Is the Phone Mightier than the Virus? Cell Phone Access and Epidemic Containment Efforts

Robert Gonzalez^{*} and Elisa Maffioli^{**}

*Department of Economics, Georgia Institute of Technology **School of Public Health, University of Michigan

Motivation

- Infectious disease outbreaks remain major burden: 2009-2010 swine flu, 2014 West African and the 2018-2020 DRC Ebola virus disease, 2015-2016 Zika virus in Latin America, 2019 Covid.
- Assessing the effectiveness of tools to contain spread is first-order policy issue
- Mobile phone technology is a powerful tool
 - Diagnosis, prediction, delivery of health care
 - Information
- Specific tools have been used in past outbreaks

Research Question

Does cell phones access among the general population help contain (or spread) disease during an outbreak?

Context:

- 2014 Ebola Virus Disease (EVD) epidemic in Liberia
- Use mobile phone coverage as a proxy for cell phone access
- Use a Regression Discontinuity (RD) design

 \Rightarrow **Objective:** Find the causal effect of cell phone access on likelihood of EVD case

Mechanisms

How are cell phone access and disease (EVD) related?

- *Preventive care channel:*
 - Cell phone access \Rightarrow Exposure to prevention
 - Prevention education and material, hygiene practices, etc.
 - Cell phone access $\Rightarrow \downarrow$ Likelihood of EVD
- *Treatment care channel:*
 - Cell phone access ⇒ Access to health care resources
 - Reporting sick and dead, requesting ambulances, etc.
 - Cell phone access $\Rightarrow \downarrow$ Likelihood of EVD

Mechanisms

How are cell phone access and disease (EVD) related?

- *Preventive care channel:*
 - Cell phone access \Rightarrow Exposure to prevention
 - Prevention education and material, hygiene practices, etc.
 - Cell phone access $\Rightarrow \downarrow$ Likelihood of EVD
- Treatment care channel:
 - Cell phone access ⇒ Access to health care resources
 - Reporting sick and dead, requesting ambulances, etc.
 - Cell phone access $\Rightarrow \downarrow$ Likelihood of EVD
- Network channel:
 - Cell phone access \Rightarrow Increases access to network
 - Reliance on network, especially at early stages

 - Cell phone access $\Rightarrow \uparrow$ Likelihood of EVD

Literature

Background on EVD in Liberia

- Largest epidemic in history of the disease
 - 10,675 confirmed, probable, or suspected cases
 - 4,809 deaths -- the highest number in West Africa
- Delayed international aid
 - 62 countries and international agencies commit US\$806 million
 - Government maintained control and ownership of relief efforts
 - Hotline, Community Care Centers (CCC), Ebola Treatment Units (ETUs), burial teams, etc.
- Timeline: March 2014 May 2015 (first free-EVD declaration)
- Minor outbreaks, completely over by January 2016

Background on EVD in Liberia

Data: EVD

Measure of EVD, constructed from a proprietary patient database from the MOH

- Contains more than 19,000 patients tested for EVD between March 2014 and July 2015
- Supplemented with a data from Global Community–a development organization that managed burials after July 2014
- Use data on village location (lat,lon) to create village-level measure of EVD

 \Rightarrow Indicator equal to 1 if at least one (probable, confirmed, or death) case was recorded in village *i* during study period

Data: Coverage

Tower locations and radio frequency

- Obtained from Liberia Telecommunication Authority (LTA)
- Year: 2013 (year prior to start of outbreak)
- MTN Lonestar and Cellcom (91% market share in 2013)
- Measure: Signal strength on the ground obtained from Irregular Terrain Model (Crabtree and Kern, 2018)

Empirical Strategy: Measure of Coverage

Use a **Radio Wave Propagation Model** to predict signal strength (coverage) (4th gen)

- Takes into account topography, climate, terrain conductivity, etc.
- Better suited for Super High Frequency radio waves
- Model predictions repeatedly validated via on-the-ground measurements (Eppink and Kuebler 1994; Lazaridis et al. 2013; Longley and Rice 1968; Seybold 2005)
- Workhorse model of regulatory agencies (Crabtree 2018)

ITM "Free-space" versus ITM with Topography "Free-space" ITM

ITM "Free-space" versus ITM with Topography ITM with Topography

Empirical Strategy: Measure of Coverage

Implementing the ITM:

Inputs:

- Location (lat,lon) of cell phone towers
- Raster elevation model (DEM30)
- Transmission frequency of towers
- Other variables related to climate, land coverage, ground conductivity, antenna gain, etc.

Empirical Strategy: Measure of Coverage

Implementing the ITM:

Inputs:

- Location (lat,lon) of cell phone towers
- Raster elevation model (DEM30)
- Transmission frequency of towers
- Other variables related to climate, land coverage, ground conductivity, antenna gain, etc.

