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1 Introduction

After each decennial census, legislative districts in the United States have to be redrawn

to ensure that each legislator represents the same number of residents. The task of

redistricting falls usually to the current state legislature, a body composed of individuals

who have a high degree of self-interest in the outcome. In fact, the party in control of the

redistricting process can usually manipulate the district map for the following decade

through “gerrymandering” in such a way that it remains in control of the legislature.

To see how this works, consider the following example. The polity consists of a large

number of precincts, where precincts are indivisible geographic units (i.e., a legislative

district consists of several precincts, and each precinct is in exactly one district). There

are two types of precincts, some are leaning to the Republican party, some are leaning

to the Democrats. The margins of victory at the precinct-level fluctuate e.g. because of

political scandals or the ups and downs in the popularity of political leaders. Specifically,

suppose that one-half of precincts are Republican leaning and return a Republican vote

share that is between 60 and 70 percent. The other half is Democratic-leaning and

returns a Republican vote share between 30 and 40 percent. Formally, the Republican

vote share in a Republican-leaning precinct is 0.6+0.1ω, and 0.3+0.1ω in a Democratic-

leaning precinct, where ω is a random variable taking values in [0, 1].

Suppose that Republicans are in control of redistricting. Observe that a district

is guaranteed to be won by the Republican candidate if it consists of at least 2/3

Republican-leaning precincts because then, even in the worst case, the Republican vote

share is (2/3)× 60% + (1/3)× 30% = 50%. Clearly, Republicans can endow 75 percent

of districts with 2/3 Republican-leaning and 1/3 Democratic-leaning precincts, packing

the remaining Democratic-leaning precincts into the remaining 25 percent of districts.

Even if the party in control of redistricting faces additional constraints (for exam-

ple, can only draw districts that are geographically contiguous), it remains true that the

ability to gerrymander usually allows a party to insulate itself from most electoral shifts.

For example, Republicans took over the Pennsylvania state legislature in the 2010 Re-

publican wave election and used the opportunity to create a very favorable district map

for themselves. For example, even though Democratic candidates received 55 percent of

the popular vote in the 2018 elections across all districts, versus 44.4% for Republican

candidates, Republicans still controlled 110 out of 203 seats in the Pennsylvania House

of Representatives. Many other examples exist, including ones in which the partisan
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advantage was on the Democrats’ side.

Because of these problems, there is substantial backlash against existing gerryman-

ders and also the institutions that allow for it to happen. District assignments engineered

by legislatures can be challenged in courts, and some state supreme courts have granted

injunctive relief against maps considered to be so unfair that they violate democratic

principles in the respective state’s constitution.1 Any judicial solution of the redistrict-

ing problem faces the problem of drawing a necessarily somewhat arbitrary line between

“still legal” and “sufficiently outrageous to be illegal.” In fact, a very good predictor of

what maps courts will approve of is the party affiliation of judges.

In this paper, we therefore explore an alternative approach. We start from the

premise that, in a democracy, it is desirable that a party that wins the popular vote

wins a majority of seats in the legislature. Can we find “fair” rules for redistricting in

which both parties participate and that deliver this result? We consider a system as fair

if either party has a strategy that ensures a district map with the property that it wins

a majority in the legislature whenever it wins the popular vote. We construct such a

fair redistricting system in which both parties participate; an example illustrating this

system is given in Section 2.

In this system, a party’s ability to ensure a fair outcome for itself holds irrespective

of the other party’s objective or behavior, and is thus very robust. To be clear, on the

assumption that the parties’ sole objective is to maximize the probability of winning a

majority of seats, the strategies that we characterize are actually equilibrium strategies.

A party may however deviate from such a strategy when there are other considerations

that are traded off against the probability of winning a majority of seats (e.g. maximizing

the expected vote share in the legislature, ensuring a representation of different party

factions in the legislature, ensuring a representation of ethnic minorities, protecting

various incumbents). Even if one party deviates from its equilibrium strategy, the other

party can still get the desired outcome if it sticks to its equilibrium strategy. What

defines the fairness of the redistricting system is that parties can choose to ensure that,

whenever they win the popular vote, they get a majority in the legislature, not that

they actually do so.

The basic idea is to design an institution so that the parties can keep each other in

1However, in the 2004 Vieth v. Jubilirer decision, the US Supreme Court has refused to rule against

partisan gerrymanders, arguing that “partisan gerrymandering claims were nonjusticiable because there

was no discernible and manageable standard for adjudicating political gerrymandering claims.”
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check. This is similar in spirit to the classical problem of how to fairly divide a cake

between two children – we let one child cut the cake in two pieces and the other one

choose which one she wants to have. With this procedure, every child has a strategy

that ensures getting at least fifty percent of the cake. Consequently, there is no need

for general rules and constraints under which only one child chooses both their own and

the other child’s piece.

There is a large literature on gerrymandering, both empirical and theoretical. How-

ever, most of the existing theoretical literature is on “optimal” gerrymandering from

the point of view of the party in control of the gerrymandering process; that is, how

to cheat democracy most effectively if given the opportunity to do so. Only very few

papers deal with the question of how one could implement a better redistricting system.

The earliest such paper is William Vickrey’s (1961) paper arguing that “the process [of

redistricting] should be completely mechanical so that, once set up, there is no room at

all for human choice.”2 Similarly, Ely (2019) proposes a mechanism designed to pre-

vent weirdly-shaped districts. Like our paper, his mechanism relies on the participation

of both parties in the redistricting process, and he also appeals to the cake-division

problem. There are also important differences: Ely takes convexity as the key desidera-

tum. Our analysis, by contrast, focuses on the alignment of election outcomes with the

popular vote, and it abstracts from spatial considerations.

Our redistricting institution can be interpreted as a dynamic Colonel Blotto game

(for applications of static divide-the-dollar or Colonel Blotto games, see, for instance,

Myerson (1993), Lizzeri and Persico (2001, 2005), Laslier and Picard (2002), Konrad

(2009) and Kovenock and Roberson (2020)). To the best of our knowledge, using a

dynamic version of this class of games is novel in the literature on mechanism design

and implementation theory.3

The proof of our main result uses results from the game theoretic analysis of zero-

sum games. More specifically, we define a fictitious zero-sum game in which one of

the parties gets a payoff of 1 when it has “enough” supporters in half of the districts,

with the implication that it wins a majority of seats whenever it wins the popular vote.

