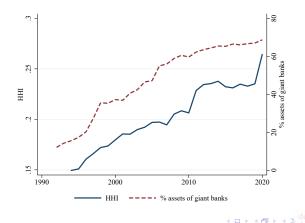
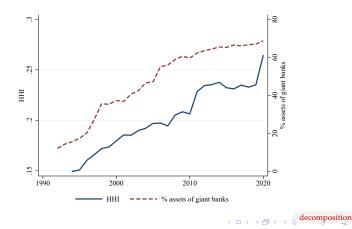
Bank Concentration and Monetary Policy Pass-Through

Isabel Gödl-Hanisch LMU Munich


EEA-ESEM Milano

August 24, 2022

<ロト < 個 > < 目 > < 目 > 三日 の Q @


Motivation: Rise in U.S. Bank Concentration

- 1. Local Herfindahl-Hirschman Index (HHI) increased from 15% to 26%
- 2. Asset share of giant banks increased from 10% to 60%

Motivation: Rise in U.S. Bank Concentration

- 1. Local Herfindahl-Hirschman Index (HHI) increased from 15% to 26%
- 2. Asset share of giant banks increased from 10% to 60%

Research Question

Research question:

How does rising bank concentration alter monetary transmission?

1. Market power channel:

 \Rightarrow Local bank concentration \rightarrow markup \rightarrow pass-through

2. Capital allocation channel:

 \Rightarrow Bank capital regulation \rightarrow marginal cost \rightarrow pass-through

Research question:

How does rising bank concentration alter monetary transmission?

1. Market power channel:

 \Rightarrow Local bank concentration \rightarrow markup \rightarrow pass-through

2. Capital allocation channel:

 \Rightarrow Bank capital regulation \rightarrow marginal cost \rightarrow pass-through

Research question:

How does rising bank concentration alter monetary transmission?

1. Market power channel:

 \Rightarrow Local bank concentration \rightarrow markup \rightarrow pass-through

2. Capital allocation channel:

 \Rightarrow Bank capital regulation \rightarrow marginal cost \rightarrow pass-through

Research question:

How does rising bank concentration alter monetary transmission?

1. Market power channel:

 \Rightarrow Local bank concentration \rightarrow markup \rightarrow pass-through

2. Capital allocation channel:

 \Rightarrow Bank capital regulation \rightarrow marginal cost \rightarrow pass-through

1. Uses granular deposit and loan rate data from RateWatch to quantify

- Cross-sectional pass-through of monetary shocks to loan rates
- Contribution of local bank concentration and bank capitalization
- 2. Uses theoretical model to rationalize empirical findings
 - Accounts for differences across banks and branchesaria
 - Biplicit modeling of bank market power and capital ratios
- 3. Uses quantitative framework to assess macroeconomic impact
 - Embeds theoretical model into New Keynesian model
 - Quantify change in transmission due to rising bank concentration
 - 이유아 비를 세종 세종 세종 세미 /

1. Uses granular deposit and loan rate data from RateWatch to quantify

- o Cross-sectional pass-through of monetary shocks to loan rates
- Contribution of local bank concentration and bank capitalization
- 2. Uses theoretical model to rationalize empirical findings
 - Accounts for differences across banks and branchese
 - Buplicit modeling of bank market power and capital ratios
- 3. Uses quantitative framework to assess macroeconomic impact
 - Embeds theoretical model into New Keynesian model
 - Quantify change in transmission due to rising bank concentration
 - 이유아 비를 세종 / 세종 / 백 / 4 대 /

- 1. Uses granular deposit and loan rate data from RateWatch to quantify
 - Cross-sectional pass-through of monetary shocks to loan rates
 - Contribution of local bank concentration and bank capitalization
- 2. Uses theoretical model to rationalize empirical findings
 - Accounts for differences across banks and branchese
 - Biplicit modeling of bank market power and capital ratios
- 3. Uses quantitative framework to assess macroeconomic impact
 - Embeds theoretical model into New Keynesian model
 - Quantify change in transmission due to rising bank concentration

- 1. Uses granular deposit and loan rate data from RateWatch to quantify
 - Cross-sectional pass-through of monetary shocks to loan rates
 - Contribution of local bank concentration and bank capitalization
- 2. Uses theoretical model to rationalize empirical findings
 - Accounts for differences across banks and branchese
 - Biplicit modeling of bank market power and capital ratios
- 3. Uses quantitative framework to assess macroeconomic impact
 - Embeds theoretical model into New Keynesian model
 - Quantify change in transmission due to rising bank concentration

- 1. Uses granular deposit and loan rate data from RateWatch to quantify
 - o Cross-sectional pass-through of monetary shocks to loan rates
 - Contribution of local bank concentration and bank capitalization
- 2. Uses theoretical model to rationalize empirical findings
 - Accounts for differences across banks and branches
 - Explicit modeling of bank market power and capital ratios
- 3. Uses quantitative framework to assess macroeconomic impact
 - Imbeds theoretical model into New Keynesian model
 - Quantify change in transmission due to rising bank concentration

- 1. Uses granular deposit and loan rate data from RateWatch to quantify
 - o Cross-sectional pass-through of monetary shocks to loan rates
 - Contribution of local bank concentration and bank capitalization
- 2. Uses theoretical model to rationalize empirical findings
 - Accounts for differences across banks and branches
 - Explicit modeling of bank market power and capital ratios
- 3. Uses quantitative framework to assess macroeconomic impact
 - Embeds theoretical model into New Keynesian model
 - Quantify change in transmission due to rising bank concentration.

- 1. Uses granular deposit and loan rate data from RateWatch to quantify
 - o Cross-sectional pass-through of monetary shocks to loan rates
 - Contribution of local bank concentration and bank capitalization
- 2. Uses theoretical model to rationalize empirical findings
 - Accounts for differences across banks and branches
 - Explicit modeling of bank market power and capital ratios
- Uses quantitative framework to assess macroeconomic impact
 Embeds theoretical model into New Keynesian model
 Quantity change in transmission due to chang bank concentration

- 1. Uses granular deposit and loan rate data from RateWatch to quantify
 - o Cross-sectional pass-through of monetary shocks to loan rates
 - Contribution of local bank concentration and bank capitalization
- 2. Uses theoretical model to rationalize empirical findings
 - Accounts for differences across banks and branches
 - Explicit modeling of bank market power and capital ratios
- Uses quantitative framework to assess macroeconomic impact
 Embeds theoretical model into New Keynesian model
 Quantity change in transmission due to chang bank concentration

- 1. Uses granular deposit and loan rate data from RateWatch to quantify
 - o Cross-sectional pass-through of monetary shocks to loan rates
 - Contribution of local bank concentration and bank capitalization
- 2. Uses theoretical model to rationalize empirical findings
 - o Accounts for differences across banks and branches
 - Explicit modeling of bank market power and capital ratios
- 3. Uses quantitative framework to assess macroeconomic impact
 - Embeds theoretical model into New Keynesian model
 - Quantify change in transmission due to rising bank concentration
 - Decomposition into market power and capital allocation channels
 ・ロト・(ア・・ミト・ミト・ミト・シート)

- 1. Uses granular deposit and loan rate data from RateWatch to quantify
 - o Cross-sectional pass-through of monetary shocks to loan rates
 - Contribution of local bank concentration and bank capitalization
- 2. Uses theoretical model to rationalize empirical findings
 - o Accounts for differences across banks and branches
 - Explicit modeling of bank market power and capital ratios
- 3. Uses quantitative framework to assess macroeconomic impact
 - o Embeds theoretical model into New Keynesian model
 - Quantify change in transmission due to rising bank concentration

- 1. Uses granular deposit and loan rate data from RateWatch to quantify
 - o Cross-sectional pass-through of monetary shocks to loan rates
 - Contribution of local bank concentration and bank capitalization
- 2. Uses theoretical model to rationalize empirical findings
 - o Accounts for differences across banks and branches
 - Explicit modeling of bank market power and capital ratios
- 3. Uses quantitative framework to assess macroeconomic impact
 - o Embeds theoretical model into New Keynesian model
 - Quantify change in transmission due to rising bank concentration

- 1. Uses granular deposit and loan rate data from RateWatch to quantify
 - o Cross-sectional pass-through of monetary shocks to loan rates
 - Contribution of local bank concentration and bank capitalization
- 2. Uses theoretical model to rationalize empirical findings
 - o Accounts for differences across banks and branches
 - Explicit modeling of bank market power and capital ratios
- 3. Uses quantitative framework to assess macroeconomic impact
 - o Embeds theoretical model into New Keynesian model
 - Quantify change in transmission due to rising bank concentration
 - Decomposition into market power and capital allocation channels

1. Empirical results show that policy rate pass-through to loan rates

- $\circ~$ Is larger for *branches* in high vs. low concentration markets ($\sim 2 \times$)
- Is larger for *banks* with low vs. high capital ratio ($\sim 1.5 \times$)
- 2. Quantitative framework reveals that rising bank concentration
 - \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow
 - Dampens effect on nominal variables
 - \rightarrow Plattens the Phillips curve

