst vertical line). Financially
constrained (unconstrained) operators are depicted by a black solid line (red dashed line) and are identi�ed by using
any (none) three-way collars to hedge their projected production in 2020 (see Section 3.2). The second vertical line
corresponds to July 2020.
The bottom pictures show the fraction of wells in each category that were shut-in in each month from January 2019
to December 2020. A well is de�ned to be shut-in in month t, if it produces nothing in month t, but has strictly
positive production in month t − 1. For each month t we distinguish wells into two categories based on observed
production in the previous month t−1: large wells produce more than 3000 barrels and medium wells produce from
500 barrels to 3000.
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Figure 6: Market performance of select oil producers in early 2020
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Notes: The �gure shows the market dynamics of select oil producers relative to the market in early 2020. The black

line corresponds to EOG Resources (ticker EOG), the red line corresponds to Apache Corporation (ticker APA),

and the blue line correponds to the SPDR S&P 500 ETF (SPY) for comparison. The vertical line depicts March 5,

2020, the last working day before the OPEC meeting in Vienna. The stock prices are normalized to 1 on March 5.
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A.5 Additional Tables

Table 13: Production cuts in response to the COVID-19 shock across the top 10 oil producing
states. Horizontal wells only.

Oil Production in

March 2020 (mln

bbl per day)

Change

from March

to May

2020 (%)

Oil Production in

March 2020 (mln

bbl per day)

Change

from March

to May

2020 (%)

Texas 4.65 -22 Wyoming 0.19 -48

North Dakota 1.40 -40 Ohio 0.07 -13

New Mexico 1.02 -25 West Virginia 0.04 -11

Colorado 0.49 -9 Utah 0.04 -18

Oklahoma 0.44 -42 Montana 0.03 -42

Total US 8.42 26

66



Table 14: Restricted Set of Geographical Units

Oil Well Production Response Well Shut-In Indicator
(1) (2) (3) (1) (2) (3)

Constrained 0.038∗∗∗ 0.047∗∗∗ 0.032∗∗ -0.023 -0.021 -0.012

(0.011) (0.012) (0.013) (0.014) (0.016) (0.013)

Log Cumulative Production, T=6m 0.003 0.001 0.001 -0.025∗∗∗ -0.016∗∗ -0.015∗∗

(0.005) (0.005) (0.005) (0.008) (0.007) (0.007)

Public Status 0.032 -0.188∗∗∗

(0.026) (0.056)

Hedged Volume 0.019 0.019 -0.004 0.015

(0.022) (0.025) (0.020) (0.019)

Committed Volume -0.008 0.008

(0.016) (0.013)

Fraction Oil 0.058 -0.066

(0.041) (0.044)

Fraction Shale -0.027 -0.035

(0.025) (0.027)

Owns Re�nery -0.051∗∗ 0.039∗

(0.021) (0.022)

Mean Dep.Var -0.111 -0.106 -0.104 0.066 0.055 0.056

Number of Wells 6491 6006 5857 6948 6356 6203

Number of Operators 81 42 41 83 42 41

R2 0.285 0.289 0.290 0.372 0.371 0.375

Geo FE Y Y Y Y Y Y

Well Controls Y Y Y Y Y Y

First Production FE Y Y Y Y Y Y

Notes: To provide additional evidence that the composition of wells does not drive our results, we
repeat our main analysis on a subset of geographical units that have wells of both types of operators.
We drop all geographical units that have wells of only one type, that is, if Constrainedi = 0 or
Constrainedi = 1 for all wells in unit s. Table 14 shows that our results remain unchanged. See
Tables 5 and 6 for details. St.err in parentheses are clustered at the �rm level. ? p<0.1, ?? p<0.05,
??? p<0.01
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Table 15: Placebo Test

Oil Well Production Response Well Shut-In Indicator
(1) (2) (3) (1) (2) (3)

Constrained -0.007 -0.011∗ -0.010 -0.003 -0.004 -0.005

(0.005) (0.006) (0.007) (0.003) (0.004) (0.005)

Log Cumulative Production, T=6m 0.005 0.002 0.004 0.000 -0.002 -0.001

(0.003) (0.003) (0.003) (0.002) (0.001) (0.002)

Public Status -0.009 -0.019∗∗

(0.010) (0.008)