2He proposes an algorithm that produces geographically-compact districts, but does not study

whether elections governed by the generated map have any desirable properties.
3Groseclose and Snyder (1996) study coalition formation within a legislature on the assumption

that there are two competing vote-buyers. While they also look at a sequential mechanism, their

focus is positive rather than normative in that they seek an explanation for the frequent occurrence of

supermajorities – as opposed to minimal winning coalitions.
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Otherwise the payoff is zero. We then show that the equilibrium payoff for this party is

one. By the min-max-theorem due to von Neumann (1928),4 this implies that the party

has a successful strategy – in the sense of winning a majority of districts, conditional on

winning the popular vote – for every strategy of the opposing party.5

More peripherally related to our paper is the theoretical literature on gerryman-

dering which takes the existing redistricting institution as given and analyzes how the

party in control of redistricting optimally exerts its power. The initial paper analyzing

how an optimal gerrymander involves “packing” (i.e., concentrating likely opponents in

few districts) and “cracking” (distribute one’s most likely supporters evenly over the

remaining majority of districts) is Owen and Grofman (1988). For an excellent review

of this literature in a very general framework, see Kolotilin and Wolitzky (2020).6

2 A simple example

To see how our system works, consider the example polity from the introduction with

one-half Republican- and Democratic-leaning precincts each. There are 2N equal-sized

legislative districts to be defined, plus one at-large district that also sends one represen-

tative and ensures an odd number of representatives in the legislature.

Consider the following redistricting system. Democrats start and assign each precinct

to a district (such that each district consists of the same number of precincts). After

the Democrats are done, it’s the Republicans’ turn to assign each precinct to a district.

Observe that each precinct is now in two districts, and votes on both local races.7

While a full characterization of the subgame-perfect equilibrium of this game is

cumbersome, it is straightforward to show that each party has a strategy that can

4See Osborne and Rubinstein (1994) for a textbook treatment.
5Our results also mirror a well-known Theorem by Zermelo (1913) on the game of chess. According

to Zermelo’s theorem, either White has a strategy that guarantees a victory, or Black has a strategy

that guarantees a victory, or both have a strategy that guarantees a draw. While Zermelo, of course,

cannot characterize these strategies for chess, we do not just show that there exist, for both parties,

strategies that guarantee winning the election (conditional on winning the popular vote), but we can

also describe them.
6Other papers in this line of work include Friedman and Holden (2008), who study optimal partisan

gerrymandering with noisy signals about voters’ party preferences, and Gul and Pesendorfer (2010), who

analyze partisan gerrymandering when each party controls some territory (as in U.S. House redistricting).
7In principle, we allow for the parties to assign a particular precinct to the same district; if that

happens, the votes from voters in that precinct would simply count twice in that district election,

relative to voters from precincts that are assigned to two different districts.

4



guarantee itself a majority in the legislature whenever they win the popular vote (i.e.,

the Democrats if ω < 0.5, and the Republicans when ω > 0.5).

Consider first the Republicans who move second. If the Democrats allocated shares

of Democratic-leaning precincts and of Republican-leaning precincts to some district

k, the Republicans can just flip this. For example, if Democrats assigned 60 percent

Democratic-leaning and 40 percent Republican-leaning precincts to district k, Republi-

cans can produce a perfectly balanced district by assigning, in their move, 60 percent

Republican-leaning and 40 percent Democratic-leaning precincts.

It is clearly feasible for Republicans to play this balancing strategy for each district,

and this would result in each district going to the winner of the popular vote. Observe,

though, that the balancing strategy just described is not necessarily optimal for Republi-

cans. This depends on how Democrats distributed the precincts, and on the Republican

party’s objective. For these reasons, a full characterization of best responses or of the

subgame-perfect equilibrium would be more involved.

Consider now the Democrats, who are the first movers. Suppose that Democrats

assign only Democratic-leaning precincts to the first N districts, and only Republican-

leaning precincts to districts N + 1 to 2N . Clearly, this is feasible as it uses up all

Democratic and Republican-leaning precincts. Furthermore, no matter what the Re-

publicans do in their move, the first N districts will have at least a 50 percent share of

Democratic-leaning precincts, so will be won by a Democrat whenever ω < 0.5. Since

Democrats also win the at-large district whenever ω < 0.5, they are guaranteed a ma-

jority in the legislature whenever ω < 0.5.

In the following analysis, we will show how to generalize this example to the case that

the number of Democratic- and Republican-leaning precincts is not the same, and that

the average partisan lean of these two types of districts is not the same. For example,

throughout the United States, Democrats are often very strongly concentrated in urban

areas, and Chen and Rodden (2013) suggest that this geographic fact alone provides

a significant advantage for Republicans in a traditional redistricting process. We will

show that we can maintain a fair system, although we do need, in general, have to make

the redistricting system somewhat more complicated by having the parties distribute

precincts over several rounds.

To understand why matters become more complicated, consider an example in which

2/3 of precincts are Democratic-leaning, with Republican vote share 0.3+0.2ω, and 1/3

of precincts are Republican-leaning, with Republican vote share 0.6 + 0.2ω. Note that
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it is still the case that the Democrats win the popular vote whenever ω < 0.5 and

that the Republicans win the popular vote when ω > 0.5. As the share of Democratic-

leaning precincts is greater than one-half, it is not possible for Democrats to block all

of them together in one-half of the districts. That is, the type of move that guaranteed

Democrats a victory whenever they won the popular vote in the previous example is

no longer feasible. Blocking them in 2/3 of districts is feasible, but this strategy does

not work in the sense of ensuring a majority whenever ω > 0.5.8 Thus, it becomes

more difficult for the Democratic party to make sure that it wins a majority of districts

whenever it wins the popular vote. Things are easier for the Republican party: By

assigning a percentage share of 2/3 of Republican leaning districts to half of the districts,

it can ensure that these districts are won whenever ω > 0.5. This disadvantage for the

Democrats can, however, be overcome when voters are assigned over more than just two

rounds.

