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Abstract

Industrial mining can be a boon or a bane for communities living in the vicinity of production
sites. We assess the environmental and health impacts of industrial mining in Africa using micro-
data from 1986 to 2018 in 26 countries matched with geocoded data of industrial mining sites.
Through a staggered di�erence-in-di�erence strategy, we exploit the variation of the opening of a mine
and the relative topographic position of surrounding villages. Relying on an upstream-downstream
topographic treatment, we show that opening an industrial mining site increases infant mortality, and
that this e�ect is driven by mining-induced water pollution. We �nd that being downstream when
a mine opens increases by 2.3 percentage points the 24-month mortality rate, which corresponds to
an increase of 27%. To our knowledge, we are the �rst to isolate the channel of water pollution by
comparing households living upstream and downstream water subbasins from industrial mining sites
in Africa and contribute to the literature by exhibiting the heterogeneous e�ects of industrial mining
activity by taking into account the topography and not only the geographic distance of exposure.
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1 Introduction

The increase in commodity prices since 2000, especially from the extractive sector, has intensi�ed the in-
vestments in areas with abundant resources, from hydrocarbons to minerals. The African geology, which is
richly endowed containing 30% of the world's mineral reserves [Chuhan-Pole et al., 2017], remains largely
unexplored due to the lack of infrastructure and inhospitable terrains [UN Environment Program , 2022,
Taylor et al., 2009] . Thus, the continent has been facing a major mining boom since the 2000s, attract-
ing foreign and domestic investments, which raises questions whether natural resources production has
improved living standards in resource-rich regions.

The extraction of natural resources can represent a potential boon for local industrial development,
as well as a bane because of the generation of negative externalities. On the one side, mining can improve
health and local welfare through income e�ects, by increasing the demand for local labor, goods and
services, as well as market channels by attracting or inducing the construction of roads and infrastruc-
ture [Chuhan-Pole et al., 2017]. Through a �scal channel at the national level, an increase of taxation
can raise public spendings on local services and improve the access to basic facilities such as electricity,
piped water or health services. On the other side, mining can also generate negative externalities such
as increasing rapacity and corruption, and creating opportunity cost e�ects that trigger insecurity and
con�icts ([Berman et al., 2017]). Industrial mining also attracts migrant workers that often live in promis-
cuity and dire straits ([Corno and de Walque, 2012]) or discourage educational attainment ([Atkin, 2016],
[Ahlerup et al., 2020]). In addition, production sites can damage the local population's health through the
release of pollutants that contaminate the environment. Determining which of these e�ects is predominant
is still debated in the literature studying the relevance of a natural resource curse ([van der Ploeg, 2011],
[Cust and Poelhekke, 2015], [Venables, 2016]), and remains an empirical question. We focus on Africa
and investigate the local impacts of industrial mining activity on health. Using geocoded micro-data,
we manage to isolate the channel of water pollution through which local populations are directly and
indirectly a�ected by the industrial mining sites.

Throughout each stage of a mine's life cycle, its activity can produce and release chemical and mineral
pollutants prone to contaminate the surrounding air, water, and soil [Coelho and Texeira, 2011]. More-
over, the ore extraction processes are water-demanding and need access to a water source that very often
competes with the local demand, which is all the more alarming in water-stressed areas. Mining activity
mostly consists in extracting small concentrations of minerals from huge volumes of rocks and therefore
creates a lot of waste, which leaking is hard to avoid. For industrial mines, these wastes are diluted into
water and then stored in retention ponds, where they can leak within the local environment and contam-
inate soil and water bodies. Mining waste actively pollutes during the whole mine's life cycle, starting
from its exploration before the opening, during the production, and also at the closure when the mine
can be left without maintenance. In the latter case, retention ponds can be left without coverage, dry
up, and be scattered directly in the surrounding air, water, and soil. Our study is restricted to industrial
mining because of data limitations, but artisanal and small-scale mining (ASM) can also be responsible
for pollution. ASM is associated with a di�erent type of pollution, which is accused of being more se-
vere than the industrial sector, because of the use of mercury and lack of monitoring. While mercury
has been o�cially banned in over 140 countries (Minamata Convention on Mercury, adopted in 2013),
industrial mining can abide by this law but many use cyanide instead. Both chemicals being highly toxic
pollutants, focusing on industrial mining only is a lower-bound analysis of the impacts of mining activity
on local populations' health. Besides, industrial mining di�ers widely from ASM in terms of production
quantities and the size of mining sites: industrial mines are responsible for 80% of the gold production
and 75% of the diamond production [Del, 2020]. The industrial sector accounts for the majority of the
African production and heavy metals released into the environment. If ASM has severe e�ects on min-
ers' health due to hazardous working conditions characterized by the lack of protection devices, the rare
usage of masks, the lack of preventive infrastructure, and the intense usage and exposure to mercury.
Industrial mining has broader and larger e�ects on surrounding communities and especially on the health
of individuals living in their vicinity, mainly via the leaking of heavy metals within the local environment.
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The main toxic metals released by mining sites are arsenic, cadmium, copper, lead, mercury, and
nickel. If low concentration levels of heavy metals can be essential for human health, the abnormal
quantities found in the environment within the mine's vicinity can cause several health problems. In-
dividuals living nearby industrial mining are exposed to high concentrations of heavy metals through
ingestion, dermal contact, and inhalation of soil particles. In this paper, we mainly focus on the ab-
sorption mechanism as we identify the e�ects of mining activity through water pollution. High blood
metal concentrations are associated with neurological e�ects [Dike et al., 2020], cardiovascular e�ects,
gastrointestinal hemorrhages [Obasi et al., 2020], organ dysfunction [Bri�a et al., 2020], higher proba-
bility of cancer development [Madilonga et al., 2021, Obasi et al., 2020], but also higher probability of
infertility, miscarriages for women, and malformation of newborns [Bri�a et al., 2020]. Thus, exposure
to heavy metals plays detrimental e�ects on human health in general and child health in particular,
especially during their �rst months of development, both in and ex-utero [Coelho and Texeira, 2011].
Children are the most sensitive, even at low concentration, as they are at a stage of rapid biological
development [Dike et al., 2020], but also as they are more exposed, through higher blood concentration
linked to incidental ingestion of urban soil and dirty water [He et al., 2020].

In this paper, we focus on under 12 months and 24 months mortality as a primary health outcome, as
e�ects on children are the most dramatic, and to capture the e�ects of heavy metal absorption on early-age
biological development. Besides, child mortality is a short-term measure [Greenstone and Hanna, 2014,
Do et al., 2018], and is available over a long-time span of four decades and across the majority of African
countries. This paper focuses on water pollution and heavy metal ingestion and absorption mechanisms.
Human exposure to heavy metals through the consumption of contaminated water is of prior concern in
Africa and in Sub-Saharan Africa in particular, where only 24% of the population have access to safe
drinking water [Programme, 2019]. We match socio-economic and health data from the Demographic
Health Surveys (DHS) with state-of-the-art geolocalized data on industrial mineral resource exploitation
from the SNL Metals and Mining database, which provides information on opening dates and mineral
types. Our study spans 26 out of the 54 African countries, from 1986 to 2018. Our �rst contribution lies in
the construction of the industrial mines dataset, as we checked over 1,700 mines by hand to complete their
opening date 4. The main research question of this paper is to estimate the impacts of industrial mining
activity on local populations' health, mainly in terms of child mortality, to assess their heterogeneity,
and to give indirect evidence of the channel of water pollution. We conduct a staggered Di�erence-in-
Di�erence strategy exploiting the variation of the opening of a mine and the relative topographic position
of surrounding villages. We indirectly isolate the mechanism of water pollution by building the treatment
and control groups using an upstream-downstream comparison, which is used as a proxy for the exposure
to water pollution linked to mining activity.

Our main result shows that being born in a village located downstream of a mine that just opened
increases the mortality rates under 24 months by 2.3 percentage points, which corresponds to an increase
by 27% of the mortality rate. We �nd no signi�cant result for the under 12-month mortality rate, which
suggests a lag in the e�ect of water pollution on early-childhood health and in the absorption of toxic
elements. The analysis of the dynamic e�ects identi�es an impact of the development phase, which starts
a couple of years before a mine starts its production [Benshaul-Tolonen, 2018].

The major contributions of this paper are twofold. First, we propose an extension of an industrial
mine dataset extensively used in the literature, as we did archival handwork to complete the opening dates
of 1,700 African mines of the SNL dataset. Thanks to this work, we alleviate the issue linked to small
samples and low statistical power and can achieve a heterogeneity analysis and identify a balanced panel.
Second, our results using large-scale and systematic micro data embody an important contribution to the
literature, as it enters into the debate on the positive and negative e�ects of industrial mining activity on
health. It contradicts the literature that uses geographical distance to a mine as a proxy for exposure to
mining activity, which �nds a reduction in mortality rates [Benshaul-Tolonen, 2018, Cossa et al., 2022].

4Opening dates indicate when production �rst began. Data available in the SNL database was gathered by SNL from
the mining companies' reports, and the hand-check work we made has completed this database by going deeper into archival
mining reports
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In the Appendix, we propose an extension of the papers using a geographic treatment (Appendix A.4,
comparing the health outcomes of individuals living nearby to those living further away from the min-
ing site. We replicate in Appendix 21 the exact analysis undertaken by [Benshaul-Tolonen, 2018] which
uses fewer observations, countries, and years (41 mines in 9 countries over 1987-2012). If we manage
to �nd the same results (i.e. a reduction of the under 12-month mortality rate) using this proximity
treatment on this restricted sample, we do not �nd that these results are stable to our extended sample
which shows the limitation in terms of external validity of these �ndings. In contrast, we conduct several
robustness checks to assess the stability of our main results and show that the increase in child mortality
due to mining-induced water pollution goes through all our tests. We argue that using a geographic
treatment based on proximity to mining sites encompasses contradictory e�ects that happen in mines'
vicinity, and average compensated e�ects (both positive and negative externalities) using this empirical
strategy explains the absence of results. Our paper shows the importance of looking at the topographic
heterogeneity of the e�ects of mining activity on health to identify the negative e�ects induced by water
pollution, and how they outweight the positive e�ects.

The remainder of the paper is organized as follows. Section 2 presents the context in light of the
literature. Section 3 describes the context and the data. Section 4 details the methodology and the main
empirical strategy. Section 5 introduces the results, including the average, dynamic and heterogeneous
e�ects. Section 6 proposes a list of robustness checks and sensitivity analyses to prove the robustness of
our main results, while Section 7 gives further discussion. Section 8 concludes.

2 Literature review

The literature on the local e�ects of mining on local communities has been recently growing during
the past decade, yet the debate remains on the costs and bene�ts, the positive and negative impacts
of industrial mining activity in developing countries. Diverse results have been found on the e�ects on
health, and there is still uncertainty on the direction and the magnitude of the impacts of mines on the
local population's health. Besides, if geographical proximity to a mining site is usually used as a proxy
for pollution exposure, few papers directly observe the negative externalities on the environment and its
consequences on health.

A growing literature has focused on the e�ects of industrial mining activity on local populations'
welfare in developing countries, and the results are still under debate. Mining has been shown to have
negative e�ects on the environment and agricultural productivity. [Aragón and Rud, 2016] �nd that
the expansion of large-scale gold mining in Ghana (1997-2005) is responsible for agricultural total factor
productivity decrease in the vicinity of mines, and they argue that pollution is the most likely explanation.
They use satellite imagery of NO2 concentration as a proxy for air pollution but only through a cross-
sectional analysis. They also compare households located upstream and downstream of an active mine
and �nd no signi�cant di�erence, but take the result with caution due to a lack of statistical power.
At a broader scale of analysis, [Mamo et al., 2019] look at the e�ects of the discoveries of industrial
mining deposits on living standards in Sub-Saharan Africa, and �nd an increase of district level night
lights emissions but no signi�cant e�ects on household wealth measured through the dimensions of access
to electricity, wealth index, urbanization, mortality and education. They �nd only temporary positive
e�ects on public services provisions which �ts with the idea of some non-durable initial concessions
made by mining companies or the state to the locals. More speci�cally, they show a degradation of
the sewerage system and piped water supply as mining activity is water intensive. Finally, they �nd
that mines in Sub-Saharan Africa exhibit enclave characteristics with little spillovers to neighbouring
districts. We therefore re�ne their analysis by looking at water pollution at the surface and underground,
to capture negative spillovers to districts sharing the same surface water or groundwater. Last but not
least, [Bazillier and Girard, 2020] compare the local spillovers between artisanal and industrial mining
sites in Burkina-Faso. They �nd positive impacts of artisanal mining (labor intensive and managed in
common) and an absence of e�ects of opening industrial mines (capital intensive and privatized) on
household consumption.

A growing literature has shown the importance of environmental policy to regulate air and water pollu-
tion and has studied its impact on health and infant mortality in developing countries ([Jayachandran, 2009],
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[Greenstone and Hanna, 2014] and [Do et al., 2018]). Industrial activity can have harmful external-
ities on pollution and health ([Ebenstein, 2012], [Chen et al., 2013], [Brainerd and Menon, 2014] and
[He and Perlo�, 2016]), yet few papers have managed to show to what extent industrial mining activity
creates negative externalities on the environment. [Balietti et al., 2018] look at the e�ects of mining in-
dustries on deforestation in India, [Von der Goltz and Barnwal, 2019] have suggested the mechanism of
water pollution but without strong empirical evidence. Yet, in-situ measurements have shown the con-
tamination of water drinking sources by harmful levels of nitrate, turbidity, iron, cadmium, manganese,
and arsenic by industrial mining sites ([Cobbina et al., 2013]). To our knowledge, we are the �rst to
provide indirect systematic and large-scale evidence of the mechanism of water pollution by industrial
mining activity.

Few papers have dealt with upstream and downstream at the scale of a continent, since it requires
high computational capacity and a complex matching methodology. [Du�o and Pande, 2007] study the
productivity and distributional e�ects of large irrigation dams in India and use river networks and cal-
culate gradients computed from digital elevation maps for India. [Do et al., 2018] use river networks and
pollution monitoring stations data in India to conduct their upstream-downstream analysis. Unfortu-
nately, it is impossible in our case study due to the absence of water quality data at the scale of Africa.
[Garg et al., 2018] use river networks in Indonesia and re-calculate the upstream-downstream relationship
between village pairs using a 30m resolution Digital Elevation Model. Very re�ned level, but not likely to
be undertaken at the scale of the African continent in our study, so we choose secondary data computed
by hydrologists (HydroSheds). We use systematic and highly disaggregated data on water sub-basins
that enable to encompass a wider set of countries, overcoming the issue of matching a mine or a village to
the closest river, since there is uncertainty about whether this point is located above or below in altitute
compared to the level of the river. [Strobl and Strobl, 2011] studied the distributional e�ects of large
dams on agricultural productivity at the scale of the African continent, using Pfafstetter level 6 with an
average area of 4200 km2. Our study takes into account subbasins at a �ner level (Pfafstetter level 12)
with an average area of 100 km2.

Our approach which consists in studying the e�ects of industrial mines on health is mainly based
on two papers. [Benshaul-Tolonen, 2018] �nds that large-scale gold mining in nine countries of Sub-
Saharan Africa (Burkina Faso, Ivory Coast, DRC, Ghana, Guinea, Ethiopia, Mali, Senegal and Tanzania)
between 1987 and 2012, decreases infant mortality within 10 km during the opening and operating phases.
However, she �nds no e�ect on farther communities (10-100km). Our project encompasses other minerals
than gold, a broader set of countries over a longer time window, but above all deals with endogeneity
issues that remain in her strategy (discussed in Section 4). [Von der Goltz and Barnwal, 2019] assess the
e�ects of industrial mines in 44 developing countries from 1988 to 2012 and �nd gains in asset wealth,
increased anemia among women and stunting in young children living within 5 km. As anemia and growth
de�cits are argued to be mainly the consequences of exposure to lead, the observed e�ects on health are
interpreted to be the results of pollution due to metal contamination and lead toxicity. They �nd that
women in mining communities show depressed blood hemoglobin, recover more slowly from blood loss
during pregnancy and delivery, and that children in mining communities su�er some important adverse
growth outcome from in utero exposure (stunting). Yet, their empirical strategy is also to be improved for
reasons extensively discussed in Section 4. A replication analysis of [Benshaul-Tolonen, 2018] in Appendix
21 �nds no signi�cant results when applied to our more comprehensive sample. [Cossa et al., 2022] also
used [Benshaul-Tolonen, 2018] methodology, and studied a broader set of countries. They �nd comparable
results of decrease in child mortality. This recent work emphasizes the crucialty of shedding light on the
actual health impacts of industrial mining.