- 1. Empirical results show that policy rate pass-through to loan rates
 - $\circ~$ Is larger for *branches* in high vs. low concentration markets ($\sim 2 \times$)
 - \circ Is larger for *banks* with low vs. high capital ratio (~ 1.5×)
- 2. Quantitative framework reveals that rising bank concentration
 - \rightarrow Amplifies monetary transmission to real economy
 - \rightarrow Dampens effect on nominal variables
 - \rightarrow Plattens the Phillips curve

- 1. Empirical results show that policy rate pass-through to loan rates
 - $\circ~$ Is larger for *branches* in high vs. low concentration markets ($\sim 2 \times$)
 - $\circ~$ Is larger for *banks* with low vs. high capital ratio ($\sim 1.5 \times$)
- 2. Quantitative framework reveals that rising bank concentration
 - \rightarrow Amplifies monetary transmission to real economy
 - → Dampens effect on nominal variables
 - ightarrow Plattens the Phillips curve

- 1. Empirical results show that policy rate pass-through to loan rates
 - $\circ~$ Is larger for *branches* in high vs. low concentration markets ($\sim 2 \times$)
 - $\circ~$ Is larger for *banks* with low vs. high capital ratio ($\sim 1.5 \times$)
- 2. Quantitative framework reveals that rising bank concentration
 - \rightarrow Amplifies monetary transmission to real economy
 - → Dampens effect on nominal variables
 - ightarrow Plattens the Phillips curve

- 1. Empirical results show that policy rate pass-through to loan rates
 - $\circ~$ Is larger for *branches* in high vs. low concentration markets ($\sim 2 \times$)
 - $\circ~$ Is larger for *banks* with low vs. high capital ratio ($\sim 1.5 \times$)
- 2. Quantitative framework reveals that rising bank concentration
 - \rightarrow Amplifies monetary transmission to real economy
 - \rightarrow Dampens effect on nominal variables
 - \rightarrow Flattens the Phillips curve

- 1. Empirical results show that policy rate pass-through to loan rates
 - $\circ~$ Is larger for *branches* in high vs. low concentration markets ($\sim 2 \times$)
 - Is larger for *banks* with low vs. high capital ratio ($\sim 1.5 \times$)
- 2. Quantitative framework reveals that rising bank concentration
 - \rightarrow Amplifies monetary transmission to real economy
 - \rightarrow Dampens effect on nominal variables
 - \rightarrow Flattens the Phillips curve

- 1. Empirical results show that policy rate pass-through to loan rates
 - $\circ~$ Is larger for *branches* in high vs. low concentration markets ($\sim 2 \times$)
 - Is larger for *banks* with low vs. high capital ratio ($\sim 1.5 \times$)
- 2. Quantitative framework reveals that rising bank concentration
 - \rightarrow Amplifies monetary transmission to real economy
 - \rightarrow Dampens effect on nominal variables
 - \rightarrow Flattens the Phillips curve

- 1. Empirical results show that policy rate pass-through to loan rates
 - $\circ~$ Is larger for *branches* in high vs. low concentration markets ($\sim 2 \times$)
 - Is larger for *banks* with low vs. high capital ratio ($\sim 1.5 \times$)
- 2. Quantitative framework reveals that rising bank concentration
 - \rightarrow Amplifies monetary transmission to real economy
 - \rightarrow Dampens effect on nominal variables
 - \rightarrow Flattens the Phillips curve

Data and Empirical Findings

1. Deposit and loan rates, *branch level*, monthly, *RateWatch* survey instrument

- Coverage: U.S. commercial banks
- Sample of different banking products
- 1-year hybrid adjustable-rate mortgage (ARM) %
- Loan rate quotes for prime customer, fixed loan amount (\$175k)
- Time period: 2000:M1 2019:M3
- 2. Bank balance sheet, bank level, quarterly, FDIC bank indicators (e.g., capital ratio)
- 3. Deposits, branch level, annual, FDIC county-HHI

1. Deposit and loan rates, *branch level*, monthly, *RateWatch* survey instrument

- Coverage: U.S. commercial banks
- Sample of different banking products
- 1-year hybrid adjustable-rate mortgage (ARM) ^(%)
- Loan rate quotes for prime customer, fixed loan amount (\$175k)
- Time period: 2000:M1 2019:M3
- 2. Bank balance sheet, bank level, quarterly, FDIC bank indicators (e.g., capital ratio)
- 3. Deposits, branch level, annual, FDIC county-HHI

- 1. Deposit and loan rates, *branch level*, monthly, *RateWatch* survey instrument
 - Coverage: U.S. commercial banks
 - Sample of different banking products
 - 1-year hybrid adjustable-rate mortgage (ARM) %
 - Loan rate quotes for prime customer, fixed loan amount (\$175k)
 - Time period: 2000:M1 2019:M3
- 2. Bank balance sheet, bank level, quarterly, FDIC bank indicators (e.g., capital ratio)
- 3. Deposits, branch level, annual, FDIC county-HHI

1. Deposit and loan rates, *branch level*, monthly, *RateWatch* survey instrument

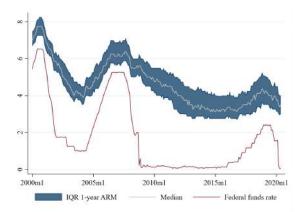
- Coverage: U.S. commercial banks
- Sample of different banking products
- 1-year hybrid adjustable-rate mortgage (ARM) %
- Loan rate quotes for prime customer, fixed loan amount (\$175k)
- Time period: 2000:M1 2019:M3
- 2. Bank balance sheet, *bank level*, quarterly, *FDIC* bank indicators (e.g., capital ratio)
- 3. Deposits, branch level, annual, FDIC county-HHI

1. Deposit and loan rates, *branch level*, monthly, *RateWatch* survey instrument

- Coverage: U.S. commercial banks
- Sample of different banking products
- 1-year hybrid adjustable-rate mortgage (ARM) %
- Loan rate quotes for prime customer, fixed loan amount (\$175k)
- Time period: 2000:M1 2019:M3
- 2. Bank balance sheet, *bank level*, quarterly, *FDIC* bank indicators (e.g., capital ratio)
- 3. Deposits, branch level, annual, FDIC county-HHI

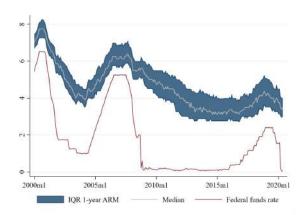
1. Deposit and loan rates, *branch level*, monthly, *RateWatch* survey instrument

- Coverage: U.S. commercial banks
- Sample of different banking products
- 1-year hybrid adjustable-rate mortgage (ARM) %
- Loan rate quotes for prime customer, fixed loan amount (\$175k)
- Time period: 2000:M1 2019:M3
- 2. Bank balance sheet, bank level, quarterly, FDIC bank indicators (e.g., capital ratio)
- 3. Deposits, branch level, annual, FDIC county-HHI


1. Deposit and loan rates, branch level, monthly, RateWatch survey instrument

- Coverage: U.S. commercial banks
- Sample of different banking products
- 1-year hybrid adjustable-rate mortgage (ARM) %
- Loan rate quotes for prime customer, fixed loan amount (\$175k)
- Time period: 2000:M1 2019:M3
- 2. Bank balance sheet, *bank level*, quarterly, *FDIC* bank indicators (e.g., capital ratio)
- 3. Deposits, branch level, annual, FDIC county-HHI

1. Deposit and loan rates, branch level, monthly, RateWatch survey instrument


- Coverage: U.S. commercial banks
- Sample of different banking products
- 1-year hybrid adjustable-rate mortgage (ARM) %
- Loan rate quotes for prime customer, fixed loan amount (\$175k)
- Time period: 2000:M1 2019:M3
- 2. Bank balance sheet, *bank level*, quarterly, *FDIC* bank indicators (e.g., capital ratio)
- 3. Deposits, branch level, annual, FDIC county-HHI

Rate Dispersion across Banks and Branches

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回▲ のへで

Rate Dispersion across Banks and Branches

- ▶ IQR across *banks* in the same market: 1.03
- ▶ IQR across *branches* of the same bank: 0.32

deposit rate decomposition other loan rates

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Local projections:

$$r_{t+h,i,c} - r_{t-1,i,c} = \alpha_i^h + \beta^h s_t + \underbrace{\gamma^h s_t \times X_{t,i,c}}_{\substack{\text{local HHI or}\\\text{bank capitalization}}} + \theta^h X_{t,i,c} + \eta^h Z_{t,c} + \epsilon_{t+h,i,c}$$

St monetary surprise (Nakamura and Steinsson, 2018) time-series

- \blacktriangleright *X_{t,i,c}* county-level HHI, bank capital to assets ratio
- Z_{t,c} controls for national and local economic conditions

Local projections:

$$r_{t+h,i,c} - r_{t-1,i,c} = \alpha_i^h + \beta^h s_t + \underbrace{\gamma^h s_t \times X_{t,i,c}}_{\substack{\text{local HHI or bank capitalization}}} + \theta^h X_{t,i,c} + \eta^h Z_{t,c} + \epsilon_{t+h,i,c}$$