3 The Model

There are 2N local districts, indexed by k ∈ {1, 2, . . . , 2N}, and one at-large district.

The two parties are labeled R and D. There are two types of “voters,” t ∈ {t1, t2},

that we interpret either as individuals, or as the smallest unit that can be assigned to a

district, such as a census block or precinct.

The set of aggregate states of the world is denoted by Ω ⊂ R, with generic element

ω, taken to be the realization of a real-valued random variable. Let v(t, ω) denote the

probability that a type t person votes for party R in state ω. We adopt a law of large

numbers convention and also interpret v(t, ω) as the share of type t voters voting for

party R in state ω. The function v is taken to be strictly increasing in both arguments;

i.e., in any given state ω, type 2 is more likely to vote R than type 1, and higher ω

8To see this, suppose that Democrats create 2/3 of districts that are composed only of Democratic-

leaning precincts, and 1/3 of districts that are exclusively Republican-leaning. Then, Republicans can

add only Democratic-leaning precincts to the latter, and block their Republican-leaning precincts in

another third of districts, while the remaining third is composed only of Democratic-leaning precincts.

Thus, in the two-thirds of districts that consist of an equal share of Democratic- and Republican-leaning

precincts, the Republican vote share is

1

2
[0.3 + 0.2ω] +

1

2
[0.6 + 0.2ω] = 0.45 + 0.2ω,

which is greater than 0.5 whenever ω > 1/4. Thus, if ω ∈ [0.25, 0.5), Republicans win the majority while

losing the popular vote.
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increases the share of R voters among both types. The mass of type tj voters is given

by

bj = 2N βj , where β1 + β2 = 1 and β1 ≤
1

2
.

The popular vote. Let ω̂ ∈ Ω denote the state that yields a popular vote tie, i.e.,9

β1 v(t1, ω̂) + β2 v(t2, ω̂) =
1

2
. (1)

Party R wins the popular vote if ω > ω̂, while party D wins the popular vote if ω < ω̂.

Conditional on state ω̂, type 1 voters are more likely to vote for party D and type 2

voters are more likely to vote for party R,

v(t1, ω̂) <
1

2
< v(t2, ω̂) .

We also assume that type 1 voters are weakly more partisan than type 2 voters in the

sense that, in the critical state ω̂, type 1 votes D with a probability that is at least as

high as the probability that type 2 votes R,

1− v(t1, ω̂) ≥ v(t2, ω̂) .

Interpretation. One special case of this setup has v(t1, ω̂) = 0 and v(t2, ω̂) = 1 and

β1 = β2. In this case a “voter” is really an individual whose vote, conditional on the

state, the parties can perfectly predict. In state ω̂, type 1 (2) votes for party D (R).

For states ω > ω̂, some type 1 voters – formally, a fraction that is increasing in ω – vote

R. Likewise, for ω < ω̂, some type 2 voters vote D.

By contrast, when v(t1, ω̂) ∈
(
0, 12
)

or v(t2, ω̂) ∈
(
1
2 , 1
)

a “voter” can be interpreted

as a precinct, a street, or a census block that needs to be treated as an indivisible unit

for the purposes of redistricting. Any such unit contains a mix of individuals who vote

for each party; v(t1, ω̂) ∈
(
0, 12
)

can then be interpreted as the R-vote share in a unit

that predominantly votes for party D. Likewise, v(t2, ω̂) is the R-vote share in a more

R-leaning unit.

When 1− v(t1, ω̂) > v(t2, ω̂), i.e., type t1 is strictly more partisan than type 2,

then β2 >
1
2 . Hence, while there are equal numbers of D and R voters at the aggregate

level in state ω̂, D voters are more concentrated: Fewer units mostly vote for D, β1 < β2,

but in those units, D’s vote share is higher than R’s vote share in those R-leaning blocks.

As ω increases above ω̂, R’s vote share increases in both types of blocks, and vice versa.

9To assume the existence of ω̂ is without loss of generality because it may have zero probability.
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District outcomes. As we describe in more detail below, voters are allocated to

districts over several rounds. In this process, each party assigns every voter to one of

the districts. Thus, any one voter is assigned twice, once by D and once by R. If a

voter is assigned to district k by party D and to some other district k′ 6= k by party R,

he simply casts one vote in each district election. If k′ = k (i.e., both parties assign the

voter to the same district), then his vote is counted twice in that district.

Ultimately, every district k contains some mix of type t1 and type t2 voters. More

formally, a voter assignment by party P ∈ {D,R} is a collection σP = (σPk)
2N
k=1, where

σPk = (σ1Pk, σ
2
Pk) with σ1Pk + σ2Pk = 1 ,

is the assignment of voters to district k by party P . Party R wins district k in state ω if

(σ1Dk + σ1Rk) v(t1, ω) + (σ2Dk + σ2Rk) v(t2, ω) >
1

2
, (2)

and vice versa.

The sequence of moves. In each of L rounds, each Party P assigns a mass of 1
L

voters to any one district k. Formally, in each round l, any party P specifies σPl =

(σ1kP l, σ
2
kP l)

2N
k=1 so that

σ1kP l + σ2kP l =
1

L
.

The percentage shares of type t1 and type t2 voters are then, respectively, given by

β1kP l := L σ1kP l and β2kP l := L σ2kP l .

For concreteness, we assume that, for l odd, R moves first and D second. For l even, D

moves first and R second. Thus, the second-mover advantage, if any, alternates between

D (in odd rounds )and R (in even rounds).

Denote the total mass of type t1 partisans assigned by party P to district k over the

L rounds by σ1kP :=
∑L

l=1 σ
1
kP l. Analogously, let σ2kP :=

∑L
l=1 σ

2
kP l. To be consistent

with the overall distribution of voters, (σkP )2Nk=1 must satisfy

1

2N

2N∑
k=1

σ1kP = β1 and
1

2N

2N∑
k=1

σ2kP = β2 .