Hedged Volume -0.015 -0.009 -0.004 -0.004

(0.012) (0.016) (0.005) (0.006)

Committed Volume -0.014 -0.001

(0.012) (0.005)

Fraction Oil 0.031 -0.013

(0.021) (0.018)

Fraction Shale -0.019 -0.005

(0.023) (0.009)

Owns Re�nery 0.000 -0.005

(0.015) (0.008)

Mean Dep.Var -0.078 -0.077 -0.076 0.007 0.007 0.007

Number of Wells 11214 9874 9370 12684 11093 10522

Number of Operators 107 47 43 109 47 43

R2 0.143 0.134 0.130 0.138 0.126 0.127

Geo FE Y Y Y Y Y Y

Well Controls Y Y Y Y Y Y

First Production FE Y Y Y Y Y Y

Notes: In this exercise, we run a placebo test by analyzing production cuts from the end of March to the end of

May 2019. The grouping of the �rms into more and less �nancially constrained categories remains unchanged. The

results can be compared to Table 5 and 6. See those tables for details. ? p<0.1, ?? p<0.05, ??? p<0.01
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Table 16: Vertical Wells

Oil Well Production Response
(1) (2) (3) (4) (5) (6)

Constrained 0.038∗∗ 0.057∗∗∗ 0.042∗∗∗ 0.041∗∗∗ 0.051∗∗∗ 0.043∗∗∗

(0.018) (0.014) (0.014) (0.014) (0.013) (0.012)

Log Cumulative Production, T=6m 0.007∗∗∗ 0.006∗∗∗ 0.008∗∗ 0.007∗∗

(0.002) (0.002) (0.003) (0.003)

Public Status 0.076∗ 0.078∗

(0.040) (0.040)

Hedged Volume 0.053∗∗ -0.072

(0.022) (0.073)

Committed Volume 0.135∗∗

(0.051)

Fraction Oil 0.010

(0.060)

Fraction Shale 0.032

(0.058)

Mean Dep.Var -0.103 -0.108 -0.108 -0.108 -0.096 -0.096

Number of Wells 11900 9696 9621 9623 7357 7324

Number of Operators 114 79 77 77 28 26

R2 0.005 0.225 0.229 0.215 0.248 0.251

Geo FE Y Y Y Y Y

Well Controls Y Y Y Y Y

First Production FE Y Y Y Y

Well Age Function Y

Notes: In this exercise, we repeat the main estimation as in Table 5 but for vertical wells. Vertical
wells have worse productivity on average than horizontal wells, even thought the top vertical well
produced 2.5 more than the top horizontal well in March 2020. In this exercise, we consider all
vertical wells with more than 100 barrels of oil per month. Well Controls now include the length
of the perforated interval instead of the horizontal length.
We �nd that constrained operators decreased production by 4-5 pp less than less constrained �rms
(or by 9pp over the two months of April and May). Thus, our �ndings for vertical wells are
consistent with out main results. The results become stronger, if we increase the threshold. The
number of operators is smaller for speci�cations that rely on 10-k SEC �lings, because we had not
collected this information for �rms operating vertical wells only. St.err in parentheses are clustered
at the �rm level. ? p<0.1, ?? p<0.05, ??? p<0.01
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Table 17: Realized Returns

Oil Well Production Response Well Shut-In Indicator
(1) (2) (3) (1) (2) (3)

Realized Return -0.040∗∗ -0.052∗∗∗ -0.028∗ 0.010 0.019 0.020

(0.016) (0.018) (0.015) (0.014) (0.018) (0.022)

Log Cumulative Production, T=6m 0.007 0.007 0.007 -0.021∗∗ -0.021∗∗ -0.020∗∗

(0.006) (0.006) (0.006) (0.009) (0.009) (0.009)

Hedged Volume 0.004 0.014 -0.036 -0.040

(0.018) (0.022) (0.034) (0.044)

Committed Volume 0.000 0.007

(0.019) (0.015)

Fraction Oil 0.056 -0.085∗∗

(0.035) (0.041)

Fraction Shale -0.036 -0.002

(0.026) (0.032)

Owns Re�nery -0.036 -0.013

(0.023) (0.034)