- St monetary surprise (Nakamura and Steinsson, 2018) time-series
- \blacktriangleright X_{*t*,*i*,*c*} county-level HHI, bank capital to assets ratio
- Z_{t,c} controls for national and local economic conditions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Local projections:

$$r_{t+h,i,c} - r_{t-1,i,c} = \alpha_i^h + \beta^h s_t + \underbrace{\gamma^h s_t \times \mathbf{X}_{t,i,c}}_{\substack{\text{local HHI or}\\\text{bank capitalization}}} + \theta^h \mathbf{X}_{t,i,c} + \eta^h \mathbf{Z}_{t,c} + \epsilon_{t+h,i,c}$$

- St monetary surprise (Nakamura and Steinsson, 2018) time-series
- ▶ *X*_{*t*,*i*,*c*} county-level HHI, bank capital to assets ratio
- Z_{t,c} controls for national and local economic conditions

Pass-through: $\beta^h + \gamma^h X_{t,i,c}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Local projections:

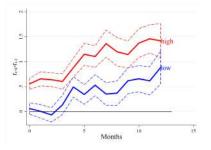
$$r_{t+h,i,c} - r_{t-1,i,c} = \alpha_i^h + \beta^h s_t + \underbrace{\gamma^h s_t \times X_{t,i,c}}_{\substack{\text{local HHI or} \\ \text{back capitalization}}} + \theta^h X_{t,i,c} + \eta^h Z_{t,c} + \epsilon_{t+h,i,c}$$

- St monetary surprise (Nakamura and Steinsson, 2018) time-series
- ▶ *X*_{*t*,*i*,*c*} county-level HHI, bank capital to assets ratio
- Z_{t,c} controls for national and local economic conditions

Pass-through | High: $\beta^h + \gamma^h X^{high}$

Local projections:

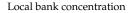
$$r_{t+h,i,c} - r_{t-1,i,c} = \alpha_i^h + \beta^h s_t + \underbrace{\gamma^h s_t \times X_{t,i,c}}_{\substack{\text{local HHI or } \\ \text{back capitalization}}} + \theta^h X_{t,i,c} + \eta^h Z_{t,c} + \epsilon_{t+h,i,c}$$

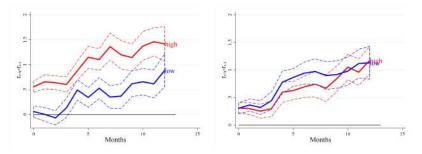

- St monetary surprise (Nakamura and Steinsson, 2018) time-series
- ▶ *X*_{*t*,*i*,*c*} county-level HHI, bank capital to assets ratio
- Z_{t,c} controls for national and local economic conditions

Pass-through | Low: $\beta^h + \gamma^h X^{low}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

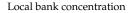
Pass-Through by Bank Concentration and Capitalization

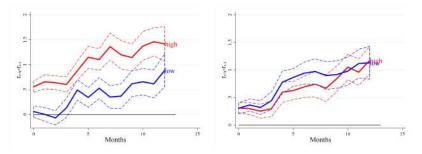

Local bank concentration


Monetary shock scaled to a 1 p.p. impact increase in federal funds rate.

HMDA mortg. conc. other monetary shocks other rates rural vs. urban dep % vs. # of banks

Pass-Through by Bank Concentration and Capitalization


Bank capitalization


Monetary shock scaled to a 1 p.p. impact increase in federal funds rate.

HMDA mortg. conc. other monetary shocks other rates rural vs. urban dep % vs. # of banks

Pass-Through by Bank Concentration and Capitalization

Bank capitalization

Monetary shock scaled to a 1 p.p. impact increase in federal funds rate.

HMDA mortg. conc. other monetary shocks other rates rural vs. urban dep % vs. # of banks

Simple Model of Heterogeneous Pass-Through

$$\max_{r_i^{l,c}, r_i^{l,c}} \Pi_i^c = r_i^{l,c} L_i^c(r^{l,c}) + r^f R_i^c - r_i^d D_i^c(r^{d,c})$$

s.t.

1. Bank capital requirement: $K_i^{b,c} \ge \lfloor \nu_i^b \rfloor L_i^c$,

3. Balance sheet constraint: $L_i^c + R_i^c = D_i^c + K_i^{b}$,

*CES setup is isomorphic to heterogeneous borrowers with stochastic utility and 🛮 distribution 🔁 det 2921) 🗦 😑 🔿 🤈 📀

$$\max_{r_i^{d,c}, r_i^{l,c}} \Pi_i^c = r_i^{l,c} L_i^c(r^{l,c}) + r^f R_i^c - r_i^d D_i^c(r^{d,c})$$

s.t.

1. Bank capital requirement: $K_i^{v,c} \ge \lfloor \nu_i^v \rfloor L_i^c$,

Local loan demand and deposit supply:*

 $L_{l}^{c} = \left(\frac{\frac{l^{l,c}}{\overline{r}^{l,c}}}{\frac{1}{\overline{r}^{l,c}}}\right)^{-\epsilon^{l,c}}\overline{L}^{c}$

 $p_{l}^{c} = \begin{pmatrix} r_{l}^{d,c} \\ r_{l}^{d,c} \\ \overline{r}^{d,c} \end{pmatrix}^{-} \overline{e}^{d,c} \overline{D}^{c},$

3. Balance sheet constraint: $L_i^c + R_i^c = D_i^c + K_i^{b_i}$

*CES setup is isomorphic to heterogeneous borrowers with stochastic utility and 🛮 distribution 🔁 det 2921) 🗦 😑 🔿 🤈 📀

$$\max_{r_i^{d,c},r_i^{l,c}} \Pi_i^c = r_i^{l,c} L_i^c(r^{l,c}) + r^f R_i^c - r_i^d D_i^c(r^{d,c})$$

s.t.

- 1. Bank capital requirement: $K_i^{b,c} \ge \underbrace{\nu_i^b}_{\substack{bank-specific}} L_i^c$,
- Local loan demand and deposit supply:*

3. Balance sheet constraint: $L_i^c + R_i^c = D_i^c + K_i^{b,c}$

*CES setup is isomorphic to heterogeneous borrowers with stochastic utility and 🛮 distribution 🖓 late, 2921) 🗦 😑 📀 🤇

$$\max_{r_i^{d,c},r_i^{l,c}} \Pi_i^c = r_i^{l,c} L_i^c(r^{l,c}) + r^f R_i^c - r_i^d D_i^c(r^{d,c})$$

s.t.

- 1. Bank capital requirement: $K_i^{b,c} \ge \underbrace{\nu_i^b}_{\substack{bank-\\ \text{specific}}} L_i^c$,
- 2. Local loan demand and deposit supply:*

3. Balance sheet constraint: $L_i^c + R_i^c = D_i^c + K_i^{b_i}$

*CES setup is isomorphic to heterogeneous borrowers with stochastic utility and 🗟 distribution (🗄 at a 2011) 💈 🚖 🕥 🤉

$$\max_{r_i^{d,c},r_i^{l,c}} \Pi_i^c = r_i^{l,c} L_i^c(r^{l,c}) + r^f R_i^c - r_i^d D_i^c(r^{d,c})$$

s.t.

- 1. Bank capital requirement: $K_i^{b,c} \ge \underbrace{\nu_i^b}_{\substack{bank-specific}} L_i^c$,
- 2. Local loan demand and deposit supply:*

3. Balance sheet constraint: $L_i^c + R_i^c = D_i^c + K_i^{b,c}$

*CES setup is isomorphic to heterogeneous borrowers with stochastic utility and 🗟 distribution (Hate 221) 😑 😑 🗛 🗛

$$\max_{r_i^{d,c},r_i^{l,c}} \Pi_i^c = r_i^{l,c} L_i^c(r^{l,c}) + r^f R_i^c - r_i^d D_i^c(r^{d,c})$$

s.t.

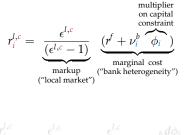
- 1. Bank capital requirement: $K_i^{b,c} \ge \underbrace{\nu_i^b}_{\substack{bank-specific}} L_i^c$,
- 2. Local loan demand and deposit supply:*

3. Balance sheet constraint: $L_i^c + R_i^c = D_i^c + K_i^{b,c}$

*CES setup is isomorphic to heterogeneous borrowers with stochastic utility and 🗟 distribution (Hate 221) 😑 😑 🗛 🗛

$$\max_{r_i^{d,c},r_i^{l,c}} \Pi_i^c = r_i^{l,c} L_i^c(r^{l,c}) + r^f R_i^c - r_i^d D_i^c(r^{d,c})$$

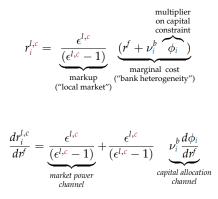
s.t.