Output:

- Power received at any point in the ground (measured in dBm (decibels/milliwatt))
- Power measured in dBm (decibels/milliwatt):
 - Typically ranges between -50 and -140dBm.
 - Use absolute value: 50 to 140dBm; lower dBm = stronger coverage

ITM details Inputs details

Empirical Strategy: Measure of Coverage, Inputs

Empirical Strategy: Measure of Coverage, Output

Empirical Strategy: Measure of Coverage

Estimating the effect of cell phone coverage using ITM

- GSM cell phone networks work if received power is between 95 and 105 dBm
- If received power falls below that threshold–>No calls, dropped calls, no SMS
- Going from 1 bar to no bars

Compare villages within a margin of this threshold Determinants

• At this margin, minor changes in topography is what determines whether you get enough signal strength

Empirical Strategy: Regression Discontinuity

Framing this idea within a **RD design**:

- Quality of communication is a continuous function of power received (dBm)
- Discontinuity in ability to make a call at receiver sensitivity threshold

RD design uses:

- Received power (signal strength) as the forcing variable
- Receiver sensitivity as the cutoff (95-105dBm)
- \Rightarrow We use 95 dBM
 - Validated in engineering literature (Razally 2015, GSM 2019)
 - Empirical tests 3 cutoff tests

Note: Positive correlation (0.55) between ITM predicted coverage and phone ownership (at district level, DHS) Graph

Empirical Strategy: Regression Discontinuity

Regression Discontinuity Design:

 $EVD_i = \alpha + \beta D_i + f(\tilde{R}_i) + h(\mathbf{G}_i) + \epsilon_i$

- *EVD_i* indicator for village *i* having at least one EVD case
- D_i = whether village *i* has coverage (i.e., received power >c)
- $\tilde{R}_i = R_i c$ is received power in dBm net of cutoff *c*
- $f(\tilde{R}_i)$ is RD polynomial (LLR)
- *h*(**G**_{*i*}) function of topography (elevation, terrain slope)
- Bandwidth *h* chosen optimally (Calonico et al. (2014))
- Triangular weighting kernel
- Standard errors clustered at district level

Validity

Graphical Evidence: Regression Discontinuity Plots

Main Results: Regression Discontinuity Estimates

Effect of Coverage on Likelihood of EVD Case

	Dep. Variable $= \frac{1}{2} \left[1 \sqrt{2} \ln \theta + $							
	Baseline (1)	Controls (2)	Topo Poly (3)	Poly RD (4)	Kernel choice (5)	Probit model (6)		
Coverage	-0.108**	-0.101**	-0.110**	-0.096***	-0.105***	-0.429**		
0	(0.048)	(0.042)	(0.048)	(0.035)	(0.041)	(0.204)		
Mean outside coverage	0.09	0.09	0.09	0.06	0.09	0.09		
Bwidth (dBm)	8.99	8.13	9.09	50.00	8.24	8.24		
Observations	1547	1547	1741	7014	1547	1547		
Districts	83	83	84	115	83	83		
Marginal	-	-	-	-	-	-0.07		

Dep. Variable = 1{Number of Reported EVD cases > 0}

Robustness

Main Results: Regression Discontinuity Estimates

Controlling for "Free-Space" Signal Strength

- Minor changes in terrain topography lead to arbitrary blocking or diffraction of the signal, and thus to *actual* signal on the ground
- We estimate a "free-space" ITM (Olken, 2009), assuming direct line-of-sight between the tower and the receiver
- Control for: free-space predicted signal strength and coverage
- **Goal:** To identify coverage effect using the variation in signal strength *solely* due to idiosyncratic changes in topography

Comparison ITMs

Main Results: Regression Discontinuity Estimates

Dep. variable $= \mathbb{I}\{\text{Number of Reported EVD cases } > 0\}$							
	(1)	(2)	(3)	(4)			
Coverage	-0.087**	-0.084*	-0.077**	-0.081**			
0	(0.038)	(0.041)	(0.037)	(0.040)			
Free-space coverage	-0.013		-0.044*	-0.045*			
	(0.020)		(0.024)	(0.026)			
Free-space signal strength		0.000	-0.000	-0.000			
		(0.001)	(0.001)	(0.001)			
Free-space coverage \times Free-space signal strength			0.003	0.003			
			(0.002)	(0.002)			
Maan outcido covoraço	0.093	0 101	0.094	0.003			
Bandwidth (dBm)	8 25	7.00	0.094	0.095 8 02			
Observations	1547	1252	9.14 1720	1528			
Observations	1347	1332	1720	1526			
Districts	83	81	84	83			
Controls	Yes	Yes	Yes	Yes			
Topography Polynomial	No	No	No	Yes			

Dep. Variable = $\mathbb{1}$ {Number of Reported EVD cases > 0}

Falsification Tests

Summary of Main Results

- Cell phone coverage leads to a 10 pp drop in likelihood of EVD
- Evidence of contagion effect given an EVD case within district, but diminished if village has cell phone coverage Panel RD estimates
- Main results are robust to alternative EVD measures and range of bandwidths Tests
 - Bandwidth choice
 - Alternative EVD Measures
 - Near cutoff values
 - "Walking into coverage"
 - False coverage

Next: Which are the **mechanisms** explaining the effect of cell phone coverage on EVD?

