House Prices and Negative Nominal Interest Rates

Genevieve Nelson

Danmarks Nationalbank

EEA Milan - August 22, 2022

This presentation represents solely the views of the author and does not in any way reflect the opinions of Danmarks Nationalbank.

Introduction	Model	Results	Conclusion
•0000			

Debt Substitution Channel

- Households substitute towards relatively cheaper debt.
- Increased demand for mortgage debt will push house prices up.

Introduction ○●○○○	Model	Results Co	onclusion
Evidence from the I	Danish Microdata		

$$\Delta i_{j,t}^{b} = \alpha + \eta I_{t}^{\text{negative}} + \beta \Delta i_{t}^{r} + \gamma \Delta i_{t}^{r} \times I_{t}^{\text{negative}} + \delta_{j} + z_{j,t}^{\prime} \theta + \epsilon_{j,t},$$

	(1)	(2)
	Bank Loans	Mortgage Loans
Δi_t^r	0.271***	0.040***
	(0.00)	(0.00)
$I_t^{negative} = 1 \times \Delta i_t^r$	-0.299***	0.068***
	(0.00)	(0.00)
$I_t^{negative} = 1$	-0.047***	0.112***
	(0.00)	(0.00)
Constant	0.033	0.083***
	(0.02)	(0.01)
Household FE	Yes	Yes
Household Controls	Yes	Yes
F statistic	7,319	2,726
Observations	12507980	10517470

Introduction ○●○○○	Model	Results C	onclusion
Evidence from the I	Danish Microdata		

$$\Delta i_{j,t}^{b} = \alpha + \eta I_{t}^{\text{negative}} + \beta \Delta i_{t}^{r} + \gamma \Delta i_{t}^{r} \times I_{t}^{\text{negative}} + \delta_{j} + z_{j,t}^{\prime} \theta + \epsilon_{j,t},$$

	(1)	(2)
	Bank Loans	Mortgage Loans
Δi_t^r	0.271***	0.040***
	(0.00)	(0.00)
$I_t^{negative} = 1 imes \Delta i_t^r$	-0.299***	0.068***
	(0.00)	(0.00)
$I_t^{negative} = 1$	-0.047***	0.112***
	(0.00)	(0.00)
Constant	0.033	0.083***
	(0.02)	(0.01)
Household FE	Yes	Yes
Household Controls	Yes	Yes
F statistic	7,319	2,726
Observations	12507980	10517470

Introduction 00000	Model	Results	Conclusion
Different Funding			

Commercial Banks:

- Funded by deposits.
- Deposit rates: do not fall (much) below zero.
- Squeezes commercial banks' net interest margin

 \implies erodes profitability/capital.

Mortgage Banks:

- Funded by mortgage bonds.
- Do not face the same stickiness around zero.
- Mortgage bank profitability not eroded.

Question: How does the transmission of monetary policy to house prices change below zero?

Question: How does the transmission of monetary policy to house prices change below zero? How does this affect overall monetary policy transmission?

Question: How does the transmission of monetary policy to house prices change below zero? How does this affect overall monetary policy transmission?

- House prices go up by more (following rate cuts).
- Consumption goes up by less...
 - \implies attenuated impact on inflation.

Question: How does the transmission of monetary policy to house prices change below zero? How does this affect overall monetary policy transmission?

- House prices go up by more (following rate cuts).
- Consumption goes up by less...
 - \implies attenuated impact on inflation.

Roadmap:

- Simple model debt substitution channel.
- NK model implications for inflation.

Theory Linking Bank Profits and Lending Conditions

- Ulate (2021)
- Eggertsson, Juelsrud, Summers & Wold (2019)
- Brunnermeier & Koby (2019)

Negative Interest Rates in Denmark

- Adolfsen & Spange (2020)
- Abildgren & Kuchler (2020)

Negative Interest Rates Empirical

- Heider Saidi & Schepens (2019)
- Ampudia & van den Heuvel (2019)

Introduction 00000	Model	Results	Conclusion
Saver-Banks			

Introduction 00000	Model	Results	Conclusion
Saver-Banks			

00000		
Saver-Banks		

$$\max_{\{\tilde{c}_t, b_t, l_t\}} E_0 \sum_{t=0}^{\infty} (\tilde{\beta}_t)^t \Big[\tilde{c}_t - \tilde{v}(l_t) \Big],$$

uncollateralized loans

Subject to:

$$\tilde{c}_t + l_t + b_t = \tilde{y} + R'_{t-1}l_{t-1} + R^b_{t-1}b_{t-1},$$

Introduction 00000	Model	Results	Conclusion
Saver-Banks			

$$\max_{\{\tilde{c}_t, b_t, l_t\}} E_0 \sum_{t=0}^{\infty} (\tilde{\beta}_t)^t \Big[\tilde{c}_t - \tilde{v}(l_t) \Big],$$

Introduction 00000	Model	Results	Conclusion
Saver-Banks			

$$\max_{\{\tilde{c}_t, b_t, l_t\}} E_0 \sum_{t=0}^{\infty} (\tilde{\beta}_t)^t \Big[\tilde{c}_t - \tilde{v}(l_t) \Big],$$

Introduction Model Results Conclus	sion

$$\max_{\{\tilde{c}_t, b_t, l_t\}} E_0 \sum_{t=0}^{\infty} (\tilde{\beta}_t)^t \Big[\tilde{c}_t - \tilde{\mathbf{v}}(l_t) \Big],$$

Subject to:

$$\tilde{c}_t + l_t + b_t = \tilde{y} + R_{t-1}^l l_{t-1} + R_{t-1}^b b_{t-1},$$

Exogenous Spread:
$$R_t^l - R_t^b = au_{l,t}$$
.