- 1. Bank capital requirement: $K_i^{b,c} \ge \underbrace{\nu_i^b}_{\substack{bank-\\ \text{specific}}} L_i^c$,
- 2. Local loan demand and deposit supply:*

3. Balance sheet constraint: $L_i^c + R_i^c = D_i^c + K_i^{b,c}$

*CES setup is isomorphic to heterogeneous borrowers with stochastic utility and EV distribution (Ulate, 2021) 🚊 👝 🔿 🔍 🤊

Branch-Specific Loan Rate Decision and Pass-Trough



capital allocation channel

deposit rate

Branch-Specific Loan Rate Decision and Pass-Trough

deposit rate

Quantitative Assessment of Rise in Bank Concentration

Credit and Banking New Keynesian Model Gerali et al. (2010)

- Patient households save, consume, work + own housing Saver's problem
- Impatient households borrow to consume + housing Borrower's problem
- Entrepreneurs borrow to invest in capital + produce Entrepreneur's problem
- Price and wage rigidities Phillips curve
- Investment adjustment costs Capital producer
- Monetary authority operates via Taylor rule Policy rate
- Calibration of standard parameters follows Gerali et al. (2010) Calibration
- Banking sector w/ monopolistic competition + fin. frictions Repres. bank

Heterogeneity along two dimensions:

1. Different demand / supply elasticities in local markets: $e^{l,c} / e^{d,c}$

 \rightarrow Markups vary across *branches* (regions)

- \rightarrow Calibrated to average markups in high/low-conc. markets
- 2. Size-dependent bank capital requirements: ν_i^l
 - → Marginal costs vary *bank institutions*
 - \rightarrow Calibrated to average capital ratio by bank size

Heterogeneity along two dimensions:

1. Different demand / supply elasticities in local markets: $e^{l,c} / e^{d,c}$

 \rightarrow Markups vary across *branches* (regions)

- \rightarrow Calibrated to average markups in high/low-conc. markets
- 2. Size-dependent bank capital requirements: ν_i^k
 - \rightarrow Marginal costs vary *bank institutions*
 - ightarrow Calibrated to average capital ratio by bank size

Heterogeneity along two dimensions:

- 1. Different demand / supply elasticities in local markets: $e^{l,c} / e^{d,c}$
 - \rightarrow Markups vary across *branches* (regions)
 - \rightarrow Calibrated to average markups in high/low-conc. markets
- 2. Size-dependent bank capital requirements: ν_i^{l}
 - \rightarrow Marginal costs vary *bank institutions*
 - ightarrow Calibrated to average capital ratio by bank size

Heterogeneity along two dimensions:

1. Different demand / supply elasticities in local markets: $e^{l,c} / e^{d,c}$

 \rightarrow Markups vary across *branches* (regions)

- \rightarrow Calibrated to average markups in high/low-conc. markets
- 2. Size-dependent bank capital requirements: 🗤
 - → Marginal costs vary *bank institutions*
 - ightarrow Calibrated to average capital ratio by bank size

Heterogeneity along two dimensions:

1. Different demand / supply elasticities in local markets: $e^{l,c} / e^{d,c}$

 \rightarrow Markups vary across *branches* (regions)

- \rightarrow Calibrated to average markups in high/low-conc. markets
- 2. Size-dependent bank capital requirements: ν_i^b
 - \rightarrow Marginal costs vary *bank institutions*
 - \rightarrow Calibrated to average capital ratio by bank size

Heterogeneity along two dimensions:

1. Different demand / supply elasticities in local markets: $e^{l,c} / e^{d,c}$

 \rightarrow Markups vary across *branches* (regions)

- \rightarrow Calibrated to average markups in high/low-conc. markets
- 2. Size-dependent bank capital requirements: ν_i^b
 - \rightarrow Marginal costs vary *bank institutions*
 - \rightarrow Calibrated to average capital ratio by bank size

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Heterogeneity along two dimensions:

1. Different demand / supply elasticities in local markets: $e^{l,c} / e^{d,c}$

 \rightarrow Markups vary across *branches* (regions)

- \rightarrow Calibrated to average markups in high/low-conc. markets
- 2. Size-dependent bank capital requirements: ν_i^b
 - \rightarrow Marginal costs vary *bank institutions*
 - \rightarrow Calibrated to average capital ratio by bank size

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Compared to 1994, in 2019 increasing

- 1. % of high-concentration markets: α^m
- 2. % of giant banks: α^{l}
- 3. Markups across all banks:*
- 4. Bank capital across all banks:* ν^{l}
 - * "Missing intercept", time trend

calibration details // results

Compared to 1994, in 2019 increasing

- 1. % of high-concentration markets: α^m
- 2. % of giant banks: α^b
- 3. Markups across all banks:* 🧯
- 4. Bank capital across all banks:* ν^b
 - * "Missing intercept", time trend

calibration details | results

Compared to 1994, in 2019 increasing

- 1. % of high-concentration markets: α^m
- 2. % of giant banks: α^b
- 3. Markups across all banks:* 🤄
- 4. Bank capital across all banks:* ν^b
 - * "Missing intercept", time trend

calibration details results

Compared to 1994, in 2019 increasing

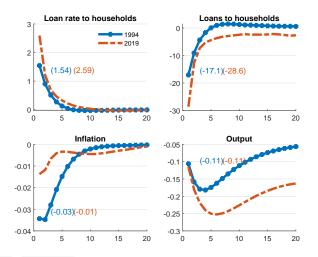
- 1. % of high-concentration markets: α^m
- 2. % of giant banks: α^b
- 3. Markups across all banks:* 🥑
- 4. Bank capital across all banks:* ν^{l}
 - * "Missing intercept", time trend

Compared to 1994, in 2019 increasing

- 1. % of high-concentration markets: α^m
- 2. % of giant banks: α^b
- 3. Markups across all banks:* 🥑
- 4. Bank capital across all banks:* v^b

calibration details / results

Compared to 1994, in 2019 increasing


- 1. % of high-concentration markets: α^m
- 2. % of giant banks: α^b
- 3. Markups across all banks:* 🥑
- 4. Bank capital across all banks:* v^b

calibration details / results

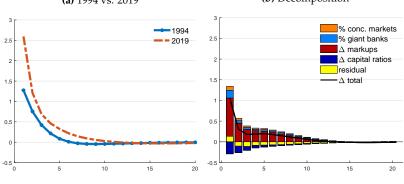
Compared to 1994, in 2019 increasing

- 1. % of high-concentration markets: α^m
- 2. % of giant banks: α^b
- 3. Markups across all banks:* 🥑
- 4. Bank capital across all banks:* v^b
 - * "Missing intercept", time trend

Effect Rise in Bank Concentration on Monetary Transmission

more variables Phillips curve

▲□▶▲圖▶▲圖▶▲圖▶ 週刊 のQ@

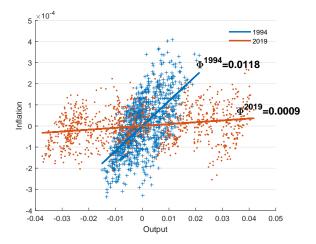

Decomposition of Change in Pass-Through over Time

where
$$\Delta_{t+h}^{j} = IRF_{t+h}^{j,2019} - IRF_{t+h}^{j,1994} \quad \forall j \in \{\Sigma, \alpha^{m}, \alpha^{b}, \epsilon, \nu^{b}, res\}.$$

◆□▶◆□▶◆■▶◆■▶ ●■■ のへの

Decomposition of Pass-Through to Loan Rates

(a) 1994 vs. 2019


output

inflation

loans to households

(b) Decomposition

Implications on the Slope of the Phillips Curve

Conclusion

- Rise in bank concentration leads to higher pass-through
- Implications for the transmission of monetary policy
- Flattening of the Phillips Curve
- Monetary policy is more effective in stimulating the economy

Extensions and robustness checks:

- Borrowing constraints on household and firm side financial frictions
- Heterogeneous pass-through across US counties map
- Asymmetric Monetary Policy Pass-Through empirics model

Future work: Pass-through of QE, optimal policy, distributional implications

Conclusion

- Rise in bank concentration leads to higher pass-through
- Implications for the transmission of monetary policy
- Flattening of the Phillips Curve
- Monetary policy is more effective in stimulating the economy

Extensions and robustness checks:

- Borrowing constraints on household and firm side financial frictions
- Heterogeneous pass-through across US counties map
- Asymmetric Monetary Policy Pass-Through empirics model

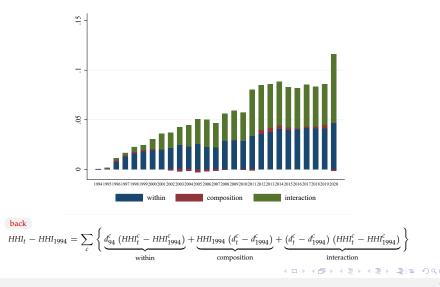
Future work: Pass-through of QE, optimal policy, distributional implications

Conclusion

- Rise in bank concentration leads to higher pass-through
- Implications for the transmission of monetary policy
- Flattening of the Phillips Curve
- Monetary policy is more effective in stimulating the economy

Extensions and robustness checks:

- Borrowing constraints on household and firm side financial frictions
- Heterogeneous pass-through across US counties map
- Asymmetric Monetary Policy Pass-Through empirics model


Future work: Pass-through of QE, optimal policy, distributional implications

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへの

◆□> ◆@> ◆E> ◆E> EE のへで

1

Decomposition of Rise in U.S. Bank Concentration

Survey Instrument from RateWatch

"What is the current rate on a 1 year ARM, loan amount \$175k, best credit, no discounts, no relationship required?"