Mechanisms

Ex-ante ambiguous relationship between cell phone access and disease (EVD):

- *Preventive care channel:*
 - Cell phone access \Rightarrow Exposure to prevention
 - Prevention education and material, hygiene practices, etc.
 - Cell phone access $\Rightarrow \downarrow$ Likelihood of EVD
- *Treatment care channel:*
 - Cell phone access ⇒ Access to health care resources
 - Reporting sick and dead, requesting ambulances, etc.
 - Cell phone access $\Rightarrow \downarrow$ Likelihood of EVD
- Network channel:
 - Cell phone access \Rightarrow Increases access to network
 - Improve collective action (coordination, free-riding)
 - Reliance on network, especially at early stages

 - Cell phone access $\Rightarrow \uparrow$ Likelihood of EVD

Hotline

Use **survey data** collected about six months after the end of the epidemic (Maffioli (2018))

- 2,265 respondents in 571 villages across all of Liberia selected through random dialing of phone numbers
- Interviewed through a combination of an Interactive Voice Response (IVR) and a Computer-Assisted Telephone Interviewing (CATI) conducted by a local NGO
- About 30% of individuals surveyed in 2015-2016 were living in areas that did not have coverage just prior to the outbreak in 2013

More info: "Collecting Data During an Epidemic: A Novel Mobile Phone Research Method"

We create several "prevention" and "treatment" outcomes

Preventive care:

Someone (from government, health workers, local or international NGOs) came to village to:

- Do contact tracing
- Explain EVD
- Hold hygiene meetings
- Share EVD prevention information [Community taskforce]
- Explain how to conduct safe burials
- Bring prevention material (chlorine, buckets, etc.)

We create several "prevention" and "treatment" outcomes

Preventive care:

Someone (from government, health workers, local or international NGOs) came to village to:

- Do contact tracing
- Explain EVD
- Hold hygiene meetings
- Share EVD prevention information [Community taskforce]
- Explain how to conduct safe burials
- Bring prevention material (chlorine, buckets, etc.)

Treatment care:

- Someone (from government, health workers, local or international NGOs) came to village to:
 - Take sick people
 - Take dead bodies
- Ambulances arrived on time after being requested
- CCC was built within 10 kilometers of the village

Preventive Care

	Contact tracing (1)	Explain EVD (2)	Hygiene meet- ings (3)	Bring info (Task- force) (4)	Explain burials (5)	Prev mate- rial (6)	Prev care index (7)
Coverage	0.102	0.123	-0.173	0.135	0.090	0.079	0.049
	(0.084)	(0.086)	(0.110)	(0.088)	(0.092)	(0.111)	(0.131)
Mean	0.200	0.897	0.465	0.282	0.174	0.779	0.047
Bandwidth (dBm)	8.80	14.89	17.12	8.94	11.77	16.46	15.17
Observations	268	434	551	296	328	518	447
Villages	86	166	203	86	122	189	175

Treatment Care

	Take sick (1)	Take dead (2)	Ambulance on-time (3)	CCCs within 10km (4)	Treatment care index (5)
Coverage	0.223***	-0.006	0.206***	0.416*	0.340**
<u> </u>	(0.036)	(0.044)	(0.076)	(0.235)	(0.146)
Mean outside coverage	0.123	0.070	0.835	0.455	-0.036
Bandwidth (dBm)	8.13	11.17	12.35	9.40	8.00
Observations	268	328	385	317	268
Villages	86	122	139	100	86

Channels of Impact: Network Channel

Network channel cannot be tested directly

• An individual's network is unobserved

Two measures as a way to define a village's closest social network

- 1. Call Detail Recording (CDR) database graph
 - June-July 2015 from Cellcom
 - Connect villages within tower catchment area to other towers by number of calls

2. Historic Liberian clans

- 619 clans, including an average of 38 villages
- Villages within a clan are more likely to be socially interconnected than villages within other administrative units

Network channel: We expect likelihood of EVD to increase in village *i* if *i* has coverage and other EVD-affected villages within the same network also have coverage

Channels of Impact: Network Channel

Empirical model:

 $EVD_{ijt} = \alpha + \beta Match_{i,j(i)} + \gamma EVD_{j(i),t-1} + \delta Match_{i,j(i)} \times EVD_{j(i),t-1} + \lambda_i + \nu_t + \epsilon_{ijt}$

- *EVD*_{*ijt*} indicator for village *i*, in network *j*, in quarter *t* having at least one EVD case
- EVD_{j(i),t−1} = 1 if at least one village in village *i*'s network was affected by EVD in quarter *t* − 1
- *Match*_{*i*,*j*(*i*)} = 1 if village *i* has coverage and at least one of the EVD-affected villages within village *i*'s network has coverage ("coverage match")
- λ_i village FE
- v_t quarter FE
- Standard errors clustered at network level