Mean Dep.Var -0.107 -0.109 -0.104 0.057 0.059 0.060

Number of Wells 11931 10969 10483 12641 11641 11134

Number of Operators 55 51 47 55 51 47

R2 0.261 0.279 0.268 0.373 0.377 0.381

Geo FE Y Y Y Y Y Y

Well Controls Y Y Y Y Y Y

First Production FE Y Y Y Y Y Y

Notes: In this exercise, we repeat the main estimation with the realized returns over the period
of failed OPEC-Russia negotiations from Thursday, March 5 to Monday, March 9, 2020, instead
of just a dummy variable as in Table 11. For the production cuts, the coe�cients on realized
returns are negative and signi�cant across all speci�cations, in line with our main results that
more �nancially constrained �rms (those with more negative realized returns) cut production by
less. The results on complete shut-ins have the right sign, but are insigni�cant. See Table 11 for
details. St.err in parentheses are clustered at the �rm level. ? p<0.1, ?? p<0.05, ??? p<0.01
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Table 18: (continues Table 4) Unconstrained and Constrained Firm Financial Characteristics

Unconstrained Constrained Di�erence
Log Employment -0.735 -0.326 0.409

(1.646) (1.572) (0.565)
Market Value 15,566.836 6,145.866 -9,420.970

(51,667.398) (10,870.102) (15,805.309)
Kaplan-Zingales 1.238 0.965 -0.272

(0.930) (1.065) (0.334)
Altman Z-score 0.558 0.209 -0.348

(1.875) (1.352) (0.613)
Almeida 0.019 0.014 -0.005

(0.033) (0.014) (0.010)
Whited-Wu -0.405 -0.401 0.004

(0.100) (0.105) (0.035)
Huang-Ritter 497.599 -1,764.406 -2,262.005

(3,025.714) (6,538.885) (1,428.905)
Market-to-Book Ratio 522.727 341.952 -180.775

(1,175.998) (487.886) (366.865)
Capital Intesity 0.185 0.199 0.014

(0.086) (0.105) (0.032)
Cost of Capital 9.567 6.068 -3.499

(13.532) (7.081) (4.478)
Earnings per Share -0.905 -3.020 -2.115

(4.157) (5.849) (1.598)
Payout Ratio -0.312 0.096 0.408

(4.515) (3.066) (1.465)
Return on Assets -0.098 -0.112 -0.014

(0.240) (0.233) (0.083)
Return on Equity -0.794 -1.638 -0.844

(1.890) (4.313) (0.922)
Return on investment -1.011 -0.145 0.866

(5.356) (0.305) (1.628)
Number of Operators 37 11 48

Notes: This tables compares average �nancial chacteristics of publically traded unconstrained and constrained
operators. Standard �nancial data are from Compustat. Variable descriptions are provided in Section A.1.
* p<0.1, ** p<0.05, *** p<0.01.
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Table 19: Additional Operator-Level Controls

Oil Well Production Response
(1) (2) (3) (4) (5) (6)

Constrained 0.043∗∗∗ 0.048∗∗∗ 0.048∗∗∗ 0.044∗∗∗ 0.041∗∗∗ 0.018

(0.010) (0.012) (0.014) (0.011) (0.013) (0.017)

Log Cumulative Production, T=6m 0.008∗ 0.008 0.008 0.006 0.008 0.007

(0.005) (0.005) (0.006) (0.006) (0.006) (0.005)

Hedged Volume 0.017 0.009 0.007 0.009 0.032

(0.023) (0.022) (0.022) (0.023) (0.025)

Operating Costs -0.001 0.007

(0.004) (0.005)

Log Days to Maturity 0.032∗∗∗ 0.024

(0.006) (0.017)

Owns Re�nery -0.037∗ -0.059

(0.021) (0.035)

Committed Volume -0.001

(0.017)

Fraction Oil 0.030

(0.031)

Fraction Shale -0.038

(0.023)

Mean Dep.Var -0.116 -0.112 -0.111 -0.111 -0.112 -0.107

Number of Wells 11351 10077 10031 9996 10077 9510

Number of Operators 104 47 46 45 47 41

R2 0.294 0.308 0.305 0.309 0.310 0.299

Geo FE Y Y Y Y Y Y

Well Controls Y Y Y Y Y Y

First Production FE Y Y Y Y Y Y

Notes: In this exercise we reestimate the speci�cation (6) in Table 5 but add additional operator-level

physical controls. See appendix A.3 for variable de�nitions. All data are taken as of December 31, 2019.
? p<0.1, ?? p<0.05, ??? p<0.01
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Table 20: (continue) Additional Operator-Level Controls