Institution Name: Account Number: Contact: Today's Date:

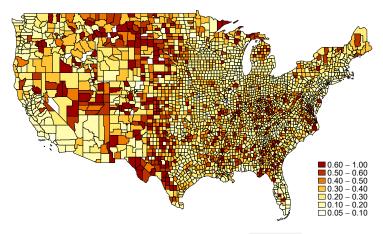
Current Prime Rate:

Send to:

1 YEAR ARM @ 175K LOAN		
AMOUNT	FIXED RATE	COMMENTS
RATE		
APR		
DISCOUNT POINTS		
DOWN PAYMENT TO AVOID PMI		
CAPS		
MAX AMORTIZATION TERM		
ORIGINATION FEES		
3 YEAR ARM @ 175K LOAN		
AMOUNT	FIXED RATE	COMMENTS
RATE		
APR		
DISCOUNT POINTS		
DOWN PAYMENT TO AVOID PMI		
CAPS		
MAX AMORTIZATION TERM		
ORIGINATION FEES		

RATE/WATCH

RATEWATCH PHONE 800 348 1831


ARM share: Origination and Bank's Balance Sheet

- ARMs popular before the financial crisis
- ARMs less popular in times of low-interest rates
- ARMs make a high % of banks' real estate loans on the balance sheet
 - o 26 % of residential real estate loans on average
 - 5 % of total assets on average

% of bank's real estate portfolio

Measuring Local Bank Concentration Across the US

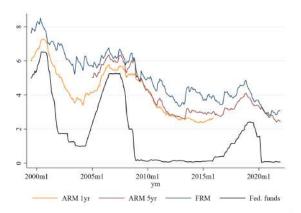
Large variation in local bank concentration local markets

National Housing Survey Q1 2019 by Fannie Mae:

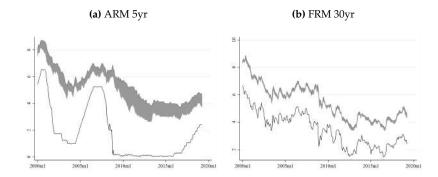
- 2 of 5 recent home buyers did not shop around for mortgage lenders
- On average, recent home buyers obtained 2 quotes
- Real estate agent, family and friends, and own experiences decisive
- In Canada, distance to lender on average 1.25 miles; only 28 % of customers switch away from main institution (Allen et al., 2019)
- Higher switching costs in more concentrated markets (Allen et al., 2019)
 back

National Housing Survey Q1 2019 by Fannie Mae:

- 2 of 5 recent home buyers did not shop around for mortgage lenders
- On average, recent home buyers obtained 2 quotes
- Real estate agent, family and friends, and own experiences decisive
- In Canada, distance to lender on average 1.25 miles; only 28 % of customers switch away from main institution (Allen et al., 2019)
- Higher switching costs in more concentrated markets (Allen et al., 2019)
 back

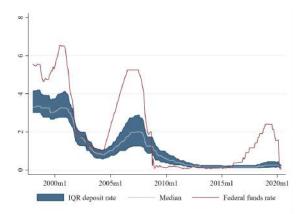

National Housing Survey Q1 2019 by Fannie Mae:

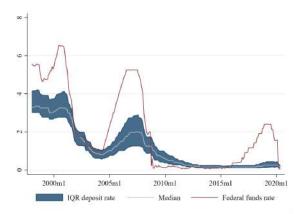
- 2 of 5 recent home buyers did not shop around for mortgage lenders
- On average, recent home buyers obtained 2 quotes
- Real estate agent, family and friends, and own experiences decisive
- In Canada, distance to lender on average 1.25 miles; only 28 % of customers switch away from main institution (Allen et al., 2019)
- Higher switching costs in more concentrated markets (Allen et al., 2019)
 back

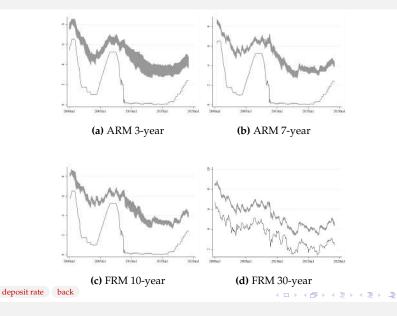

National Housing Survey Q1 2019 by Fannie Mae:

- 2 of 5 recent home buyers did not shop around for mortgage lenders
- On average, recent home buyers obtained 2 quotes
- Real estate agent, family and friends, and own experiences decisive
- In Canada, distance to lender on average 1.25 miles; only 28 % of customers switch away from main institution (Allen et al., 2019)
- Higher switching costs in more concentrated markets (Allen et al., 2019)
 back

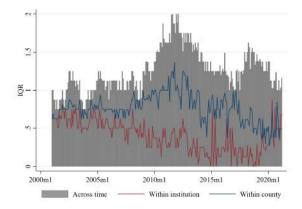
Aggregate Mortgage Rates – Across Types



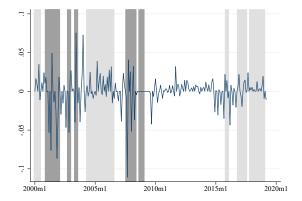

back


back

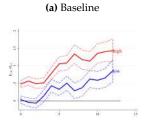
8



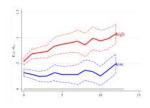
back


1= 9QC

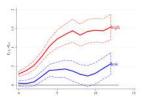
Loan Rate Dispersion Within Institutions and Counties

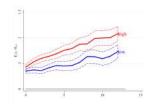

back

Monetary Policy Shocks Over Time

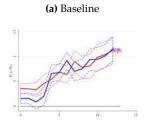


back

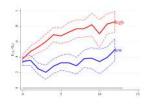

Pass-Through by Bank Concentration: Alternative Shocks


(b) MP1

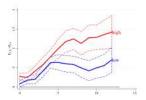
(c) R&R

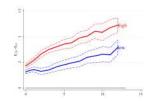


(d) *dFF*_t



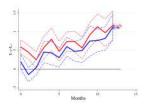
イロト イポト イヨト イヨト ヨ


Pass-Through by Mortgage Market Concentration

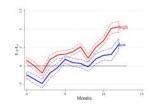

(b) MP1

(c) R&R

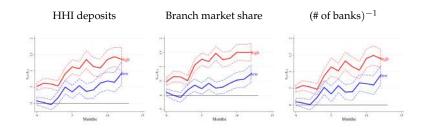

(**d**) *dFF*_t


Pass-Through by Concentration: Across Rates

(a) ARM 1yr

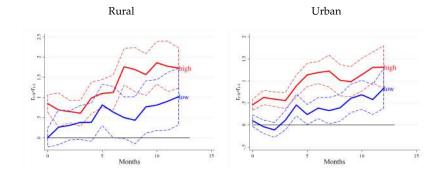

(b) ARM 5yr

(c) ARM 7yr


(d) FRM 30yr

<ロト < 四ト < 回ト < 回ト

-


Pass-Through by Concentration: Different Measures

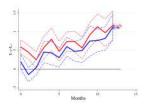
back

◆□▶ < @▶ < E▶ < E▶ < E► 9 QQ</p>

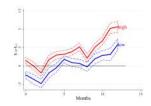
Pass-Through by Bank Concentration: Rural vs. Urban Areas



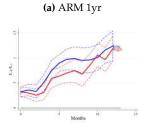
back

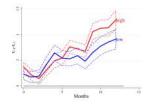

Pass-Through by Concentration: Across Rates

(a) ARM 1yr

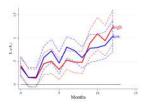

(b) ARM 5yr

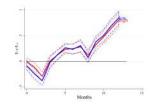
(c) ARM 7yr


(d) FRM 30yr

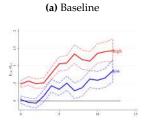

ヘロト 人間 とくほと くほど

315

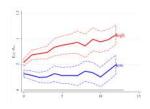

Pass-Through by Capitalization: Across Rates


(b) ARM 5yr

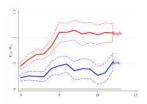
(c) ARM 7yr

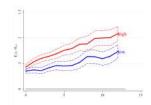


(d) FRM 30yr

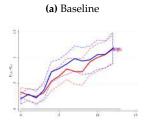


<ロト < 四ト < 回ト < 回ト

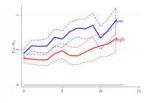

Pass-Through by Concentration: Alternative Shocks


(b) MP1

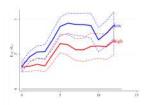
(c) FF4

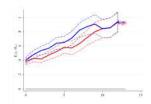


(**d**) *dFF*_t



◆□▶ ◆□▶ ◆目▶ ◆日▶ 三日 の


Pass-Through by Capitalization: Alternative Shocks


(b) MP1

(c) FF4

(**d**) *dFF*_t

イロト イポト イヨト イヨト 油

Asymmetric Pass-Through: Monetary Easing vs. Tightening

State-dependent local projections:

$$r_{t+h,i,c}^{l} - r_{t-1,i,c}^{l} = \alpha_{i}^{h} + \beta^{h} s_{t} + \underbrace{\mathbb{I}\left(\mathbb{E}_{t-1}\Delta r_{t}^{f} > 0\right)}_{\text{expected tightening}} \left(\alpha_{i}^{h,+} + \beta^{h,+} s_{t}\right)$$

$$+\underbrace{\mathbb{I}\left(\mathbb{E}_{t-1}\Delta r_{t}^{f}<0\right)}_{\mathbf{L}}\left(\alpha_{i}^{h,-}+\beta^{h,-}s_{t}\right)+\eta^{h}Z_{i,t}+\epsilon_{t+h,i,c}$$

expected easing

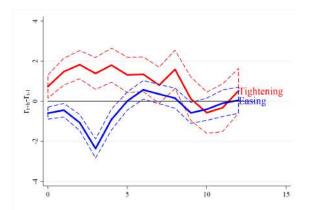
 \rightarrow "Expected" defined as:

change monetar ed funds rate surprise

Asymmetric Pass-Through: Monetary Easing vs. Tightening

State-dependent local projections:

$$r_{t+h,i,c}^{l} - r_{t-1,i,c}^{l} = \alpha_{i}^{h} + \beta^{h} s_{t} + \underbrace{\mathbb{I}\left(\mathbb{E}_{t-1}\Delta r_{t}^{f} > 0\right)}_{\text{expected tightening}} \left(\alpha_{i}^{h,+} + \beta^{h,+} s_{t}\right)$$

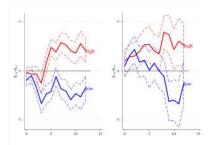

$$+\underbrace{\mathbb{I}\left(\mathbb{E}_{t-1}\Delta r_{t}^{f}<0\right)}_{\mathbf{z}}\left(\alpha_{i}^{h,-}+\beta^{h,-}s_{t}\right)+\eta^{h}Z_{i,t}+\epsilon_{t+h,i,t}$$

expected easing

 \rightarrow "Expected" defined as:

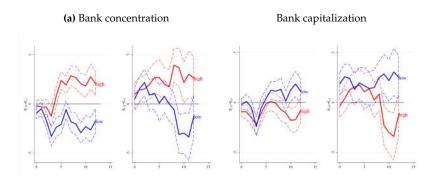
change monetary fed funds rate surprise

Asymmetric Pass-Through: Monetary Easing vs. Tightening



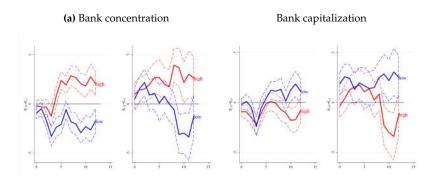
back

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ▲目■ のQC


Asymmetric Pass-Through: Concentration and Capitalization

(a) Bank concentration

back


Asymmetric Pass-Through: Concentration and Capitalization

back

▲□▶ ▲圖▶ ▲目▶ ▲目▶ ▲目■ のQ@

Asymmetric Pass-Through: Concentration and Capitalization

back

▲□▶ ▲圖▶ ▲目▶ ▲目▶ ▲目■ のQ@

Branch-Specific Deposit Rate Decision and Pass-Trough

$$r^{d,c} = \underbrace{\frac{\epsilon^{d,c}}{(\epsilon^{d,c}-1)}}_{\substack{\text{markdown}\\ ("local market")}} r^{f}$$

Loan rate

Branch-Specific Deposit Rate Decision and Pass-Trough

$$r^{d,c} = \underbrace{\frac{\epsilon^{d,c}}{(\epsilon^{d,c} - 1)}}_{\substack{\text{markdown}\\ (\text{"local market"})}} r^{f}$$

market power channel

Loan rate

26

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 >

Calibration of Baseline Model (Gerali et al., 2010)

Parameter	Description	Value
κ^{Kb}	Adjustment costs of bank capital ratio	11.49
δ^{b}	Management cost of bank	0.1049 ^a
β^P	Discount factor of patient household	0.9943
$\beta^{I,E}$	Discount factor of impatient household and entrepreneur	0.975^{b}
ϕ	Inverse of Frisch elasticity of labor supply	1
ϵ^h	Weight of housing in utility function	0.2
$a^{P,I,E}$	Habit consumption persistence	0.86
$\epsilon^{m,I}$	Steady-state LTV-ratio for impatient households	0.7^{c}
α	Output elasticity with respect to capital	0.25
μ	Share of patient households of labor costs	0.8
ζ_1	Adjustment costs capacity utilization production	0.0478
$\zeta_2 \\ \epsilon^{m,E}$	Adjustment costs for capacity utilization production	0.00478
$\epsilon^{m,E}$	Steady-state LTV-ratio for entrepreneur	0.35^{c}
κ_w	Adjustment costs of wages	99.9
Lw	Indexation of wage inflation to past wage inflation	0.28
ϵ^{l}	Steady-state labor market markup	5
δ	Depreciation rate of physical capital	0.025
κ_i	Adjustment costs of investment	10.18
κ_p	Adjustment costs of good prices	28.65
ϵ^{ν_p}	Indexation of price inflation to past price inflation	0.16
	Steady-state goods market markup	6
ϕ_R	Taylor rule smoothing parameter	0.77
ϕ_{π}	Taylor rule response to inflation	1.98^{d}
ϕ_x	Taylor rule response to output	0.35
σ_r	Standard deviation of monetary shock	0.002

Patient Household's Problem

Each patient household *i* maximizes:

$$\mathbb{E}_t \sum_{t=0}^{\infty} \beta^{P,t} \left[\left(1 - a^P \right) \log \left(c_t^P(i) - a^P c_{t-1}^P \right) + \epsilon^h \log h_t^P(i) - \frac{l_t^P(i)^{1+\phi}}{1+\phi} \right]$$

s.t.

$$c_t^p(i) + q_t^h \left(h_t^p(i) - h_{t-1}^p(i) \right) + d_t^p(i) \le w_t^p l_t^p(i) + \left(1 + r_{t-1}^d \right) \frac{d_{t-1}^p(i)}{\pi_t} + \tau_t^p(i)$$

Differences to impatient households:

- $\blacktriangleright \ \beta^{I,t} < \beta^{P,t}$
- Receives transfer $\tau_t^P(i)$

back

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Impatient Household's Problem

Each impatient household *i* maximizes:

$$\mathbb{E}_t \sum_{t=0}^{\infty} \beta^{l,t} \left[\left(1 - a^l \right) \log \left(c_t^l(i) - a^l c_{t-1}^l \right) + \epsilon^h \log h_t^l(i) - \frac{l_t^l(i)^{1+\phi}}{1+\phi} \right]$$

s.t.

$$c_{t}^{I}(i) + q_{t}^{h}\left(h_{t}^{I}(i) - h_{t-1}^{I}(i)\right) + b_{t-1}^{I}(i)\left(1 + r_{t-1}^{bH}\right)/\pi_{t} \le w_{t}^{I}l_{t}^{I}(i) + b_{t}^{I}(i)$$

Differences to patient households:

- $\blacktriangleright \ \beta^{I,t} < \beta^{P,t}$
- Receives no transfers

back

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Entrepreneur's Problem

Each entrepreneur *i* maximizes:

$$\mathbb{E}_{t} \sum_{t=0}^{\infty} \beta_{E}^{t} \log \left(c_{t}^{E}(i) - a^{E} c_{t-1}^{E} \right)$$

s.t. $c_{t}^{E}(i) + w_{t}^{I} l_{t}^{I}(i) + w_{t}^{P} l_{t}^{P}(i) + \frac{1 + r_{t-1}^{bE}}{\pi_{t}} b_{t-1}^{E}(i) + q_{t}^{k} k_{t}^{E}(i) + v(u_{t}(i)) k_{t-1}^{E}(i) \leq \frac{y_{t}^{E}(i)}{x_{t}} + b_{t}^{E}(i) + (1 - \delta) q_{t}^{k} k_{t}^{E}(i),$
 $y_{t}^{E}(i) = \varepsilon^{a} \left[u_{t}(i) k_{t-1}^{E}(i) \right]^{\alpha} \left[l_{t}^{E}(i) \right]^{1-\alpha} = \left[u_{t}(i) k_{t-1}^{E}(i) \right]^{\alpha} \left[\left(l_{t}^{P}(i) \right)^{\mu} \left(l_{t}^{I}(i) \right)^{(1-\mu)} \right]^{1-\alpha}$