Channels of Impact: Network Channel

Likelihood of EVD within Connected Villages of the Network

	Dej	> 0}				
	Top tower (1)	Top 5 towers (2)	50% call share (3)	75% call share (4)	90% call share (5)	Network: Clan (6)
$EVD_{j(i),t-1}$	0.0399***	0.0310***	0.0406***	0.0179**	0.0095**	0.0338
	(0.007)	(0.009)	(0.007)	(0.008)	(0.004)	(0.028)
$Match_{i,i(i)} \times EVD_{i(i),t-1}$	0.0061	0.0064	0.0109	0.0112	0.0085	-0.0030
	(0.033)	(0.024)	(0.036)	(0.016	(0.006)	(0.045)
Observations	18864	18864	18864	18864	18864	19372
Villages	9432	9432	9432	9432	9432	9686
Clusters	96	96	96	96	96	631
Village and time FE	Yes	Yes	Yes	Yes	Yes	Yes

Conclusion

Evidence that mobile phone coverage helps disease containment

True even in the midst of a crisis and in setting with general mistrust towards authorities

Analysis of channels of impact suggests that:

- Interventions designed to improve access to treatment more effective than interventions designed to increase prevention
- Plausible:
 - In the midst of a crisis, return to an additional ambulance likely higher than return to additional information session or preventive material
 - Effects of increasing prevention may take longer to materialize as they entail a change in health behavior

Policy Implications

- Infectious disease epidemics remain a worldwide threat
- Ultimate human and economic costs could be mitigated through appropriate governmental actions
- We show that cell phone coverage play an important role in containing the disease:
 - In normal times: more investment in mobile phone technology (Blumenstock et al. 2020)
 - In the midst of a crisis: exploit cell phone coverage/technology with interventions to improve access to treatment, rather than prevention

APPENDIX SLIDES
- 1. ICT (Information and Communication Technology) and economic development (Aker and Mbiti 2010)
 - Market efficiency (Jensen 2007, Aker 2010; Aker, Fafchamps 2014)
 - Education (Aker et al. 2012, 2018)
 - Mobile money & transfers (Jack and Suri, 2011, 2014; Blumenstock et al. 2016)

2. Mobile phones and health-related outcomes

- Management of health records (Argwal et al. 2015)
- Quality, efficiency or monitoring of care (Braun et al. 2013)
- Maternal and child health indicators (Obasola et al. 2015)
- Remote diagnosis of disease (D'Ambrosio et al. 2015)

3. Mobile phones and infectious diseases

- Mobility patterns to predict outbreaks (Lu et al. 2012, Bengstsson et al. 2015; Wesolowski et al. 2015)
- "Participatory epidemiology" (Yang et al 2009; Freifeld 2010; Sacks et al. 2015, Feng et al. 2018)
- 4. Radio propagation models to proxy media exposure (Olken (2009), Adena et al. (2015), Durante et al. (2017))
 - Employ model using cell phone technology (communication)
 - Frame strategy within a regression discontinuity design

Gonzalez and Maffioli

Our paper advances this literature in four areas:

- Measure mobile phone access at a large, country-wide scale
 - Previous work focuses on study-specific tools or applications

Our paper advances this literature in four areas:

- Measure mobile phone access at a large, country-wide scale
 - Previous work focuses on study-specific tools or applications
- Address endogeneity of cell phone access
 - Disentangle the effect of mobile phone access from the effect of other determinants of the technology

Our paper advances this literature in four areas:

- Measure mobile phone access at a large, country-wide scale
 - Previous work focuses on study-specific tools or applications
- Address endogeneity of cell phone access
 - Disentangle the effect of mobile phone access from the effect of other determinants of the technology
- Go beyond the evaluation exercise
 - Explore mechanisms that can explain the relationship between cell phone access and epidemic containment

Our paper advances this literature in four areas:

- Measure mobile phone access at a large, country-wide scale
 - Previous work focuses on study-specific tools or applications
- Address endogeneity of cell phone access
 - Disentangle the effect of mobile phone access from the effect of other determinants of the technology
- Go beyond the evaluation exercise
 - Explore mechanisms that can explain the relationship between cell phone access and epidemic containment
- Explore effectiveness of technology during a health crisis
 - Setting characterized by general mistrust towards local and international institutions

Back to Mechanisms

Tests for cutoff r = 95 dbm

(1) Difference in Kernels estimator (Qiu 2011, Porter and Yu 2015)

• Intuitively, compare kernel-weighted average of outcome on the right and left of point r(80 - 110 dbM) and find jump

Tests for cutoff r = 95 dbm

(2) Max *R*² strategy (Card et al 2008)

• Estimate relationship between outcome and signal strength for potential cutoffs within a range; then choose *r* with highest *R*²

Tests for cutoff r = 95 dbm

(3) Method by Spokoiny (1998) adapted to RD setting

- Estimate polynomial f(.) in $Y_i = f(R_i r_0) + \epsilon_i$ within a neighborhood U of point $r_0 = 75$
- Examine *Root Mean Square Error* of residuals
- Then increase *U* until there is a clear jump in residuals at *r* (i.e. endpoint of max interval for which the endpoint residuals "well behave")

(a) Polynomial within interval U around $r_0 = 75$

(b) RMSE at interval endpoints

Figure: RMSE of Endpoint Residuals

ITM and Cell Phone Ownership

Correlation between proportion of individuals reporting cellphone ownership (DHS, 2013) and proportion of villages with predicted cellphone coverage (ITM), at district level

Gonzalez and Maffioli

Empirical Strategy: The ITM model

Empirical Strategy: The ITM model

Empirical Strategy: The ITM model

Back to Coverage

Is the Phone Mightier than the Virus?