Winning a majority of seats. Recall that there are 2N districts and an at-large-

district. Thus, the party that wins at least N+1 seats wins a majority in the legislature.

Given a pair of voter assignments (σD, σR), we denote the probability that party R wins

a majority of seats, conditional on it winning the popular vote, by ΠR(σD, σR | ω > ω̂).

We define ΠD(σD, σR | ω < ω̂) analogously.
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4 The main result

Theorem 1 below shows that, when the number of rounds L is sufficiently large, each

party has a strategy that guarantees winning a majority of seats whenever it wins the

popular vote. By “guarantee,” we mean that, whatever the opponent does over the

various rounds, a party can make sure that it wins a legislative majority if it wins the

popular vote.

The Theorem encapsulates our definition of a fair system. We do not claim that

both parties will necessarily play in a way that maximizes their probability of winning a

majority, as they may also have other objectives in redistricting, for example incumbent

protection or representation of various groups. But these are issues that each party has

to deal with internally, we cannot expect that a redistricting system solves them for the

parties.

Theorem 1 Let N ≥ 3. For every ε > 0, there is L̂, so that, for L ≥ L̂: There is a

strategy σR so that

ΠR (σD, σR | ω > ω̂) = 1 , for every σD ,

and there is a strategy σD so that

ΠD (σD, σR | ω < ω̂) = 1 , for every σR .

Theorem 1 follows from Propositions 1 and 2 below.

Proposition 1 ∃ σD so that ΠD(σD, σR | ω < ω̂) = 1, ∀ σR and ∀L ≥ 1.

Proposition 1 generalizes an observation from the analysis of the example in Section

2 (a formal proof can be found in the Appendix): Suppose that D assigns, over the

course of the whole procedure, a mass of 2β1 type 1 voters to half of the districts, say, to

any district k with k ≥ N + 1. Then, whatever, the strategy of party R, the percentage

share of type 1 voters in those district is bounded from below by β1, which is the share

necessary to win a district whenever ω < ω̂. Furthermore, as Democrats also win the

at-large district whenever ω < ω̂, this guarantees a majority of seats for party D. Note

that this strategy can be implemented for any L ≥ 1.

Observe that R has a variety of moves to react to D’s strategy that leave its prob-

ability of winning a majority constant, but have very different implications for the seat

distribution. On the one extreme, R can basically choose to focus their supporters on
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the same N districts and thereby turn every district into a replica of the electorate at

large; in this case, all districts are won by the same party, for most states of the world.

On the other extreme, the second mover can double down on the first mover’s choice

and spread all Democratic-leaning precincts in the same N districts that D built up;

in this case, each party is essentially guaranteed N seats, with the legislative majority

being decided by the at-large district. Of course, combinations of these strategies – for

example, building N/2 districts that are safe for D and R, respectively, and N that are

replicas – are also feasible.

When β2 = β1 = 1
2 the strategy of blocking ones own supporters into one half of the

districts, respectively, is available to both parties, and hence both can use it to ensure

wining a majority of seats in those states that favor them, respectively. In the following,

we will therefore assume that β2 >
1
2 . A strategy that assigns 2β2 voters to half of

the districts is then infeasible. However, by Proposition 2, party R can overcome this

difficulty when L is large, by using a different strategy.

Proposition 2 Let N ≥ 3. There is L̂ so that, for all L ≥ L̂, there exists a strategy

σR so that ΠR (σD, σR | ω > ω̂) = 1, for all σD.

4.1 Proof of Proposition 2

For Party R to win a majority of seats whenever ω > ω̂, there need to be at least N

districts with a percentage share of type 1 voters that is weakly below β1. We now show

that, for L large, party R indeed has a strategy available that ensures this outcome.

A zero-sum game. Our analysis builds on a specific zero-sum game. To reiterate, we

do not assume that the parties are actually playing that game. However, an understand-

ing of the equilibrium strategies of that game facilitates the proof of Proposition 2. The

sequence of moves is as outlined in Section 3. To this game form we add the following

payoff specifications: Party R gets a payoff of πR = 1 when there are at least N districts

with a type t2 voter share of at least β2. Otherwise, party R gets a payoff of πR = 0.

The payoff of party D is given by πD = 1− πR.

In the following, we will assume that districts are ordered according to their share of

type 1 voters, so that district 1 has the (weakly) lowest, and district 2N has the (weakly)

highest share of type 1 voters. Lemma 2 in the Appendix shows that this is without loss

of generality throughout all rounds. Strategies that involve a reordering of districts (say,
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adding voters in a way such that District 5 after the move has strictly more type 1 voters

than District 6) can be shown to be weakly dominated by order-preserving strategies.

Thus, whenever a party is called upon to move, it will only consider assignments that

preserve the ranking of districts.

Lemma 1 Let N ≥ 3. There is L̂ so that L > L̂ implies πR = 1 in equilibrium.

A formal proof of Lemma 1 is in the Appendix.

Before we turn to an illustration of the main argument in the proof, we explain the

significance of Lemma 1 for the proof of Proposition 2. Party R’s equilibrium strategy

in the zero-sum game allows it to hold the share of type t1-voters in half of the districts

(weakly) below β1, for any strategy of party D. Consequently, if R plays the same

strategy in the original redistricting game, it wins all of these districts whenever ω > ω̂.

Could party D prevent this outcome by deviating from its equilibrium strategy in the

zero-sum game? The answer is negative because the game is zero sum. Any equilibrium

strategy of party R solves a maximin-problem, i.e., it maximizes R’s payoff under the

assumption that D’s strategy is chosen to minimize the maximum attained by R; see

e.g. Osborne and Rubinstein (1994). Thus, if D does not behave this way, the payoff R

gets cannot go down. We therefore obtain the following Corollary to Lemma 1. This

completes the proof of Proposition 2.

Corollary 1 Let N ≥ 3. There is L̂ so that L ≥ L̂ implies the existence of a strategy

σR so that ΠR (σD, σR | ω > ω̂) = 1, for all σD.