Oil Well Production Response
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Constrained 0.036∗∗∗ 0.033∗∗∗ 0.036∗∗∗ 0.035∗∗∗ 0.030∗∗ 0.039∗∗∗ 0.049∗∗∗ 0.035∗∗∗ 0.030∗∗ 0.033∗∗∗

(0.012) (0.011) (0.012) (0.012) (0.012) (0.010) (0.013) (0.012) (0.014) (0.012)

Leverage -0.002

(0.005)

Interest Coverage Ratio -0.018∗

(0.009)

Pro�tability -0.242

(0.209)

Cash Flow -0.901

(1.086)

Short Term Debt -0.019∗∗

(0.007)

Almeida 0.013

(0.008)

Kaplan-Zingales 0.015∗

(0.009)

Whited-Wu -0.002

(0.016)

Huang-Ritter -0.004

(0.009)

Altman Z-score -0.008

(0.009)

Mean Dep.Var -0.107 -0.107 -0.107 -0.107 -0.107 -0.107 -0.107 -0.107 -0.107 -0.107

Number of Wells 9510 9510 9510 9510 9510 9510 9510 9510 9510 9510

Number of Operators 41 41 41 41 41 41 41 41 41 41

R2 0.298 0.299 0.298 0.298 0.300 0.299 0.299 0.298 0.298 0.298

Geo FE Y Y Y Y Y Y Y Y Y Y

Well Controls Y Y Y Y Y Y Y Y Y Y

First Production FE Y Y Y Y Y Y Y Y Y Y

Operator Controls Y Y Y Y Y Y Y Y Y Y

Notes: In this exercise we reestimate the speci�cation (6) in Table 5 but add additional �nancial measures.
See appendix A.3 for variable de�nitions. All �nancial data are taken as of December 31, 2019. The
operator-level controls include the fraction of oil production, fraction of shale production, fraction of
production hedged with standard instruments, and fraction of volume committed using physical delivery
commitments. See speci�cation (6) in Table 5 for further details. ? p<0.1, ?? p<0.05, ??? p<0.01
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Table 21: (continue) Additional Operator-Level Controls

Oil Well Production Response
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Constrained 0.035∗∗ 0.036∗∗∗ 0.032∗∗ 0.038∗∗∗ 0.038∗∗∗ 0.012 0.033∗∗∗ 0.045∗∗∗ 0.037∗∗∗ 0.035∗∗∗

(0.014) (0.012) (0.013) (0.009) (0.012) (0.013) (0.011) (0.009) (0.012) (0.012)

Log Total Assets 0.002

(0.015)

Market Value -0.022

(0.013)

Tobin's Q -2.636

(2.173)

Tangibility -0.019

(0.012)

Market-to-Book Ratio -0.020

(0.014)

Capital Intesity -0.281∗∗∗

(0.068)

Cost of Capital -0.004

(0.010)

Payout Ratio -0.014∗∗∗

(0.004)

Return on Assets -0.838

(0.921)

Return on Equity 0.160

(0.224)

Mean Dep.Var -0.107 -0.107 -0.107 -0.107 -0.107 -0.107 -0.107 -0.107 -0.107 -0.107

Number of Wells 9510 9510 9510 9510 9505 9510 9460 9510 9510 9510

Number of Operators 41 41 41 41 40 41 39 41 41 41

R2 0.298 0.299 0.298 0.299 0.298 0.301 0.299 0.301 0.298 0.298

Geo FE Y Y Y Y Y Y Y Y Y Y

Well Controls Y Y Y Y Y Y Y Y Y Y

First Production FE Y Y Y Y Y Y Y Y Y Y

Operator Controls Y Y Y Y Y Y Y Y Y Y

Notes: In this exercise we reestimate the speci�cation (6) in Table 5 but add additional �nancial measures.
See appendix A.3 for variable de�nitions. All �nancial data are taken as of December 31, 2019. The
operator-level controls include the fraction of oil production, fraction of shale production, fraction of
production hedged with standard instruments, and fraction of volume committed using physical delivery
commitments. See speci�cation (6) in Table 5 for further details. ? p<0.1, ?? p<0.05, ??? p<0.01
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