Main variables and Parameters of Irregular Terrain Model (ITM)

Model variables	Description	Parameters
Transmitter characteristi	cs	
Transmitter power	Transmission power (Watts)	5
Frequency	Radio wave frequency (MHz)	900
Latitude	Latitude of cell tower	e.g., 37.158
Longitude	Longitude of cell tower	e.g., 70.765
Transmitter height	Height of cell tower above ground (meters)	30
Radius	Maximum coverage radius (kilometers)	20
Antenna gain	Transmitter antenna gain (dBi)	2.14
Receiver characteristics		
Receiver sensitivity	Minimum power received threshold (dBm)	-140
Receiver height	Receiver height above ground (meters)	1.5
Antenna gain	Receiver antenna gain (dBi)	2.14
Geographic characteristic	<i>cs</i>	
Resolution	Topographic model	DSM30
Radio climate	1: Equatorial	e.g., 5
	2: Continental Subtropical	
	3: Maritime Subtropical	
	4: Desert	
	5: Continental Temperate	
	6: Maritime Temperate, over land	
	7: Maritime Temperate, over sea	
Terrain conductivity	Salt water : 80	e.g., 13
	Fresh water : 80	
	Good ground : 25	
	Marshy land : 12	
	Farmland, forest : 15	
	Average ground : 15	
	Mountain, sand : 13	
	City: 5	
	Poor ground : 4	

_

Main variables and Parameters of Irregular Terrain Model (ITM)

Other model inputs:

- ITM reliability: 99
- Output type: 2
- Distance unit: meters
- Knife-Edge difraction: 0
- Antenna code: 39

Estimation of the ITM model uses the SLEIPNIR engine in cloudRF. Back to Coverage

What determines coverage at the margin?

	Dep. variable: Signal strength (dBm)			
	Full sample	Within 10 dBm		
Topographic controls				
Elevation (m)	-0.082***	0.005		
	(0.024)	(0.009)		
Slope (%)	-0.283	0.828***		
	(0.455)	(0.256)		
Demographic controls				
Household size	-0.194	0.118		
	(0.171)	(0.087)		
Population (log)	0.880***	-0.013		
	(0.166)	(0.117)		
Female (%)	-0.367	1.474		
	(2.456)	(1.775)		
Married (%)	-4.267*	1.236		
	(2.170)	(1.481)		
Christian (%)	1.974	-0.340		
	(2.593)	(1.603)		
Muslim (%)	1.655	-1.721		
	(3.180)	(1.982)		
African religion (%)	6.102	-0.579		
8 ()	(5.602)	(7.128)		
Kpelle (%)	-0.040	-1.190		
1	(1.159)	(0.946)		
Bassa (%)	3.648	0.497		
	(2.229)	(1.163)		
Economic controls	(4.44)	()		
Primary education (%)	-0.347	-1.199		
,,	(1.665)	(1.200)		
Secondary education (%)	5.027**	0.925		
	(2.091)	(1.137)		
Owns house (%)	1.084	-0.403		
	(1.189)	(0.568)		
House condition: Good (%)	9.476***	0.858		
	(2.175)	(0.941)		
Assets ownership (%)	2.350	0.505		
·	(3.844)	(1.621)		
Distance to Monrovia (km)	-0.098**	-0.020		
	(0.047)	(0.024)		
Distance to closest city (km)	-0.306***	-0.035		
	(0.113)	(0.049)		
Observations	7.014	1.913		
Topographic controls (F-test)	0.00	0.00		
Demographic controls (F-test)	0.00	0.35		
Economic controls (E-test)	0.00	0.79		
Demographic and economic controls (E-test)	0.00	0.15		
Demographic and contonne controls (1-test)	0.00	0.10		

What determines coverage at the margin?

	Dep. variable: Signal strength (dBm)			
	Full sample	Within 10 dBm		
Topographic controls				
Elevation (m)	-0.082***	0.005		
	(0.024)	(0.009)		
Slope (%)	-0.283	0.828***		
	(0.455)	(0.256)		
Demographic controls				
Household size	-0.194	0.118		
	(0.171)	(0.087)		
Population (log)	0.880***	-0.013		
1	(0.166)	(0.117)		
Female (%)	-0.367	1.474		
remate (70)	(2.456)	(1.775)		
Married (%)	-4 267*	1 236		
Mairied (15)	(2.170)	(1.481)		
Christian (9/)	1.074	0.240		
Christian (70)	(2 502)	-0.340		
Mueline (9/)	(2.593)	(1.603)		
Musiin (%)	(2.100)	-1./21		
1.61 11.1 (0/)	(3.180)	(1.982)		
African religion (%)	6.102	-0.579		
	(5.602)	(7.128)		
Kpelle (%)	-0.040	-1.190		
	(1.159)	(0.946)		
Bassa (%)	3.648	0.497		
	(2.229)	(1.163)		
Economic controls				
Primary education (%)	-0.347	-1.199		
	(1.665)	(1.200)		
Secondary education (%)	5.027**	0.925		
	(2.091)	(1.137)		
Owns house (%)	1.084	-0.403		
	(1.189)	(0.568)		
House condition: Good (%)	9.476***	0.858		
	(2.175)	(0.941)		
Assets ownership (%)	2.350	0.505		
1 ()	(3.844)	(1.621)		
Distance to Monrovia (km)	-0.098**	-0.020		
	(0.047)	(0.024)		
Distance to closest city (km)	-0.306***	-0.035		
Distance to closest city (kin)	(0.113)	(0.049)		
Observations	7 014	1 913		
Topographic controls (E-test)	0.00	0.00		
Domographic controls (F-test)	0.00	0.35		
Economia controlo (F-test)	0.00	0.00		
Domographic and geometric controls (E test)	0.00	0.75		
Demographic and economic controls (F-test)	0.00	0.15		