On the proof of Lemma 1. Remember that we can fix a district ranking, and focus

on the zero-sum game being played in such a way that districts with lower numbers have

a (weakly) lower share of type t1-voters. For party R to secure a majority whenever

ω > ω̂, it needs to ensure that there are at least N districts so that, after L rounds of

play, the percentage share of type t1-voters is not higher than β1. Thus, R’s objective

is to minimize, and D’s objective is to maximize, the share of D partisans in district N .

Since party D seeks to maximize this share, it will not waste type t1-voters in lower

ranked districts. Thus, party D concentrates type t1-voters in the N + 1 top-ranked

districts. More specifically, whenever it is called upon to play in some round l, and plans

to assign a certain mass of t1-voters, the following pecking order is optimal: Assign t1-

voters to the district with rank N until its mass of t1-voters is equal to the one in the
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district with rank N + 1. From that point on, keep these two districts at a joint level

and add further t1-voters until this joint level equals the one in the district with rank

N + 2. From then on, the districts with ranks N , N + 1 and N + 2 are raised to the

level of district N + 3 and so on, until no further t1-voters are left, see Figures 1 and 2

for an illustration, where N = 5.

σDk

k1 2 3 4 5 6 7 8 9 10

Figure 1: 10 Districts. In round l, D inherits, for every district, a stock of t1-voters, illustrated in gray.

It then adds further t1-voters in round l, illustrated in blue. This figure is drawn under the assumption

that D assigns only few t1-voters in round l, so that, when assigning them optimally, its budget allows

to raise the level of t1-voters only in districts 5,6, and 7.

σDk

k1 2 3 4 5 6 7 8 9 10

Figure 2: 10 Districts. In round l, D inherits, for every district, a stock of t1-voters, illustrated in gray.

It then adds further t1-voters in round l, illustrated in blue. This figure is drawn under the assumption

that D assigns many t1-voters in round l, so that, when assigning them optimally, its budget allows to

raise the level of t1-voters in all districts with a rank weakly larger than 5.

What is an optimal response for party R? Its problem is to dispose of a total mass

of 2Nβ1 t1-voters in such a way that they contribute as little as possible to the mass

of t1-voters in district N . What is clearly harmless is to add t1-voters to districts with

12



ranks up to N − 1, provided they are not yet at an equal level with the district that has

rank N . Thus, when party R plans to assign some mass of t1-voters in some round, it

will first fill the bottom N−1 districts up to the point where a common level of t1-voters

is reached in the bottom N districts. This ensures a minimal level of t1-voters in all

districts; see Figure 3 for an illustration under the assumption that the mass of t1-voters

assigned in round l does not suffice to bring the bottom 4 districts to the level of district

5. Figure 4 is based on the alternative assumption that the mass exceeds what would

be needed for that purpose.

σDk

k1 2 3 4 5 6 7 8 9 10

Figure 3: 10 Districts. In round l, R inherits, for every district, a stock of t1-voters, illustrated

in gray. It then adds further t1-voters in round l, illustrated in red. This figure is drawn under the

assumption that R assigns few t1-voters in round l, so that, when assigning them optimally, the level in

the districts with a rank below 5 cannot be raised to the level in the district with rank 5.

}
1
L

σDk

k1 2 3 4 5 6 7 8 9 10

Figure 4: 10 Districts. In round l, R inherits, for every district, a stock of t1-voters, illustrated

in gray. It then adds further t1-voters in round l, illustrated in red. This figure is drawn under the

assumption that R assigns many t1-voters in round l, so that, when assigning them optimally, the level

in the districts with a rank below 5 is raised to the level in the district with rank 5. Additional t1-voters

are then assigned to the top-ranked districts.
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Figure 4 illustrates the following logic: When additional t1-voters need to be assigned

after a common level in the bottom N districts has been achieved, party R continues

with districts in the upper half. Here, it is optimal to start with the top-ranked district.

If the capacity constraint of 1
L for that district in that round is reached, party R starts

to fill the district with the second highest rank, and so on. Thus, party R concentrates

on the top-ranked districts when assigning t1-voters.

Party R discards the extra t1-voters in very few districts in order to make it as

difficult as possible for party D to “use” these t1-voters in an attempt to raise the

t1-share in the pivotal district with rank N . To see intuitively why the distribution

over non-pivotal districts matters at all, suppose instead that party R distributes the

t1-voters uniformly over districts N + 2 to 2N . That makes it easier for party D to

raise the t1-content of district N + 1 in the next round: Remember that, when district

N + 1 reaches the level of district N + 2, party D needs to allocate t1-voters to both of

these districts in order to avoid a district rank reversal. By allocating t1-voters to the

highest-ranked districts, R can insure that this no-rank-reversal constraint for party D

kicks in as early as possible.

For a complete characterization of equilibrium strategies we would also need to

describe how many t1-voters are assigned by whom and when, i.e., we would need to

characterize, for any party P and any round l the equilibrium value of β1Pl, defined as

the percentage share of t1-voters in the total mass of 2N
L voters assigned by party P

in round l. We do not provide such a complete characterization, but show that R can

choose the sequence {βDPl}Ll=1 so that the share of t1-voters in district N remains below

β1. To this end, assume that R chooses βDR1 = 0, and for any l ≥ 2, βDRl = βDDl−1.

Thus, R waits until D starts to assign t1-voters and then assigns in, any round, as many

t1-voters as D assigned in the round before.

This implies that, after any of R’s moves, the bottom 2N − 2 districts have the

same level of t1-voters, while there are some further t1-voters in the top ranked district,

and, possibly, also in the district with the second highest rank. To see this, suppose for

concreteness, that D chooses β1D1 > 0. Then, it will spread a mass of β1D1
2N
L t1-voters

evenly over N+1 districts. In round 2, R will use the mass of voters previously assigned

to N−1 of those districts to have an equal level in the bottom half. The remaining mass

of t1-voters is then assigned to at most two top districts. See Figure 5 for an illustration.

This pattern is now repeated over various rounds, with the implication that, after any

move of R there is a joint level of t1-voters in the bottom 2N − 2 districts.
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}
1
L

σDk

k1 2 3 4 5 6 7 8 9 10

Figure 5: 10 Districts. R assigns as many t1-voters as D did in the previous round. In light blue

is the first round in which D assigns a positive mass of t1-voters. R’s response is in light red. In blue

is the second round in which D assigns a positive mass of t1-voters, and R’s response is in red. As

a consequence, there is a common level in the bottom eight districts, both after R’s first and second

response.