[Romero and Saavedra, ] (unpublished) �nd negative e�ects of industrial mining on newborns in
Columbia. In particular, they �nd low Appearance, Pulse, Grimace, Activity and Respiration (AP-
GAR) score only among individuals living downstream of mines. They apply an upstream-downstream
analysis using river segmentsand put forward the mechanism of �sh consumption as a vector of intoxica-
tion and health hazards. They match the closest river to each mine, and calculate the total area of the
active mine through the mine's title information. For each municipality they aggregate the total area
upstream up to 25 km that is mined. Our study combines a larger set of countries and a longer time
span, and therefore claims stronger statistical power and external validity.
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3 Data and Context

3.1 Data

In this paper, we match socio-economic data from the Demographic Health Surveys to an industrial
mining database provided by SNL Mining and Metals.

3.1.1 Health and socio-economic data

We use all available survey rounds from the Demographic Health Surveys that contain GPS coordinates,
from 1986 to 2018, covering 36 out of the 54 African countries. We then select all the countries which have
at least two survey waves to be able to implement our Di�erence-in-Di�erence strategy with a su�cient
time length before and after the opening of a mine 5 and end up with 26 countries, 8,087 clusters and
199,934 children under the age of �ve 6. Table 13 in the Appendix displays the DHS survey years and
countries that we use for the analysis. We construct the variables of child mortality based on the DHS
child recode database which has information on the age and death of children under �ve years old, whose
mothers are aged between 15 and 49 years old. Our dependent variable is the probability of under 12
months and under 24 months mortality for each DHS cluster (i.e. for each child, we build a dummy equal
to 1 if he/she is alive and 0 if not, conditional on having reached 12 and 24 months respectively). We will
further estimate the e�ects of mining activity on biomarker variables (weight, height, anemia), and other
indicators of occurrences of diarrhea, fever, and cough within two weeks preceding the day of the interview
among young children. As we intend to observe the impacts of mining activity on the most vulnerable
population, we will extend our analysis to pregnant women and check for indicators such as complications
during pregnancy, and in-utero exposure, well as fertility rate [WORK IN PROGRESS]. Finally, as the
aim of this article is to isolate the mechanism of water pollution, we use the questions from the DHS on
the main source of drinking water and the access to health facilities to control for households' sanitary
environment. As our empirical strategy relies on a staggered Di�erence-in-Di�erence, we emphasize that
the countries driving our results are those with at least two DHS waves to capture the variations in
exposure to mining activity. Thus, we drop in our analysis all the countries that have only one wave, and
our �nal sample contains 26 countries (cf Tables 12 and 13 to see the dropped countries 7).

3.1.2 Mineral resource exploitation data

The industrial mining variables come from the SNL Metals and Mining database, which is privately
owned by S&PGlobal and on license 8. The SNL database is the best existing panel of mine production,
providing information on the location, the dates of opening and closure, the commodity type,and the
yearly production (for some mines). This is a non-exhaustive panel of industrial mines in Africa, yet to
our knowledge, constitutes the most complete sample of mines giving the timing of the industrial activ-
ity. This dataset has been intensively used in the literature [Aragón and Rud, 2016, Berman et al., 2017,
Kotsadam and Tolonen, 2016, Benshaul-Tolonen, 2018, Von der Goltz and Barnwal, 2019, Mamo et al., 2019]
and argued to be the best product available. We emphasize here that this paper focuses on the e�ects of
industrial mining, and that we do not include artisanal mining (ASM) that are not available in the SNL
database.

Overall, the SNL database gathers 3,815 industrial mines in Africa from 1981 to 2021, and 2,016 were
located within 100 km of a DHS cluster from a country with at least two surveys. For our di�erence-
in-di�erence strategy, we need information on the timing of the beginning (and closing [WORK IN
PROGRESS]) of the mining production. The SNL database gives this information for 278 mines and

5Indeed, we consider that doing a Di�erence-in-Di�erence strategy on the sample of countries which have only one round
of survey, hence a maximum of �ve years period, will not enable to capture the longer-term e�ects of mining activity.

6Please note that our �nal sample does not include Egyp which has 7 DHS waves and is a well-known mining country.
This is explained by the fact that the SNL database characterized Egypt within the Middle East rather than in Africa and
thus was dropped from our sample. [WORK IN PROGRESS] to include Egypt within the analysis.

7We drop Angola, Central African Republic, Gabon, Comores, Morocco, Mozambique, Swaziland, Chad, South Africa
8We are grateful to CEPREMAP, PjSE, EHESS, and the GPET thematic group of PSE, for their �nancial support and

their help in purchasing the access to the data.
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we retrieved from a hand-work the start up year for the 1,738 remaining mines. The hand-check was
realized using archival information on the mining history available in the SNL database (cross-checked
with Google maps and aerial images) and we describe this handwork more extensively in the Appendix
A.1.2.

We build three main variables from the SNL Mining and Metals database, relying on the geocoded
information and the time of opening. According to the estimation strategy, we will use a variable of
proximity (distance to the closest mine), position (whether individual i is upstream or downstream), and
a dummy for being open or not. Opening dates that were available in the SNL database were computed
by the SNL team, and indicate the actual start-up year of the mine, i.e when production �rst began. We
used the same criteria for our handwork that consisted of reading mining sites' archival reports 9. For
the moment, we do not use the closing year variable, as it was harder to retrieve from reports reading.

3.1.3 Water basins

We use the HydroBASINS subbasins geographic information provided by HydroSHEDS, which subdi-
vides subbasins into multiple tributary basins and shows the network of nested subbasins at di�erent
scales. Following the topological concept of the Pfafstetter coding system, each polygon of subbasin has
information on the up- and down-stream connectivity. We take the �nest Pfafstetter level (12 out of 12)
that breaks down subbasins at an average area of 100 km2. See Figure 6a for an example. 10

3.1.4 Administrative district boundaries

We extract district-level data (sub-national level 2) from GADM database of Global Administrative
Areas11 and match the corresponding polygon shape�les with DHS clusters. As there is a random
reshu�ing of DHS villages (from 2 to 10 km) 12, we are well aware that there is some random error in the
assignment of districts to observed individuals, and that some may have been assigned to a neighboring
district.

3.2 Context

3.2.1 Mining in Africa

Temporal and spatial variation

Africa has a long history of mining, dating back to the period of the Pharaohs in Egypt. The
African continent is richly endowed with mineral reserves, containing around 30% of the world's min-
eral reserves, and is estimated to have the largest reserves for strategically important metals such as
cobalt, diamonds, and uranium [UN Environment Program , 2022]. However, as the continent is made
of inhospitable terrains and lacks infrastructure, the continent's geology remains largely unexplored
[Taylor et al., 2009]. Despite its rich geology, Africa's production accounts for around 8 % of global
mineral production (in 2012) [Africa Bank, 2022], and represents an opportunity for mining investors.
Thus, Africa is facing a mining boom since the 2000s, attracting foreign investment mainly from China,
Canada, Australia, Brazil and Russia, which raises concerns about environmental degradation on the

9Please note that for the reports where the 'start of production' during a speci�c year was not explicitely written, we
reported a year if the information suggested a start of production, and completed with satellite images. This might introduce
some noise in the variable.

10We conduct our analysis taking into consideration the three closest subbasins to each industrial mine, meaning that we
take each mine's subbasin A and tag the one just downstream that we call B, the one just downstream of B that we call C,
and then the one just downstream of C that we call D. Thus, B,C, and D are the three closest subbasins of A.

11Accessed on the website: gadm.org.
12"In DHS household surveys the GPS coordinate displacement process is carried out as follows: urban clusters are

displaced a distance up to two kilometers (0-2 km) and rural clusters are displaced a distance up to �ve kilometers (0-5
km), with a further, randomly-selected 1% (every 100th) of rural clusters displaced a distance up to 10 kilometers (0-10
km)", as mentionned in [USAID, 2013]
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continent [Taylor et al., 2009, Edwards et al., 2013].

Figure 1: Temporal evolution of mine opening

Notes : The Figures plot the number of mines opening each year over the 1981-2019 period, for all mines, heavy
metal mines including coal (sample of the main analysis), and only heavy metal mines. Figure (a) displays the
temporal evolution of the total mine sample, while Figure (b) of mines that are within the sample of the main
analysis, meaning mines that have DHS clusters upstream at 100km at least and DHS clusters downstream within
the three closest sub-basins.
Sources : authors' elaboration on DHS and SNL data.

Figure 1 shows the evolution of the yearly number of mines that opened over the whole continent of
Africa over the 1981-2019 period, Figure 1 (a) for the entire mining sample while Figure 1 (b) for the mines
that are in the sample of the main analysis, meaning mines that have DHS clusters upstream within 100km
and DHS clusters downstream within the three closest sub-basins. The mining boom since 2000 is cap-
tured in the Figures, with the �rst peak in 2007, in line with the peak in exploration activity that occurred
in 2003 [Taylor et al., 2009] (as the exploration phase is on average a couple of years before a mine opens),
and the second one in 2012. What is striking in Figure 1 is that the evolution of mine openings follows
the exact same pattern as the evolution of industrial metal prices. The mining boom since 2000 follows
the increase in real prices of Copper, Tin, Lead, Aluminim, Zinc, Nickel and other heavy metals, while
the sharp fall around 2008/2009 corresponds to the �nancial crisis. Again, the local minimum around
2016 corresponds to the drop in commodity prices in June 2014 [Khan et al., 2016, Glöser et al., 2017].
This similar evolution suggest that heavy metal prices are good Instrument Variables for the variable
year of mine opening, such as [Berman et al., 2017, Bazillier and Girard, 2020] use in their analysis.

In Africa, around 120 industrial mines opened in 2012, based on the non-exhaustive SNL database.
The Figures also distinguish the evolution according to the mines' characteristics: it distinguishes the
pattern for all mines, heavy metal mines, and heavy metals including coal mines (mines that are in the
main regression). The list and chemical characteristics of heavy metal mines are displayed in Table 19.
We observe no di�erences in timing patterns between Figure 1 (a) and (b), neither between mine types.

Figure 2 (c) shows the map of the number of mines that have opened before 2019, including mines
that opened before 1986, averaged at the cell level (160km cells). Cells in grey represent areas where no
mine opened before 2019, but where at least one will open in the future (whether we know from the data
that it has opened between 2019-2021, or if the opening is planned further). The main mining countries
in the SNL database are Guinea, Sierra Leone, Ivory Coast, Ghana, Niger, Burkina Faso, Zimbabwe,
Tanzania, Zambia, and the north of South Africa. Please note that, as we exclude countries with only
one DHS wave in our main analysis' sample (cf Tables 12 and 13), to avoid comparing areas with too
many di�erences in terms of temporal variations, we did not undertake the hand work for these countries,
which explains why South Africa (which is not in the �nal sample) does not appear as a major mining
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Figure 2: Outcomes spatial distribution

Notes : Figures (a) and (b) represent the means of 12- and 24-month mortality rates for each DHS waves available
(listed in table 13), from 1986 to 2019. Means are computed at the grid level (100km mean size). The mortality
rates are estimated without the children that did not reach 12/24 months at the time of the survey. Figure (c)
displays the stock of mines that have opened before 2019 (including mines that opened before 1986). Means are
computed at the grid level (100km mean size).
Sources : authors' elaboration on DHS and SNL data.

country in Figure 2 (c). Figure 3 shows both the temporal and spatial variation of mine opening in Africa
(for all the mines sample, and not the restricted one for our main analysis), as it plots the number of
mines that opened over di�erent periods of our analysis per grid cell. The cells in red are areas where
no mines opened during the period, but where at least one mine has opened before, whereas cells in grey
are areas where no mines have ever opened while at least one will open in the future. We observe that
the increase in mine opening was higher during the third period 2008-2019 (which is in coherence with
Figure 1), and was particularly important in West Africa.

Figure 3: Spatial variation of mine opening per periods

Notes : The �gures represent the number of mines that opened during the periods over the grid area (160km on
average). A red grid represents an area where no mine opened over the period, but where at least one mine has
opened before the period. A grey cell represents an area where no mine opened over the period, but where at
least one mine will open in the future.
Sources : authors' elaboration on SNL data.
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Mine's life cycle

Throughout each stage of a mine's life cycle, its activity can produce and release chemical and mineral
pollutants prone to contaminate the surrounding air, water and soil [Coelho and Texeira, 2011]. During
the exploration and prospecting stage that can last several years before a mine is considered economically
viable and worthwhile to open, mining companies conduct mapping and sampling, as well as drilling,
boreholes and excavation that require both physical and chemical measurements methods likely to pol-
lute at the surface and underground, depending on the nature of the deposit in the targeted area. If
found �nancially viable, the company launches the discovery phase where the design and planning of
the construction is undertaken, and the feasibility of the project which requires further exploration and
engineering studies. Subsequently, the development stage takes place and the mine's infrastructures and
processing facilities are constructed. It is only after all these stages that production can start. Once the
deposit is exhausted comes the closure and reclamation stage, where the company is supposed to clean,
stabilize and rehabilitate the land and isolate contaminated material. Yet, it is common that waste,
tailings or retention dams are just left abandoned without care and maintenance, and this constitutes a
potential disaster if the hazardous materials are leaked and discharged into the environment. Figure 20
in Appendix proposes a scheme to explain the life cycle of a mine. Figure 19 displays satellite images of
the di�erent stages of a rutile mine in Sierra Leone.

Throughout all these stages, di�erent types of pollution can be engendered: air pollutants which
can be carried by dust over long distances by the wind, can damage surrounding soils and crops and
be inhaled by the local population. The leakage of pollutants in the air can also a�ect water through
acid mine drainage that ends up polluting the surface and then groundwater. During the digging and
processing in order to extract the targeted ore from waste rocks, rocks are crushed and then go through
either heap leaching, froth �otation or smelting. These techniques require the addition of chemicals such
as cyanide or acid, that are able to separate the targeted minerals from waste. Moreover, these processes
are water-demanding and need access to a water source that very often competes with the local demand.
Last but not least, even without the use of these chemicals, leaching happens through the contact of water
and oxygen with sul�de minerals contained in the extracted rocks 13 accelerates the acidi�cation process
and modi�es the pH levels of water bodies. Pollutants can be released into the environment during the
process by spills or after by leaks of humid waste stored in retention dams but also through the erosion
and the sedimentation of solid waste that are piled in the tailings around the mining site and that drain
to the soil with rain. The wastes actively pollute during the whole life cycle of the mine, starting from
its opening and during the production, but also can continue to pollute when a mine closes and is left
without maintenance (when retention ponds are not covered and dry, letting these wastes go directly
through the local environment).

3.2.2 Health risks

Africa faces high infantile mortality rates, as the average 12 months mortality rate is 6.5 % and the
average 24 months mortality rate is 8.5% according to DHS data (cf Table 1). Figures 2 (a) and (b) plot
the average mortality rates for all DHS from 1986-2019 averaged at the grid level, and show the spatial
variation of mortality rates 14. Figures 4 and 5 map both spatial and temporal variation of mortality
rates as it shows the average mortality rates for the three main periods of our DHS sample. We can
observe the global reduction of mortality over the period and also the DHS cluster distribution.

The main toxic metals released by mining sites are arsenic, cadmium, copper, lead, mercury, and
nickel. Depending on their blood level concentration, they can be essential or non-essential for human
health [El-Kady and Abdel-Wahhab, 2018]. However, heavy metals released by mining activity are non-
biodegradable, have long-term impacts on the environment, and are found at abnormally high concen-
trations in the vicinity of mines, within the soil, water resources, vegetation, and crops [Oje et al., 2010,

13such as arsenic, cobalt, copper, cadmium, lead, silver, zinc
14Please note that the higher the DHS cluster density, the more accurate the average. The spatial variation is endogeneous

to the DHS sample.
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Figure 4: Spatial variation of 12-month mortality rates per period

Notes : The �gures represent the means of 12-month mortality rates averaged at the grid level over (a) 1986-1996,
(b) 1997-2008 and (c) 2008-2019. The mortality rates are estimated without the children that did not reach 12
months at the time of the survey.
Sources : authors' elaboration on DHS data.

Dike et al., 2020]. People living in that environment are exposed to high quantities of heavy metals
through ingestion, dermal contact, and inhalation of soil particles, which can cause several implications
for their health. Heavy metals can be absorbed through the gastrointestinal tract as well as through
the respiratory tract. In this paper, as we focus on water pollution, we will mainly identify the health
consequences of absorption of heavy metals rather than inhalation. High blood metal concentrations
are associated with neurological e�ects (which induce behavioral problems, learning de�cits, memory
losses, especially among children) [Dike et al., 2020], neurodegenerative diseases, cardiovascular e�ects,
gastrointestinal hemorrhages [Obasi et al., 2020], organ dysfunction (kidney, decrease the production of
red and white blood cells, lung irritation) [Bri�a et al., 2020], higher probability of cancer development
[Madilonga et al., 2021, Obasi et al., 2020], but also a higher probability of infertility, miscarriages for
women, and malformation of newborns [Bri�a et al., 2020]. Thus, exposure to heavy metals plays detri-
mental e�ects on human health in general and child health in particular, especially during their �rst
months of development, both in and ex-utero [Coelho and Texeira, 2011]. Besides, children in early age
are the most sensitive, even at low concentration, as they are at a stage of rapid biological development

Figure 5: Spatial variation of 12-month mortality rates per period

Notes : The �gures represent the means of 24-month mortality rates averaged at the grid level over (a) 1986-1996,
(b) 1997-2008 and (c) 2008-2019. The mortality rates are estimated without the children that did not reach 24
months at the time of the survey.
Sources : authors' elaboration on DHS data.
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[Dike et al., 2020], but also as they are more exposed, through higher blood concentration linked to in-
cidental ingestion of urban soil and dirty water (less conscious of their environment and danger, playing
with polluted soil/eat drink without carefulness)[He et al., 2020].

4 Empirical strategy

The main empirical strategy of this paper uses the relative topographical position of subbasins as a
proxy for exposure to mining activity pollution. It compares the e�ects on the health of individuals
living downstream to those living upstream of a mine, before and after the opening of at least one
site. It is a staggered design di�erence-in-di�erence analysis with two-way �xed e�ects at the mine's
subbasin and birth year level. This upstream-downstream strategy intends to identify the mechanism
of water pollution, as well as to correct for the bias linked to geographic treatments commonly applied
in the literature, that proxies exposure with proximity to an industrial site, rather than a topographic
position. It resolves the challenges of matching DHS clusters to mining sites, as geographic treatments
have unbalanced samples due to an endogenous matching. Second, it breaks the average e�ects based on
distance bu�ers and highlights the heterogeneity of the e�ects of mining activity on health, and isolates
the negative externalities linked to water degradation. As one of the contributions of this paper is the
completion of the SNL dataset with hand work on the timing of the opening of mines, we propose in
the Appendix A.1.2 a faithful replication of the geographic treatment from [Benshaul-Tolonen, 2018] to
complete and compare with the results on infantile mortality, and to highlight the di�erences between
the geographic and topographic analyses.

4.1 Matching DHS clusters and mining sites

4.1.1 Challenges

Several econometric estimations can be found in the literature, each raising di�erent endogeneity issues.
The di�erences in terms of empirical strategies could explain the disparities in the results of mining
activity on health. For instance, using di�erent empirical strategies, [Von der Goltz and Barnwal, 2019]
�nd important e�ects on stunting in young children while [Benshaul-Tolonen, 2018] �nds a reduction in
infant mortality rates. If these results are not contradictory, they raise the question of the direction, the
magnitude, and the heterogeneity of the health-wealth trade-o� implied by industrial mining activities.
We discuss the possible empirical strategies in this section and the challenge of matching the surveyed
villages to the mining sites.