Is the Phone Mightier than the Virus?

Empirical Strategy: Regression Discontinuity

Regression Discontinuity Design

Validity of the design:

- Similar baseline characteristics across coverage threshold RD plots of covariates
- Density of forcing variable is smooth at the threshold 📧
- No manipulation of forcing variable at the threshold

Back to Empirical Strategy

Histogram and Test for Manipulation of Forcing Variable

(a) Histogram

(b) Test for manipulation

Figure: Histogram and Test for Manipulation of Forcing Variable

Gonzalez and Maffioli

Covariate RD Plots

Is the Phone Mightier than the Virus?

Summary Stats

	Full sample			W	Within 20 dBm			Within 10 dBm		
	In	Out	S.E.	In	Out	S.E.	In	Out	S.E.	
Topographic characteristics:										
Elevation (m)	122.8	165.3	(14.69)***	123.5	124.6	(12.26)	122.3	117.7	(11.69)	
Slope (%)	0.68	0.89	(0.05)***	0.68	0.64	(0.04)	0.67	0.62	(0.04)	
Demographic characteristics:										
Household size	4.68	5.02	$(0.10)^{***}$	4.66	4.58	(0.07)	4.64	4.52	(0.08)	
Population (log)	4.38	4.32	(0.07)	4.25	4.17	(0.06)	4.16	4.19	(0.08)	
Female (%)	0.48	0.48	(0.00)	0.48	0.48	(0.00)	0.48	0.48	(0.01)	
Married (%)	0.37	0.38	(0.01)	0.37	0.39	(0.01)**	0.38	0.39	(0.01)	
Christian (%)	0.85	0.87	(0.03)	0.85	0.85	(0.02)	0.83	0.85	(0.02)	
Muslim (%)	0.11	0.10	(0.03)	0.11	0.13	(0.02)	0.13	0.13	(0.02)	
African religion (%)	0.01	0.01	(0.00)	0.01	0.00	(0.00)	0.00	0.00	(0.00)	
Kpelle (%)	0.31	0.28	(0.04)	0.31	0.33	(0.03)	0.31	0.36	(0.03)*	
Bassa (%)	0.25	0.24	(0.06)	0.26	0.24	(0.04)	0.26	0.21	(0.04)	
Other ethnic group (%)	0.43	0.48	(0.05)	0.42	0.42	(0.03)	0.42	0.42	(0.03)	
Economic characteristics:										
Primary education (%)	0.28	0.25	(0.01)**	0.28	0.26	(0.01)**	0.26	0.26	(0.01)	
Secondary education (%)	0.38	0.33	(0.02)***	0.37	0.34	(0.01)**	0.35	0.35	(0.01)	
Owns house (%)	0.80	0.87	(0.02)***	0.81	0.84	(0.01)***	0.82	0.82	(0.01)	
House: Good (%)	0.26	0.14	(0.02)***	0.25	0.20	(0.01)***	0.22	0.21	(0.01)	
Asset ownership (%)	0.13	0.11	(0.01)***	0.13	0.12	(0.01)*	0.12	0.12	(0.01)	
Dist. to Monrovia (km)	112.3	166.9	(12.51)***	111.1	126.1	(10.08)	111.3	119.9	(9.11)	
Dist. to closest city (km)	19.82	33.72	(2.15)***	19.67	22.52	(1.36)**	19.58	21.06	(1.24)	
Observations	1,856	7,830		1,698	2,141		1,112	801		

- Bandwidth choice
- Alternative EVD Measures
- Free space ITM
- Near cutoff values
- "Walking into coverage"
- False coverage