Capital and Final Goods Producers

Investment adjustment costs:

$$k_t = (1 - \delta) k_{t-1} + \left[1 - \frac{\kappa_i}{2} \left(\frac{i_t}{i_{t-1}} - 1 \right)^2 \right] i_t$$

$$1 = q_t^k \left[1 - \frac{\kappa_i}{2} \left(\frac{i_t}{i_{t-1}} - 1 \right)^2 - \kappa_i \left(\frac{i_t}{i_{t-1}} - 1 \right) \frac{i_t}{i_{t-1}} \right] + \beta^E \mathbb{E}_t \frac{\lambda_{t+1}^E}{\lambda_t^E} q_{t+1}^k \kappa_i \left(\frac{i_{t+1}}{i_t} - 1 \right) \left(\frac{i_{t+1}}{i_t} \right)^2 \right]$$

Phillips curve:

$$0 = 1 - \varepsilon^{y} + \frac{\varepsilon^{y}}{x_{t}} - \kappa_{p} \left(\pi_{t} - \pi_{t-1}^{\iota_{p}} \pi^{1-\iota_{p}} \right) \pi_{t} + \beta^{p} \mathbb{E}_{t} \left[\frac{\lambda_{t+1}^{p}}{\lambda_{t}^{p}} \kappa_{p} \left(\pi_{t+1} - \pi_{t}^{\iota_{p}} \pi^{1-\iota_{p}} \right) \pi_{t+1} \frac{y_{t+1}}{y_{t}} \right]$$

▲□▶▲@▶▲≣▶★≣▶ 差目目 のQ@

Central Bank

Central bank follows a standard Taylor rule:

$$(1+r_t^f) = (1+r^f)^{(1-\phi_R)}(1+r_{t-1}^f)^{\phi_R} \left(\frac{\pi_t}{\pi}\right)^{\phi_\pi} \left(\frac{y_t}{y_{t-1}}\right)^{\phi_y (1-\phi_R)} \varepsilon_t^R$$

Banking Sector with Representative Bank

Wholesale Unit:

$$\pi_t K_t^b = \left(1 - \delta^b\right) K_{t-1}^b + \Pi_{t-1}^b$$

$$\max_{B_t, d_t^p} \mathbb{E}_t \sum_{t=0}^{\infty} \Lambda_{0, t}^p \left[R_t^b B_t - R_t^d d_t^p - \mathbb{A}_{KB} \left(\frac{K_t^b}{B_t} \right) K_t^b \right] \text{s.t. } B_t = d_t^p + K_t^b$$

Deposit branches:

$$\max_{r_t^d} \mathbb{E}_t \sum_{t=0}^{\infty} \Lambda_{0,t}^p \left[R_t^d d^p(r_t^d) - r_t^d d^p(r_t^d) - \mathbb{A}_D \left(d^p(r_t^d) \right) \overline{r}_t^d \overline{d}_t^p \right] \text{ s.t. } d^p(r_t^d) = \left(\frac{r_t^d}{\overline{r}_t^d} \right)^{-\epsilon^d} \overline{d}_t^p$$

Loan branches:

$$\max_{r_t^l} \mathbb{E}_t \sum_{t=0}^{\infty} \Lambda_{0,t}^p \left[r_t^l b_t^l(r_t^l) - R_t^b b_t^l(r_t^l) - \mathbb{A}_l \left(b_t^l(r_t^l) \right) \overline{r}_t^l \overline{b}_t^l(r_t^l) \right] \text{ s.t. } b_t^l(r_t^l) = \left(\frac{r_t^l}{\overline{r}_t^l} \right)^{-\epsilon^l} \overline{b}_t^l$$

 $\forall l \in \{bH, bE\}$

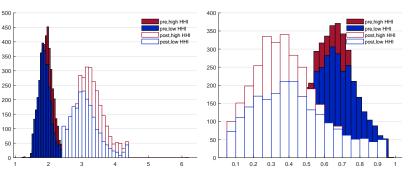
◆□▶ < @▶ < E▶ < E▶ < E► 9 QQ</p>

Banking Sector with Representative Bank

Wholesale unit:

$$R_t^b = r_t^f - \kappa_{KB} \left(rac{K_t^b}{B_t} -
u^b
ight) \left(rac{K_t^b}{B_t}
ight)^2.$$

Deposit branches:

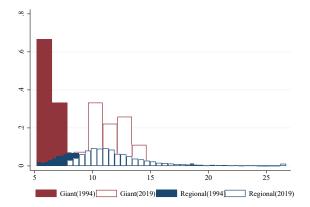

$$-\epsilon^{d}\frac{R_{t}^{d}}{r_{t}^{d}} + \left(\epsilon^{d} - 1\right) + \epsilon^{d}\kappa_{d}\left(\frac{d_{t}^{p}}{d_{ss}^{p}} - 1\right)\frac{d_{t}^{p}}{d_{ss}^{p}} = 0$$

Loan branches $\forall l \in \{bH, bE\}$:

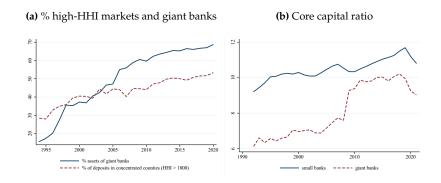
$$-\left(\epsilon^l-1\right)+\epsilon^l\frac{R_t^b}{r_t^l}+\epsilon^l\kappa_l\left(\frac{b_t^l}{b_{ss}^l}-1\right)\frac{b_t^l}{b_{ss}^l}+\frac{\epsilon^l}{\psi_l}\bigg\{\exp\left[\psi_l\left(\frac{b_t^l}{b_{ss}^l}-1\right)\right]-1\bigg\}\frac{b_t^l}{b_{ss}^l}=0$$

Markups and Markdowns across Time and Groups

(a) Markups



(b) Markdowns


back

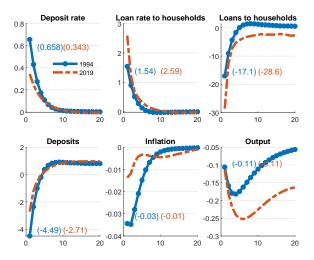
back - counterfactuals

Bank Capital Ratios across Time and Groups

Measures of the U.S. Banking Sector Over Time

bank types counterfactuals

		α^m	α^b	ϵ^d	$\epsilon^{bH/E}$	$ u^b$
1994	Bank/Branch I	0.7	0.9	-2.60	2.51	0.09
	Bank/Branch II	0.3	0.1	-1.03	2.05	0.06
2019	Bank/Branch I	0.4	0.4	-0.99	1.68	0.12
	Bank/Branch II	0.6	0.6	-0.32	1.46	0.09

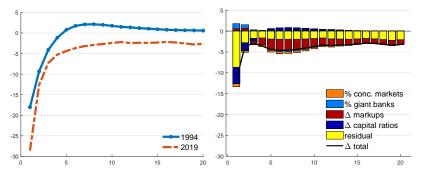

		α^m	α^b	ϵ^d	$\epsilon^{bH/E}$	$ u^b$
1994	Bank/Branch I	0.7	0.9	-2.60	2.51	0.09
	Bank/Branch II	0.3	0.1	-1.03	2.05	0.06
2019	Bank/Branch I	0.4	0.4	-0.99	1.68	0.12
_	Bank/Branch II	0.6	0.6	-0.32	1.46	0.09

		α^m	α^b	ϵ^d	$\epsilon^{bH/E}$	$ u^b$
1994	Bank/Branch I	0.7	0.9	-2.60	2.51	0.09
	Bank/Branch II	0.3	0.1	-1.03	2.05	0.06
2019	Bank/Branch I	0.4	0.4	-0.99	1.68	0.12
_	Bank/Branch II	0.6	0.6	-0.32	1.46	0.09

		α^m	α^b	ϵ^d	$\epsilon^{bH/E}$	$ u^b$
1994	Bank/Branch I	0.7	0.9	-2.60	2.51	0.09
	Bank/Branch II	0.3	0.1	-1.03	2.05	0.06
2019	Bank/Branch I	0.4	0.4	-0.99	1.68	0.12
_	Bank/Branch II	0.6	0.6	-0.32	1.46	0.09

		α^m	α^b	ϵ^d	$\epsilon^{bH/E}$	$ u^b$
1994	Bank/Branch I	0.7	0.9	-2.60	2.51	0.09
	Bank/Branch II	0.3	0.1	-1.03	2.05	0.06
2019	Bank/Branch I	0.4	0.4	-0.99	1.68	0.12
_	Bank/Branch II	0.6	0.6	-0.32	1.46	0.09

Effect Rise in Bank Concentration on Monetary Transmission



▲□> ▲圖> ▲目> ▲目> 目目 のQQ

Decomposition of Pass-Through to Loans

(a) 1994 vs. 2019

(b) Decomposition

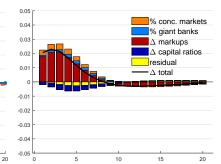
Decomposition of Monetary Transmission to Output