It is now easy to see that the share of t1-voters in the pivotal district N cannot be

strictly above β1. This would imply a percentage share above β1 in all districts and this

is incompatible with the fact that the share of t1-voters in the electorate at large is β1.

Also note that there is a common level of t1-voters in all districts, with the possible

exception of the two top ranked ones. Thus, R’s equilibrium strategy implies winning a

majority whenever ω ∈ ΩR, and moreover, implies that there are at most two districts

that are “safe” for D. If the number of districts N is large, the fraction of districts

where the outcome deviates from the popular vote is small.

5 Discussion

Our model shows that we can specify a dynamic game in which parties take turns in

assigning voters to districts such that each party has a strategy that guarantees winning

a majority in the legislature whenever it wins the popular vote. We now discuss some

extensions.

Geographic constraints. As is standard in the gerrymandering literature, we do

not impose geographic restrictions on the players. However, in contrast to the positive

literature that makes this assumption, we also have a justification beyond tractability:

Under the current redistricting system, the requirement that districts are contiguous can

be interpreted as a second-best constraint to the gerrymanderer’s power that (slightly)
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limits his ability to implement a map that distorts the popular vote outcome. Our

mechanism directly gets rid of that power to distort election outcomes, so that indirect

constraints for that purpose are unnecessary.

This said, suppose that parties, in addition to caring about their chance of winning

in future elections, also prefer districts where voters live geographically close to each

other, for example, in order for representatives to organize constituency services more

conveniently.10

In this case, one could easily consider the outcome of the redistricting game only

as a default endowment. If both parties agree, then reassignments of precincts (for

example, to generate more compact districts) can certainly be permitted. A similar

argument applies if there is a desire to bundle certain groups such as racial minorities

for representation purposes. Note that dispensing with a contiguity requirement may

actually makes it easier to form some minority districts.

Opposition representation. The analysis above shows that the proposed system of

redistricting may yield an outcome so that most districts are replicas of the at-large

districts. In this case, the majority-preferred party in an election wins a very large

percentage of seats, with few or none going to the minority party.

Even though the minority party has limited influence on which policies are enacted

even if it is represented in the legislature, this representation my have beneficial effects.

For one, the minority can at least participate in the discussion of legislative proposals

and provide additional information in this context, and, to the extent that they can

persuade the majority party, they can have (possibly Pareto-improving) influence on

policy. A strong opposition within the legislature may also be useful for providing

information about legislative proposals to the public.

Finally, if legislative experience matters for performance, then the voters’ opportu-

nity to replace the current majority (if either voters’ political preferences shift, or if the

current majority party “misbehaves” and needs to be replaced for incentive reasons) is

better if the opposition party contains at least some experienced legislators who do not

have to learn from scratch how a legislature works.

So, how could we adjust our system if we wanted to guarantee a substantial oppo-

10Observe that the requirement of district contiguity in the current system does not guarantee that

voters in a district live close to each other. See, for example, district TX-35 during the 2012-2020 time

period.
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sition representation in the legislature? One simple possibility is to turn each single-

member district into a multi-member district.

For example, suppose that each district is represented by 3 legislators. Within each

district, there is proportional representation (or some transferable vote system), so that

the party that gets more votes in the district receives 2 representatives, and the other

party the remaining seat if its vote share is above a threshold. The percentage of votes

that is required to win one seat in a district of three representatives depends on the spe-

cific rules that map the votes obtained by the parties in the district to a seat allocation.

For example, with both the Hare-Niemeyer procedure and the Webster/Sainte-Lague

procedure (the methods used in German federal elections from 1987 to 2005, and after

2005, respectively), obtaining more than 1/6 of the vote entitles the weaker party in a

district with three representatives to one seat.11

In this case, the redistricting game between the parties remains exactly the same

as in the basic model, and the losing party is essentially guaranteed a representation of

one-third in the legislature. In contrast to the current system with one representative

per district, this system would also guarantee that each voter is represented, in the

legislature, by (at least) one representative from his district and from his favorite party.

6 Concluding remarks

Our model provides one of the first normative analyses of gerrymandering, in the setting

that is the “canonical” one in the large positive literature. We show that it is possible

to neutralize the distortions due to partisan gerrymandering by having both parties

participate in the redistricting process, in the sense that each party has a strategy that

guarantees winning a majority in the legislature whenever it wins the popular vote.

While this possibility result is based on a particular sequential game, the protocol

does not have be taken literally as a specific proposal for how redistricting should be

done in practice. It is of theoretical value in that it provides an upper bound for

what is achievable when the rules governing the redistricting process are well designed.

Presumably, there are other protocols that also implement the popular vote, or at least

something closer than the current system. Any such protocol must, however, have the

property that the parties can keep each other in check. As the literature on partisan

11The methods would differ in the vote share that is required to guarantee the stronger party two

seats if there are three or more parties.
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gerrymandering has shown, when there is no possibility for the other party to interfere,

there is also no hope to implement the popular vote.
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A Appendix

A.1 Proof of Proposition 1

Consider the following strategy for party D: In all rounds l, choose σ1kDl = 0, for k ≤ N

and σ1kDl = 2β1
L , for all k > N . We seek to show that, with this strategy, for all σR and

for all districts with an index k > N ,

(σ1kD + σ1kR) v(t1, ω) + (σ2kD + σ2kR) v(t2, ω) <
1

2
, (3)

whenever ω < ω̂. Since the left-hand side of equation (3) decreases in ω, it suffices to

show that

(σ1kD + σ1kR) v(t1, ω̂) + (σ2kD + σ2kR) v(t2, ω̂) ≤ 1

2
, (4)

or, equivalently, that

σ1kD + σ1kR ≥
v(t2, ω̂)− 1

2

v(t2, ω̂)− v(t1, ω̂)
= β1 , (5)

where the inequality in the left part of (5) follows from (4) upon using that σ2kD = 1−σ1kD
and σ2kR = 1− σ1kR. The equality in the right part of (5) then follows from (1).