Back to Main results

Bandwidth choice

Months affected by EVD

Baseline	Controls	Topo Poly	Poly RD	Kernel choice			
(1)	(2)	(3)	(4)	(5)			
-0.209** (0.096)	-0.188** (0.084)	-0.220** (0.099)	-0.158** (0.074)	-0.199** (0.087)			
0.128 8.72 1547 83	0.128 8.97 1547 83	0.128 8.59 1547 83	0.090 50.00 7014 115	0.142 7.10 1369 81			
	Baseline (1) -0.209** (0.096) 0.128 8.72 1547 83	Baseline Controls (1) (2) -0.209** -0.188** (0.096) (0.084) 0.128 0.128 8.72 8.97 1547 1547 83 83	Baseline Controls Topo Poly (1) (2) (3) -0.209** -0.188** -0.220** (0.096) (0.084) (0.099) 0.128 0.128 0.128 8.72 8.97 8.59 1547 1547 1547 83 83 83	Baseline Controls Topo Poly Poly Poly RD (1) (2) (3) (4) -0.209** -0.188** -0.220** -0.158** (0.096) (0.084) (0.099) (0.074) 0.128 0.128 0.128 0.090 8.72 8.97 8.59 50.00 1547 1547 1547 7014 83 83 83 115			

Number of Months Affected by EVD

Number of suspected EVD deaths

		-		-		-
	Baseline (1)	Controls (2)	Topo Poly (3)	Poly RD (4)	Kernel choice (5)	Probit model (6)
Coverage	-0.069* (0.037)	-0.074** (0.030)	-0.069* (0.036)	-0.058 (0.036)	-0.067* (0.035)	-0.243* (0.129)
Mean outside coverage Bandwidth (dBm) Observations Districts Marginal Effect	0.111 10.64 1913 86	0.111 10.26 1913 86	0.109 11.10 2139 87	0.091 50.00 7014 115	0.106 9.02 1741 84	0.087 1741 84 -0.048

Dep. Variable = 1{Number of Suspected EVD deaths > 0}

ITM "Free-space" versus ITM with Topography "Free-space" ITM

ITM "Free-space" versus ITM with Topography

ITM with Topography

Gonzalez and Maffioli

RD Estimates Close To Coverage Boundary

Effect of Coverage on Likelihood of EVD Case, By Distance to Coverage Boundary

	No restriction (1)	Within 2km (2)	Within 4km (3)
Coverage	-0.101**	-0.105**	-0.100**
U	(0.042)	(0.043)	(0.042)
Mean outside coverage	0.093	0.093	0.093
Bandwidth (dBm)	8.13	8.15	8.07
Observations	1547	1535	1542
Districts	83	83	83
Controls	Yes	Yes	Yes

Sensitivity Analysis Close To Coverage Boundary

250 reps: for each replication, we randomly drop X% of the obs within a 1dBM window of the cut-off and using RD model using restricted sample

"Walking to Coverage Boundary"

Average Travel Distance to Closest Village with Coverage

	No dBm restric- tions	Within 20 dBm	Within 10 dBm	
	(1)	(2)	(3)	
Mean (km)	25.94	6.73	5.69	
Std. Dev.	45.69	10.45	10.26	
Observations	4,639	1,060	367	
Share non-coverage sample	0.59	0.50	0.46	

"Walking to Coverage Boundary"

Effect of Coverage on Likelihood of EVD Case, Non-Coverage Villages close to Coverage

	Closest coverage village within:							
	2km	4km	6km	8km	10km			
	(1)	(2)	(3)	(4)	(5)			
Coverage	-0.114*	-0.098*	-0.106**	-0.103**	-0.104**			
	(0.060)	(0.055)	(0.052)	(0.049)	(0.048)			
Obs	1515	1612	1651	1677	1695			
Bandwidth	9.082	9.216	9.297	9.348	9.507			

Main results

Main Results: Regression Discontinuity Estimates

Falsification Tests

- 1. Estimate same RD specification with "free-space" coverage
- 2. Estimate signal strength around towers built in 2015 when the epidemic was practically over
 - Sample of districts with no coverage in 2013
 - Placebo test using boundary that did not exist in 2013

Main Results: Regression Discontinuity Estimates

	1 (
	Controlling for Free-space signal strength				Falsification tests		
	(1)	(2)	(3)	(4)	(5)	(6)	
Coverage	-0.087**	-0.084*	-0.077**	-0.081**			
	(0.038)	(0.041)	(0.037)	(0.040)			
Free-space coverage	-0.013		-0.044*	-0.045*	-0.003		
1 0	(0.020)		(0.024)	(0.026)	(0.040)		
Free-space signal strength		0.000	-0.000	-0.000	0.002		
1 0 0		(0.001)	(0.001)	(0.001)	(0.006)		
Free-space coverage \times Free-space signal strength			0.003	0.003	-0.008		
			(0.002)	(0.002)	(0.007)		
Coverage (2015)						0.084	
						(0.112)	
Signal strength (2015)						0.001	
0 0 0 0						(0.002)	
Mean outside coverage	0.093	0.101	0.094	0.093	0.094	0.057	
Bandwidth (dBm)	8.35	7.99	9.14	8.93	9.36	-	
Observations	1547	1352	1720	1528	1540	383	
Districts	83	81	84	83	84	53	
Controls	Yes	Yes	Yes	Yes	Yes	Yes	
Topography Polynomial	No	No	No	Yes	No	No	

Dep. Variable = 1{Number of Reported EVD cases > 0}

Empirical Strategy: Panel-Regression Discontinuity

Alternative empirical model that deals directly with whether coverage helped contain the spread of the disease