More Detail

Introduction Model Results Concl	

$$\max_{\{\hat{c}_t, b_t, l_t, \hat{h}_t\}} E_0 \sum_{t=0}^{\infty} (\hat{\beta}_t)^t \Big[\log(\hat{c}_t) + j \log(\hat{h}_t) \Big],$$

Introduction 00000	Model	Results	Conclusion
Borrowers			

$$\max_{\{\hat{c}_t, \hat{b}_t, l_t, \hat{h}_t\}} E_0 \sum_{t=0}^{\infty} (\hat{\beta}_t)^t \Big[\log(\hat{c}_t) + j \log(\hat{h}_t) \Big],$$

mortgage loans

Dermannen			
Introduction	Model	Results	Conclusion

$$\max_{\{\hat{c}_t, b_t, l_t, \hat{h}_t\}} E_0 \sum_{t=0}^{\infty} (\hat{\beta}_t)^t \Big[\log(\hat{c}_t) + j \log(\hat{h}_t) \Big],$$

uncollateralized loans

00000		
Rorroword		

Introduction 00000	Model	Results	Conclusion
Borrowers			

$$\max_{\{\hat{c}_t, b_t, l_t, \hat{h}_t\}} E_0 \sum_{t=0}^{\infty} (\hat{\beta}_t)^t \Big[\log(\hat{c}_t) + j \log(\hat{h}_t) \Big],$$

subject to:

$$\hat{c}_t + R_{t-1}^l I_{t-1} + R_{t-1}^b b_{t-1} + p_{h,t} \hat{h}_t = I_t + b_t + p_{h,t} \hat{h}_{t-1} + \hat{y},$$

Introduction 00000	Model	Results	Conclusion
Borrowers			

$$\max_{\{\hat{c}_t, b_t, l_t, \hat{h}_t\}} E_0 \sum_{t=0}^{\infty} (\hat{\beta}_t)^t \Big[\log(\hat{c}_t) + j \log(\hat{h}_t) \Big],$$

subject to:

$$\hat{c}_t + R_{t-1}^l I_{t-1} + R_{t-1}^b b_{t-1} + p_{h,t} \hat{h}_t = I_t + b_t + p_{h,t} \hat{h}_{t-1} + \hat{y},$$

Introduction 00000	Model	Results	Conclusion
Borrowers			

$$\max_{\{\hat{c}_t, b_t, l_t, \hat{h}_t\}} E_0 \sum_{t=0}^{\infty} (\hat{\beta}_t)^t \Big[\log(\hat{c}_t) + j \log(\hat{h}_t) \Big],$$

subject to:

$$\hat{c}_t + R_{t-1}^l I_{t-1} + R_{t-1}^b b_{t-1} + p_{h,t} \hat{h}_t = I_t + b_t + p_{h,t} \hat{h}_{t-1} + \hat{y},$$

$$\underbrace{R^b_t b_t}_{\text{repay on mortgage debt}} \leq \underbrace{m_b \ E_t \ \underline{p_{h,t+1} \hat{h}_t}}_{\text{future value of housing}},$$

 $\underbrace{l_t+b_t}_{} \leq m_y \underbrace{\hat{y}}_{}.$ total borrowing

Introduction 00000	Model	Results	Conclusion
Market Clearing			

Housing supply:

$$\hat{h}_t = H$$

Resource constraint:

$$\hat{c}_t + \tilde{c}_t = \hat{y} + \tilde{y}$$

Model

Results

Conclusion

Model

Results

Conclusion

Monetary Policy Cut

• Blue = monetary policy cut above zero.

Model

Results

Conclusion

- Blue = monetary policy cut above zero.
- Black = monetary policy cut below zero.

Model

Results

Conclusion

- Blue = monetary policy cut above zero.
- Black = monetary policy cut below zero.
- Red = marginal impact of the debt substitution channel.

Model

Results

Conclusion

- Blue = monetary policy cut above zero.
- Black = monetary policy cut below zero.
- Red = marginal impact of the debt substitution channel. More

Introduction 00000		Model		Results		Conclusion
Monetary	Policy	Hikes -	Weaker	at Fighting	Inflation	(1)

	Deller		M/aalian a		Inflation	(0)
Introduction 00000		Model		Results		Conclusion

Monetary Policy Hikes - Weaker at Fighting Inflation (2)

Introduction 00000	Model	Results	Conclusion
Conclusion			

When the nominal policy rate is negative:

- Monetary policy pass-though is different to mortgage rates vs other lending rates.
- Monetary policy cuts pushes house prices up by more.
- Monetary policy cuts are less effective at simulating borrower consumption and inflation.
- Monetary policy hikes (from low or negative nominal levels) are less effective at fighting inflation.

Tak!

Introduction Backup Slides

Results

Conclusion

Both Spreads

Introduction	

Mode

Result

Conclusion

Both Quantities and Spreads Changed

Data Backup Slides

Introduction

Results

Conclusion

Conditional Interest Rates

Bank Loans

Mortgage Loans

troduction	

Result

Conclusion

Reduced Pass-Through

$$\Delta i_{i,t}^{b} = \alpha + \eta I_{t}^{\text{negative}} + \beta \Delta i_{t}^{r} + \gamma \Delta i_{t}^{r} \times I_{t}^{\text{negative}} + \delta_{i} + \epsilon_{i,t},$$

	(1)	(2)	(3)
	Bank Loans	Housing related bank loans	Mortgage Loans
Δi_t^r	0.366***	0.322***	0.071***
	(0.03)	(0.04)	(0.01)
$I_t^{negative} = 1 \times \Delta i_t^r$	-0.525***	-0.365***	-0.066
	(0.11)	(0.08)	(0.03)
$I_t^{negative} = 1$	-0.022***	-0.027***	0.012***
	(0.00)	(0.01)	(0.00)
Constant	-0.001	0.001	-0.028***
	(0.00)	(0.00)	(0.00)
Bank FE	Yes	Yes	Yes
F statistic	135.45	51.96	22.41
Observations	3,274	3,252	1,326

Note: ***p < 0.01, **p < 0.05, *p < 0.1.

Introd	uction

Results

Conclusion

Reduced Pass-Through

$$\Delta i_{i,t}^{b} = \alpha + \eta I_{t}^{negative} + \beta \Delta i_{t}^{r} + \gamma \Delta i_{t}^{r} \times I_{t}^{negative} + \delta_{i} + \epsilon_{i,t},$$

	(1)	(2)	(3)
	Bank Loans	Housing related bank loans	Mortgage Loans
Δi_t^r	0.366***	0.322***	0.071***
	(0.03)	(0.04)	(0.01)
$I_t^{negative} = 1 \times \Delta i_t^r$	-0.525***	-0.365***	-0.066
	(0.11)	(0.08)	(0.03)
$I_t^{negative} = 1$	-0.022***	-0.027***	0.012***
	(0.00)	(0.01)	(0.00)
Constant	-0.001	0.001	-0.028***
	(0.00)	(0.00)	(0.00)
Bank FE	Yes	Yes	Yes
F statistic	135.45	51.96	22.41
Observations	3,274	3,252	1,326

Note: ***p < 0.01, **p < 0.05, *p < 0.1.

Model Backup Slides

Introduction	Model	Results	Concl

Mapping Savers to Banks

Source: Danmark Nationalbank's MFI Statistics.

Go Back

Introduction	Model	Results	Cone

Mapping Savers to Banks

Source: Danmark Nationalbank's MFI Statistics.

Introduction 00000	Model	Results	Conclu

Source: Danmark Nationalbank's MFI Statistics.

Introduction	Model	Results	Conclusion

Mapping Savers to Banks

Source: Danmark Nationalbank's MFI Statistics.

Go Back

$$\tilde{\mathbf{v}}(\mathbf{I}_t) = \tilde{\beta}_t \tau_{\mathbf{I},t} \mathbf{I}_t,$$

Introduction 00000	Model	Results	Conclusion
House Pricing Equ	lation		

$$p_{h,t} = j\hat{c}_t + j\sum_{i=0}^{\infty} \hat{c}_{t+i+1} \left\{ \prod_{k=0}^{i} \left[\frac{\hat{c}_{t+k}}{\hat{c}_{t+k+1}} \hat{\beta} \right] \right\}$$

Introduction 00000	Model	Results	Conclusion
House Pricing Equa	ition		

$$p_{h,t} = j\hat{c}_t + j\sum_{i=0}^{\infty} \hat{c}_{t+i+1} \left\{ \prod_{k=0}^{i} \left[\frac{\hat{c}_{t+k}}{\hat{c}_{t+k+1}} \hat{\beta} \left(1 + m_b \frac{R_{t+k}^{i} - R_{t+k}^{b}}{R_{t+k}^{b}} \right) \right] \right\}$$

	E a la l		
Introduction 00000	Model	Results	Conclusion

$$p_{h,t} = j\hat{c}_t + j\sum_{i=0}^{\infty} \hat{c}_{t+i+1} \left\{ \prod_{k=0}^{i} \left[\frac{\hat{c}_{t+k}}{\hat{c}_{t+k+1}} \hat{\beta} \left(1 + m_b \frac{R_{t+k}^{i} - R_{t+k}^{b}}{R_{t+k}^{b}} \right) \right] \right\}$$

Results Backup Slides

	Δ	The Delte Coloria	
Introduction 00000	Model	Results	Conclusion

Go Back

Model

Result

Conclusion

Monetary Policy Cuts - Less Inflationary

Go Back