After L rounds, the total mass of voters assigned by the two parties to any one

district k equals 2. Under party D’s strategy the share of type 1 voters is in any district

with an index k > N is bounded from below by β1. To see this note that

σ1kD + σ1kR ≥
L 2β1

L

2
= β1 .

�

A.2 On the ranking of districts

Ordering districts. If the game were to end after round l, party R would win district

k in state ω when

2∑
j=1

v(tj , ω)
L

2l

(
slDk(tj) + slRk(tj)

)
>

1

2
, (6)

where slDk(tj) :=
∑l

l′=1 σDkl′(tj) and slRk(tj) :=
∑l

l′=1 σRkl′(tj) are the stocks of type tj

voters who have been assigned by parties D and R, respectively, over the first l rounds of

play. To interpret this inequality, note that L
2l (slDk(tj) + slRk(tj)) is the share of type tj

voters among those voters who have been assigned to district k in the first l periods.
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Thus, if ω is such that the above inequality holds, then party R has majority support

in district k after round l.

Let slk(tj) := slDk(tj)+slRk(tj). We define a rank order of districts according to their

republican vote share after l rounds of play. Thus, the rank of district k is higher than

the rank of district k′ if, for some ω,

2∑
j=1

v(tj , ω)
L

2l
slk(tj) ≥

2∑
j=1

v(tj , ω)
L

2l
slk′(tj) . (7)

Using that, in any district the shares of type 1 and type 2 voters add up to 1, inequality

(7) can equivalently be written as

v(t1, ω) + L
2l s

l
k(t2)

(
v(t2, ω)− v(t1, ω)

)
≥ v(t1, ω) + L

2l s
l
k′(t2)

(
v(t2, ω)− v(t1, ω)

)
.

(8)

or, more simply, as

slk(t2) ≥ slk′(t2) .

Thus, ordering districts according to their republican vote share is equivalent to ordering

them according to the share of type 2 voters. Also, the Republican vote share in any

district k is, for every state ω, a monotonic function of the mass of type 2 voters.

Order preserving assignments. Assume without loss of generality that after l

rounds of play district 1 has a weakly lower republican vote share than district 2, that

district 2 has a weakly lower republican vote share than district 3 and so on. District

2N is then among those with a maximal republican vote share. Now consider round

l + 1. Suppose that party R moves first in round l + 1. It then assigns a mass of 1
L

voters to any district k. Thus, for any district k,

2∑
j=1

σkRl+1(tj) =
1

L
.

This move of R induces a new order of districts according to

slk(t2) + σkRl+1(t2) .

Let rσ(k) ∈ {1, . . . , 2N} be the new rank of the district with initial rank k.

Lemma 2 Given a move σRl+1 = (σkRl+1)
2N
k=1 of party R in round l+1 with a resulting

ranking k 7→ rσ(k) according to the republican vote share, there is an alternative move

σ′Rl+1 = (σ′kRl+1)
2N
k=1 of party R with the following properties:
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i) The alternative move uses the same voter types: For every j,

2N∑
k=1

σkRl+1(tj) =
2N∑
k=1

σ′kRl+1(tj) .

ii) The alternative move preserves the old ranking; formally, it induces a new ranking

k 7→ rσ′(k) so that rσ′(k) = k, for every k.

iii) The republican vote share in the district with rank N + 1 under the alternative

move σ′Rl+1 is at least as high as in the district with rank N + 1 under the initial

move.

Proof of Lemma 2. Suppose there is some district with initial rank k′ that has rank

k in the ranking induced by σRl+1 = (σkRl+1)
2N
k=1; i.e. k′ = r−1(k). The mass of type t2

voters after R’s move under σRl+1 = (σkRl+1)
2N
k=1 is given by

slk′(t2) + σk′Rl+1(t2) .

We now choose σ′kRl+1(t2) so that

σ′kRl+1(t2) = max
{

0, slk′(t2) + σk′Rl+1(t2)− slk(t2)
}
.

Proceeding in the same way for all k implies that

slk(t2) + σ′kRl+1(t2) ≥ slr−1(k)(t2) + σr−1(k)Rl+1(t2) .

The mass of type t2 voters used by σ′Rl+1 = (σ′kRl+1)
2N
k=1 across all districts is such

that

2N∑
k=1

σ′kRl+1(t2) =

2N∑
k=1

max
{

0, slr−1(k)(t2) + σr−1(k)Rl+1(t2)− slk(t2)
}

An upper bound is obtained under the assumption that

slr−1(k)(t2) + σr−1(k)Rl+1(t2)− slk(t2) > 0 ,

for all k, i.e. so that type t2 voters have to be assigned to all districts. Therefore,∑2N
k=1 σ

′
kRl+1(t) ≤

∑2N
k=1 s

l
r−1(k)(t) + σr−1(k)Rl+1(t)− slk(t)

=
∑2N

k=1 s
l
r−1(k)(t)−

∑2N
k=1 s

l
k(t) +

∑2N
k=1 σr−1(k)Rl+1(t)

=
∑2N

k=1 σr−1(k)Rl+1(t) .

Thus, σ′Rl+1 does not use more type t2 voters than σRl+1, and it yields, in any district,

at least as type 2 voters in total. If there is a strict inequality, i.e. if σ′Rl+1 use strictly

less type t2 voters than σRl+1, then those voters can be assigned to the districts in such

a way that the initial ranking is preserved. �
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A.3 Proof of Lemma 1

A strategy for party R. In any round l, given a – for now exogenous – budget of

β1Rl
2N
L type t1-voters to be assigned, proceed sequentially in the following way – until

the budget of type t1-voters for that round is exhausted:

i) Add type t1-voters to the lowest ranked district until the mass of t1-voters equals

the mass in the district with the second lowest rank. From then on, keep the mass

in these two districts equal.

ii) Add type t1-voters to the two lowest ranked districts until the mass of t1-voters

equals the mass in the district with the third lowest rank. From then on, keep the

mass in these two districts equal.

iii) Proceed analogously for all districts with a rank smaller or equal N − 2. From

then on, keep the mass in all these districts equal. Add t1-voters to the N − 1

lowest ranked districts until the mass of t1-voters equals the mass in the district

with rank N . From then on, don’t add further t1-voters to one of the bottom N

districts.

iv) Add t1-voters to the top ranked district.

v) If there are still t1-voters left in the budget after a mass of 1
L t1-voters has been

assigned to the top ranked district, add t1-voters to the district with the second

highest rank, etc, then move to the district with the third highest rank, etc.

vi) Stop when no further t1-voters are left.