- Disaggregate analysis to monthly level (EVD in village *i* in month *t*)
- Assess whether likelihood of EVD varies given EVD in a village *within district*
- Test whether the likelihood that EVD spreads into a village from surrounding affected villages diminishes with cell phone coverage

Empirical Strategy: Panel-Regression Discontinuity

Panel-RD empirical model:

 $EVD_{ijt} = \alpha + \beta D_{ij} + \gamma EVD_{j(i),t-1} + \delta D_{ij} \times EVD_{j(i),t-1} + f(\tilde{R}_{ij}) + \lambda_j + \nu_t + \epsilon_{ijt}$

- *EVD_{ijt}* indicator for village *i*, in district *j*, in month *t* having at least one EVD case
- D_{ij} = whether village *i* has coverage (i.e., received power > c)
- $\tilde{R}_i = R_i c$ is received power in dBm net of cutoff *c*
- EVD_{j(i),t−1} = 1 if at least one village in village i's district was affected by EVD in month t − 1
- λ_j district FE
- v_t month FE

Panel-Regression Discontinuity Estimates

Effect of Coverage on Likelihood of EVD Contagion

	(1)	(2)	(3)	(4)	(5)
Cov _i	-0.0069**	-0.0059**		0.0005	0.0014
	(0.003)	(0.002)		(0.002)	(0.002)
$EVD_{i(i),t-1}$			0.0056**	0.0167**	0.0160**
			(0.002)	(0.007)	(0.007)
$\operatorname{Cov}_i \times \operatorname{EVD}_{i(i),t-1}$				-0.0191***	-0.0186***
, , , ,				(0.006)	(0.006)
Mean outside coverage	0.007	0.007	0.006	0.007	0.007
Observations	33079	33079	31338	31338	31338
Bwidth (dBm)	9.00	9.00	9.00	9.00	9.00
Districts	84	84	84	84	84
District & month FE	Yes	Yes	Yes	Yes	Yes
Controls	No	Yes	Yes	No	Yes

Dep. Variable = 1{Number of Reported EVD cases > 0}

Panel-Regression Discontinuity Estimates

Effect of Coverage on Likelihood of EVD Contagion

	-	-		-	
	(1)	(2)	(3)	(4)	(5)
Cov _i	-0.0069**	-0.0059**		0.0005	0.0014
	(0.003)	(0.002)		(0.002)	(0.002)
$EVD_{i(i),t-1}$			0.0056**	0.0167**	0.0160**
			(0.002)	(0.007)	(0.007)
$\operatorname{Cov}_i \times \operatorname{EVD}_{i(i),t-1}$				-0.0191***	-0.0186***
				(0.006)	(0.006)
Mean outside coverage	0.007	0.007	0.006	0.007	0.007
Observations	33079	33079	31338	31338	31338
Bwidth (dBm)	9.00	9.00	9.00	9.00	9.00
Districts	84	84	84	84	84
District & month FE	Yes	Yes	Yes	Yes	Yes
Controls	No	Yes	Yes	No	Yes

Dep. Variable = 1{Number of Reported EVD cases > 0}
Panel-Regression Discontinuity Estimates

Effect of Coverage on Likelihood of EVD Contagion

	(1)	(2)	(3)	(4)	(5)
Cov _i	-0.0069**	-0.0059**		0.0005	0.0014
	(0.003)	(0.002)		(0.002)	(0.002)
$EVD_{i(i),t-1}$			0.0056**	0.0167**	0.0160**
			(0.002)	(0.007)	(0.007)
$\operatorname{Cov}_i \times \operatorname{EVD}_{i(i),t-1}$				-0.0191***	-0.0186***
, , , , , , , , , , , , , , , , , , , ,				(0.006)	(0.006)
Mean outside coverage	0.007	0.007	0.006	0.007	0.007
Observations	33079	33079	31338	31338	31338
Bwidth (dBm)	9.00	9.00	9.00	9.00	9.00
Districts	84	84	84	84	84
District & month FE	Yes	Yes	Yes	Yes	Yes
Controls	No	Yes	Yes	No	Yes

Dep. Variable = 1{Number of Reported EVD cases > 0}

CDR Network

Gonzalez and Maffioli

Example of Network for Ganta City

CDR Network

Channels of Impact: Preliminary Evidence

 \Rightarrow Use introduction of Ebola hotline to assess relative importance of network and care channels

Intuition:

- *Preventive and treatment care* channels depend on tool that connects individuals to preventive and treatment care
- *Network* channel more relevant in *pre-hotline* period when individuals likely relied on network for info/care
- Care channels more relevant in post-hotline period

Channels of Impact: Preliminary Evidence

Background on hotline:

- Toll-free, nationwide phone alert system established for rapid notification and response
- Call center opened on August 7
- Goals included:
 - Answering questions about EVD
 - Enter requests to dispatch ambulances to take sick individuals
 - Dispatch burial teams to pick up suspected corpses
- The overall goal was to create a **link between the public and** government-provided relief efforts

Channels of Impact: Preliminary Evidence

Graphical evidence:

