TRANSPARENCY AND INNOVATION IN ORGANIZATIONS

Osamu HAYASHIDA Kimiyuki MORITA(speaker) Takeharu SOGO Osaka University of Economics Senshu University SKEMA Business School

MOTIVATING EXAMPLE: EULOGY

- Eulogy, a communication agency, increased transparency by invited its clients to brainstorming sessions.
- The creative team then would stop pursuing early-stage ideas if they received negative reactions from the clients.
- The CEO Adrian Brady explains:

A client's immediate negative reaction to a potentially great idea can end a conversation before it takes flight, making it hard to do anything big or new.

WHAT WE DO

Two-period principal-agent model without incentive contracts

Aim: exploring how transparency affects incentives to innovate

Our transparency: the availability of observable, but noncontractible interim performance measures

- Management/supervisors/coworkers share performance measures (e.g., corporate culture)
- A supervisor gives straight feedback to its subordinate
- Internal seminars

WHAT WE DO

Innovation consists of two stages: idea generation and idea implementation (Anderson et al., 2014).

 Idea implementation is the process of converting new ideas into new and improved products, services, or ways of doing things

Key Tradeoff:

- Transparency is more likely to induce idea generation.
- Transparency hurts idea implementation incentive.

THE MODEL

OVERVIEW

- Two-period principal-agent model
- Output depends on A's effort and value of idea
 - In each t, A chooses "new idea (N)" or "known idea (K)"
 - Initiating new idea incurs a setup cost k > 0, k = 0 in this presentation.
 - In each t, **A** chooses e_t at cost $c(e_t) = \frac{1}{2}e_t^2$
- **P** can commit ex-ante to make the organization. "transparent" or "opaque"
 - P cannot write any contingent contracts
- Only under transparent org, P and A can observe interim performance measure.

PERIOD 1

• Interim output given $i_1 \in \{N, K\}$ and e_1 :

 $\overline{x_1 = \gamma V(i_1)} + (1 - \gamma)e_1$

- $V(N) = \theta$: value of new idea
 - Unknown to both parties
 - $\theta \sim U[0,2\mu]$ and $E[\theta] = \mu$
- $V(K) = \mu$: value of known idea
- $\gamma \in (0,1)$: relative Importance of idea quality over effort

BETWEEN THE TWO PERIODS

• Under transparent org, **P** and **A** observe signal s about x_1 :

$$s = x_1 + \varepsilon$$

- $\varepsilon \sim F_{\varepsilon}$: measurement error
 - **Perfect signal**: $\varepsilon = 0$ always
 - Extensions to imperfect signal:
 (Case 1) ε ~U[−d, d] and (Case 2) ε ~N(0, σ_ε)

PERIOD 2

• Final output given (e_1, e_2, i_1, i_2) :

 $x_2 = \begin{cases} \gamma V(i_2) + (1 - \gamma)(e_1 + e_2) & \text{if } \mathbf{A} \text{ keeps the same idea } (i_1 = i_2) \\ \gamma V(i_2) + (1 - \gamma)(\rho e_1 + e_2) & \text{if } \mathbf{A} \text{ switches idea} (i_1 \neq i_2) \end{cases}$

- *e*₁ : the degree of the acquired knowledge
- $\rho \in [0,1]$: the **generality** of the acquired knowledge
- Wasting effect: upon switching, the contribution of past effort is reduced by $(1 \gamma)(1 \rho)e_1$.
 - Wasting effect is greater when the knowledge is specific (small ρ)

TIMELINE

A does not choose **new idea** after adopting **known idea** in *t*=1

ANALYSIS

OPAQUE ORGANIZATION

• A works with known idea in each period.

- The expected value of each idea is $E[\theta] = \mu$ since **A** cannot learn θ , and **A** has no incentive to switch due to **wasting effect**.
- A jointly chooses (e_1, e_2) to maximize $\pi(K) = \lambda E[x_2 | i_1 = i_2 = K] - c(e_1) - c(e_2)$ $= \lambda \{ \gamma \mu + (1 - \gamma)(e_1 + e_2) \} - c(e_1) - c(e_2)$
- $e^{\text{OP}} \coloneqq e_1^{\text{OP}} = e_2^{\text{OP}} = \lambda(1-\gamma)$
 - No complementarity between idea quality and effort.

TRANSPARENT ORGANIZATION

- Transparency reveals the value of new idea and may lead to the switching of an idea.
 - A switches his idea with positive probability for $\gamma > \gamma_A$.
- A tension between idea sorting and idea implementation:

(+) Sorting effect: transparency improves the expected idea quality by better sorting.

(-) **Demotivating effect**: the possibility of wasting his effort hurts **A**'s effort incentive in t=1, as in Eulogy example.

• Sorting effect dominates if γ is sufficiently high.

 $\Delta\Pi \coloneqq \Pi^{\mathrm{TR}} - \Pi^{\mathrm{OP}}$

Role of skill generality ρ

ROLE OF SKILL GENERALITY

- Recall that the demerits of switching ideas are the wasting effect and the demotivating effect.
- As the knowledge becomes more general (ρ increases), these demerits are reduced.
- Larger $\rho \Longrightarrow e_1^{TR}(N) \uparrow$ and $\Pi^{TR} \uparrow$

This conjecture is false!

We consider a limiting case $k \rightarrow 0$

ROLE OF SKILL GENERALITY

- Imagine ρ rises so that the acquired knowledge becomes more general.

(+) Less waste of past effort, which is motivating
 (-) Switching probability increases, which is demotivating

• If γ is so small that effort matters a lot and switching rarely occurs, the latter effect dominates.

• $e_1^{\mathrm{TR}}(N) \downarrow$ • $\Pi^{\mathrm{TR}} \downarrow$

ROLE OF SIGNAL PRECISION

ROLE OF SIGNAL PRECISION

- (Case 1) Both θ and ε are uniformly (and independently) distributed
- (Case 2) Both θ and ε are normally (and independently) distributed • σ_{ε}^2 : variance of the measurement error ε (signal's precision)
 - As the signal becomes more precise, transparency is more likely to be beneficial by better sorting?

ROLE OF SIGNAL PRECISION ON Π^{TR}

When interim performance measure is less precise:

- 1. Sorting effect is smaller (i.e., idea quality improves less)
- 2. Switching probability is reduced, which increases firstperiod effort incentives; thus, $\frac{de_1^{\text{TR}}}{d\sigma_2} > 0$

If γ is so small that effort matters a lot

 \Rightarrow Switching rarely occurs

 \Rightarrow The latter effect dominates the former $\Rightarrow \Pi^{TR} \uparrow$

CONCLUDING REMARKS

- We show that transparency facilitates idea generation, but it is counter-productive if idea implementation is important.
- Transparency may become more counter-productive if
 (i) the acquired knowledge becomes less idea-specific or
 (ii) the interim performance measure becomes more precise.

THANK YOU!