Note that, as an implication, R’s play in any round leaves the ranking of districts

unchanged.

A best response for party D. Consider a – for now exogenous – sequence of budgets

for partyD’s play {β1Dl}Ll=1. Note that since partyR never affects the ranking of districts,

the ranking of districts in any round is entirely due to party D. As argued above it entails

no loss of generality to assume that party D’s moves do neither affect the ranking of

districts. This also implies that it is never optimal to have a budget of partisan D voters

in some round that makes it necessary to assign D voters to strictly more than N + 1

districts. Thus, we may assume that, for any round l,

β1Dl
2N

L
≤ N + 1

L
,
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or, equivalently,

βDDl ≤ 1

2
+

1

2N
.

Given some budget for moves in round l, the optimal strategy for party D is now as

follows:

i) Add type t1-voters to the district with rank N until the mass of t1-voters equals

the mass in the district with the rank N+1. From then on, keep the mass in these

two districts equal.

ii) Add type t1-voters to the two districts with ranks N and N + 1 until the mass of

t1-voters equals the mass in the district with rank N + 2. From then on, keep the

mass in these three districts equal.

iii) Proceed analogously for all districts with a rank larger or equal N + 2, until the

budget of D voters is exhausted.

Party R’s sequence of budgets. We now specify a particular sequence of budgets

for party R: As the first mover in the initial round, it does not assign any type t1-voters,

β1R1 = 0. In any round l ≥ 2, and as long os this is feasible, party R assigns as many

t1-voters as party D did in the previous round

β1Rl+1 = β1Dl .

This is clearly feasible in early rounds. If, however, party D keeps some type t1-voters

for the last round so that β1DL > 0, then party R will have to assign an additional mass

of β1DL ≤
2N
L type t1-voters somewhen in the game. Otherwise party R would violate

its overall budget constraint. Note that this quantity vanishes for L→ infty.

Thus, there is a subset of rounds L′ so that∑
l′∈L′

β1Dl′ <
∑
l′∈L′

β1Rl′+1 ≤
∑
l′∈L′

β1Dl′ +
2N

L
.

and for l not in L′ we let

β1Rl+1 = β1Dl .

Party R’s strategy has the following implication: Whenever party R moves, it brings

the mass of t1-voters in the bottom N−1 districts to the level that party D has generated
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for the district with rank N in the previous round. Moreover, party R adds t1-voters at

most to the two top-ranked districts, and does not assign any D voters to districts with

the ranks N,N + 1, . . . , 2N − 2.

To see this, first consider rounds 1 and 2:

� In round 1, party D assigns an equal mass of D voters to N + 1 districts.

� In round 2, party R fills the bottom N−1 districts. It then has additional t1-voters

left. According to party R’s strategy, as many t1-voters as possible are assigned

to the district with the top rank 2N . If additional t1-voters are left, they go to

the district with rank 2N − 1 and then, possibly, to the district with rank 2N − 2.

Now consider rounds 3 and 4:

� In round 3, party D’s best response stipulates to assign an equal mass of t1-voters

to the districts with ranks N,N+1, . . . , 2N−2. Those are N−1 districts. Possibly,

it also assigns t1-voters to the three top ranked districts.

� In round 4, party R fills the bottom N − 1 districts. It can do so by adding to the

districts in the bottom N − 1 exactly the amount of D voters that party D has

added to the districts with ranks N,N + 1, . . . , 2N − 2 in round 3.

� If party D has previously added t1-voters to the two top ranked districts, then

party R has additional t1-voters left after the bottom 2N − 2 districts have been

leveled. Again, by party R’s strategy, of these voters as many as possible are

assigned to the district with the top rank 2N . If additional t1-voters are left, they

go to the district with rank 2N − 1.

Completing the argument. Suppose first that, for all l,

βDRl+1 = βDDl .

The strategies of parties R and D described above then imply that after the last move

in round L, there is an equal mass of type t1-voters for all districts with a rank smaller

or equal to 2N − 2. The mass of these voters is (weakly) larger in the two top ranked

districts. Now suppose that the percentage share of t1-voters in the district with rank

N is strictly larger than β1. Equivalently, the total mass of t1-voters in that district

exceeds 2 β1. Then, the mass of t1-voters exceeds 2 β1 in all districts. Hence, the
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total mass of assigned t1-voters is strictly larger than 4N β1. But this is infeasible as

the two parties’ total endowments with partisan t1-voters only sum to 4N β1. Thus,

the assumption that party D can generate N + 1 districts with a percentage share of

type t1-voters strictly larger than βD leads to a contradiction, and must be false.

Now suppose, there needs to be a subset of rounds L′ so that∑
l′∈L′

β1Dl′ <
∑
l′∈L′

β1Rl′+1 ≤
∑
l′∈L′

β1Dl′ +
2N

L
.

For L sufficiently large, we can chose the number of such rounds equal to 2N , i.e.

#L′ = 2N . Party R can then satisfy its overall budget constraint by assigning, for

every round l′ ∈ L′, an additional mass of t1-voters that is bounded from above by 1
L .

Then, party R’s moves in rounds l′ ∈ L′ may require to add type t1-voters to the

three highest ranked districts, with the mass going to the district with rank 2N − 2

being bounded from above by 1
L . The strategies of parties R and D described above

then imply that after the last move in round L, there is an equal mass of type t1-voters

for all districts with a rank smaller or equal to 2N − 3. The mass of these voters

is (weakly) larger in the three top ranked districts. Again, the assumption that the

percentage share of t1-voters in the district with rank N is strictly larger than β1 leads

to a contradiction, and must be false. �
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