(b) Decomposition (a) 1994 vs. 2019 % conc. markets 1994 % giant banks 2019 ∆ markups 0.2 0.2 capital ratios residual A total 0.1 0.1 0 -0.1 -0.1 -0.2 -0.2 -0.3 -0.3 0 5 10 15 20 0 5 10 15 20

back

▲□▶▲圖▶▲圖▶▲圖▶ 風目 のへ⊙

Decomposition of Monetary Transmission to Inflation


1994

2019

(a) 1994 vs. 2019

10

15

(b) Decomposition

back

0.05

0.04

0.03

0.02

0.01

-0.02

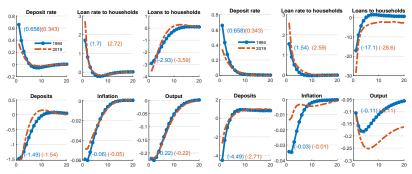
-0.04

-0.05

0

5

Adding Borrowing Constraints


Household's borrowing constraint lowers interest rate sensitivity:

$$\left(1+r_t^{bh}\right)b_t^I \le \varepsilon^{m,I}\mathbb{E}_t\left[q_{t+1}^h h_t^I \pi_{t+1}\right]$$

Financial accelerator effect: $r_t^f \uparrow$

- Economic downturn (i.a., $\pi_t, q_{t+1}^h \downarrow$) tightens collateral constraint
- Loan demand declines independently of higher interest costs

Constrained vs. Unconstrained: 2019 vs. 1994

(a) Constrained

(b) Unconstrained

back

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Constrained vs. Unconstrained: Decomposition Rates and Credit

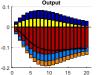
Loan rate to households Deposit rate Loan rate to households Deposit rate 1.5 1 0.1 1.5 0.1 0 -0.1 -0.1 0.5 0.5 -0.2 -0.2 -0.3 -0.3 -0.5 -0.4 -0.4 -0.5 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 Loans to households Deposits Loans to households Deposits 0.6 5 0.4 0.5 0.2 -5 0 -0.5 -10 -0.2 -1 -0.4 -15 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

(a) Constrained

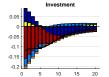
(b) Unconstrained

Constrained vs. Unconstrained: Decomposition Real Economy

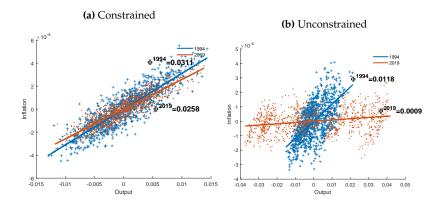
Output 0.04 0.02 -0.02 -0.04 0 10 15 20


×10⁻⁶

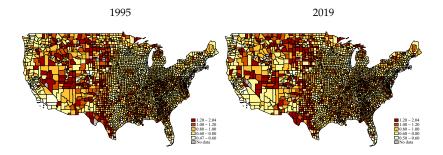
15


10

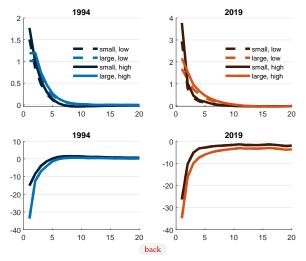
(b) Unconstrained


10 15 20

Inflation



Constrained vs. Unconstrained: Implications on the PC


Heterogeneous Pass-Through Across US Counties

• County-level Pass-through: $\hat{\beta}^h + \hat{\gamma}_1^h HH_{c,t-1} + \hat{\gamma}_2^h \bar{m}(\%)_{t-1}$

Aggregated average pass-through increased by 50 %.

Heterogeneous Pass-Through Across Branches

・ロト・(国)・(国)・(国)・(ロ)・

Motivation: Anecdotal Evidence from WSJ, Bloomberg, ..

Banks Fire Up Their Mortgage Machine for a Refinancing Boom Bloomberg mortrade demand

With Rates Low, Banks Increase Mortgage Profit Descentions

- "We, like all of the lenders in the market, have not lowered our interest rates as much to make sure we have enough capacity to close the loans on time."
- "Everybody is trying to staff up."
- "That includes outsourcing work to other countries and **boosting pay** for some employees (...). Underwriters are being offered compensation packages worth \$130K, up from about \$80K in nonpeak times."

Asymmetric adjustment cost function:

$$Costs_{t} = \frac{\kappa_{l}}{2} \left(\frac{b_{t}^{l}}{b_{ss}^{l}} - 1 \right)^{2} + \frac{1}{\psi_{l}^{2}} \left\{ \exp \left[\psi_{l} \left(\frac{b_{t}^{l}}{b_{ss}^{l}} - 1 \right) \right] - \psi_{l} \left(\frac{b_{t}^{l}}{b_{ss}^{l}} - 1 \right) - 1 \right\}$$

 \triangleright κ_l and ψ_l govern the convexity and asymmetry

• ψ_l increasing costs when lending is above steady state

$$-\left(\epsilon^{l}-1\right)+\epsilon^{l}\frac{R_{t}^{b}}{r_{t}^{l}}+\epsilon^{l}\kappa_{l}\left(\frac{b_{t}^{l}}{b_{ss}^{l}}-1\right)\frac{b_{t}^{l}}{b_{ss}^{l}}+\frac{\epsilon^{l}}{\psi_{l}}\left\{\exp\left[\psi_{l}\left(\frac{b_{t}^{l}}{b_{ss}^{l}}-1\right)\right]-1\right\}\frac{b_{t}^{l}}{b_{ss}^{l}}=0$$

back

Asymmetric adjustment cost function:

$$Costs_{t} = \frac{\kappa_{l}}{2} \left(\frac{b_{t}^{l}}{b_{ss}^{l}} - 1 \right)^{2} + \frac{1}{\psi_{l}^{2}} \left\{ \exp \left[\psi_{l} \left(\frac{b_{t}^{l}}{b_{ss}^{l}} - 1 \right) \right] - \psi_{l} \left(\frac{b_{t}^{l}}{b_{ss}^{l}} - 1 \right) - 1 \right\}$$

• κ_l and ψ_l govern the convexity and asymmetry

• ψ_l increasing costs when lending is above steady state

$$-\left(\epsilon^{l}-1\right)+\epsilon^{l}\frac{R_{t}^{b}}{r_{t}^{l}}+\epsilon^{l}\kappa_{l}\left(\frac{b_{t}^{l}}{b_{ss}^{l}}-1\right)\frac{b_{t}^{l}}{b_{ss}^{l}}+\frac{\epsilon^{l}}{\psi_{l}}\left\{\exp\left[\psi_{l}\left(\frac{b_{t}^{l}}{b_{ss}^{l}}-1\right)\right]-1\right\}\frac{b_{t}^{l}}{b_{ss}^{l}}=0$$

back

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三目= のQC

Asymmetric adjustment cost function:

$$Costs_{t} = \frac{\kappa_{l}}{2} \left(\frac{b_{t}^{l}}{b_{ss}^{l}} - 1 \right)^{2} + \frac{1}{\psi_{l}^{2}} \left\{ \exp \left[\psi_{l} \left(\frac{b_{t}^{l}}{b_{ss}^{l}} - 1 \right) \right] - \psi_{l} \left(\frac{b_{t}^{l}}{b_{ss}^{l}} - 1 \right) - 1 \right\}$$

• κ_l and ψ_l govern the convexity and asymmetry

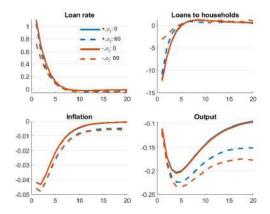
• ψ_l increasing costs when lending is above steady state

 $-\left(\epsilon^{l}-1\right)+\epsilon^{l}\frac{R_{t}^{b}}{r_{t}^{l}}+\epsilon^{l}\kappa_{l}\left(\frac{b_{t}^{l}}{b_{ss}^{l}}-1\right)\frac{b_{t}^{l}}{b_{ss}^{l}}+\frac{\epsilon^{l}}{\psi_{l}}\left\{\exp\left[\psi_{l}\left(\frac{b_{t}^{l}}{b_{ss}^{l}}-1\right)\right]-1\right\}\frac{b_{t}^{l}}{b_{ss}^{l}}=0$

back

・ロト・(四ト・(ヨト・(四ト・(ロト)))

Asymmetric adjustment cost function:


$$Costs_{t} = \frac{\kappa_{l}}{2} \left(\frac{b_{t}^{l}}{b_{ss}^{l}} - 1 \right)^{2} + \frac{1}{\psi_{l}^{2}} \left\{ \exp\left[\psi_{l} \left(\frac{b_{t}^{l}}{b_{ss}^{l}} - 1 \right) \right] - \psi_{l} \left(\frac{b_{t}^{l}}{b_{ss}^{l}} - 1 \right) - 1 \right\}$$

• κ_l and ψ_l govern the convexity and asymmetry

• ψ_l increasing costs when lending is above steady state

$$-\left(\epsilon^l-1\right)+\epsilon^l \frac{R_t^b}{r_t^l}+\epsilon^l \kappa_l \left(\frac{b_t^l}{b_{ss}^l}-1\right) \frac{b_t^l}{b_{ss}^l}+\frac{\epsilon^l}{\psi_l} \bigg\{ \exp\left[\psi_l \left(\frac{b_t^l}{b_{ss}^l}-1\right)\right]-1\bigg\} \frac{b_t^l}{b_{ss}^l}=0$$

Asymmetric Monetary Transmission: Hikes vs. Cuts