Numerous papers use the geographic proximity to an active/open mine as a proxy for exposure
to pollution ([Von der Goltz and Barnwal, 2019, Kotsadam and Tolonen, 2016, Aragón and Rud, 2016]).
Following a Di�erence-in-Di�erence strategy, [Von der Goltz and Barnwal, 2019] restrict their sample to
households living within 20 km of a mine, and compare households living within 0 to 5 km to house-
holds living between 5 and 20 km (spatial di�erence), before and after the opening of a mine (temporal
di�erence). The coe�cient of interest is therefore the interaction between being close to a mine and
the mine's activity status during the child's year of birth. They implement a mine-level panel analysis,
which main limitation is to build unbalanced treatment and control groups. This imbalance might be
endogenous to socio-economic outcomes or polluting behaviors. Indeed, as each DHS cluster is paired
to the closest mine, this mechanically excludes from the control group DHS clusters that are in both
distance categories (within 5 km of mine A but within 5-20 km of mine B). This is more likely to happen
in areas of high mining activity density (for instance Ghana). Let us consider the two distance categories
as the treatment/control groups form a usual Di�erence-in-Di�erence (being close to a mine being the
treatment). This empirical strategy increases the size of the treatment group (and decreases the size of
the control group) in areas with high mining activity density, as DHS clusters that are in both categories
are mechanically put in the treated areas. It is hard to believe that the mining density is a random
allocation and that areas with low density will be comparable to the ones with high density, in terms of
health, wealth, public access, and pollution. This matters as the mine �xed-e�ect empirical strategies
rely on a within mine bu�er area comparison. The strategy compares the infant mortality of the treated
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area (within 5 km) of mine A to the mortality of the control area (5-20 km) of mine A, before and after
activity: the mines that matter are the ones that are paired to DHS clusters in both distance categories.
This means that potentially, with this estimation, the authors endogenously select mines that are in places
with low mine activity density, which might be correlated with the intensity or type of pollution of the
mine (no peer e�ect because only one mine around), but also some socio-characteristics of the population
in the neighbourhood (access to public services, wealth) changing how the health will be a�ected by the
pollution. This might bias the estimate downward (mining activity a�ecting more the mortality because
of fewer pollution behaviors) or on the contrary upward (because of major industrial areas). To reassure
the reader, [Von der Goltz and Barnwal, 2019] use an Instrumental Variable (IV) strategy, instrumenting
the mine location with mineral deposit. They use mineral deposit information from S&P data, proxied
by deposits that are being explored or prepared for exploitation. We argue here that mining exploration is
also highly correlated to socio-demographic characteristics, such as density (more likely to search where
the workforce exists) and it is far from random: pairing DHS to the nearest mineral exploration raises
the same issues than directly with the mining site.

To avoid this limitation, [Benshaul-Tolonen, 2018] uses an administrative district �xed-e�ect panel,
and extends the distances : treated households are living within 10 km from a mine, and are compared to
control households living between 10 and 100 km from a mine. However, even without using a mine-�xed
e�ect strategy, de�ning the treatment areas according to the geographical proximity to the mining site
is also highly endogenous. Indeed, it is commonly argued that the conditions for an industrial mine to
settle are the presence of mineral deposits, which is considered random. However, this is a necessary
condition, but not su�cient, and the presence of a mine (and the declared presence of a mineral deposit)
is highly correlated to the population density. For instance, if mining exploration needs labour force,
mines are more likely to open in highly dense areas, where mechanically DHS is more likely to have
surveyed individuals. Thus, treatment based on geographic proximity to the mine might be endogenous
to the initial density of the area, again. The likelihood that a village has been surveyed by DHS is
correlated with the presence of a mine within 10km (because being an area of high density), and thus
its proximity to the mining site. As the district �xed e�ect panel relies on a within-district comparison
(mortality in treatment areas in district A to mortality in control areas in district A), the �xed-e�ect
only considers districts with DHS clusters in treatment and control zones. This rejects mechanically and
endogenously from the regression districts with high heterogeneity in terms of density, and that become
spatially heterogeneous because of the development of a mine (very close to mines located in highly dense
areas, maybe linked to the arrival of the workforce, but not in control zones with low density), and
selects districts that remained homogeneous in terms of density after the development of mines. Again,
this might select only places that are more stable, well-o�, and with less detrimental behavior in terms
of pollution. This might bias the estimation upward (i.e less mortality linked to mining activity), and
explain the positive e�ect of mines that [Benshaul-Tolonen, 2018] �nd on mortality in Africa.

Controlling for district �xed e�ects might still not be enough if the whole district has a tradition of
industrial mining activity. Therefore, it is all the more important to include the upstream-downstream
analysis, since it will enable us to introduce a topographic di�erence within the same distance from a
mine. Distance no longer is a proxy for exposure, as we use each household's relative topographic position
to a mine.

4.1.2 Matching strategy

The matching of DHS clusters to mines represents a signi�cant challenge, as each DHS cluster can be
downstream of and close to several industrial sites in major mining areas. It introduces endogeneity in
the sample selection and raises the issue of imbalanced samples. In this analysis, we propose the following
matching to overcome this issue.

First, we construct a 100 km bu�er around each DHS cluster, and register all mines within this bu�er
(independently of their activity status). We then categorize the topographic position of the DHS cluster
relative to the industrial site (i.e we create a dummy equal to 1 if the cluster is downstream of the mine
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Figure 6: Matching Strategy

(a) Scheme for matching strategy

(b) Density of distance to the mine

Notes : Figure (a) is a scheme that illustrates the matching strategy, giving the example of a mine, its main
sub-basin, the three closest downstream sub-basins, and DHS clusters that are in the treatment and control areas.
Figure (b) plots the density of the distance to the mining site for DHS clusters across their upstream-downstream
position.
Sources : authors' elaboration on DHS, SNL and HydroSheds data.

and 0 if it is located upstream). This topographic position (upstream or downstream) is de�ned using
the position of each sub-basin. As each cluster and sites have GPS coordinates, they lie in a speci�c
sub-basin, and we used the relative position of each sub-basin to classify the DHS according to the paired
mine. Through such a process, we also have pairs that are located in the same sub-basin, and for which
it is impossible to say exactly whether the cluster is downstream or upstream of the mine. At this stage,
for these speci�c couples, the topographic dummy is assumed to be equal to 1 (i.e for the moment, we
consider that the DHS is downstream). Please note that, as explained in section 3.1.3, we used the �nest
Pfasftetter level 12 that breaks down subbasins at an average area of 100km2 (the size of the sub-basin
varies according to their shape, cf Figure 6a). At this stage, some villages can be paired with several
mines and can have more than one occurrence in the sample. The di�culty of the strategy lies in choosing
the mine that will be paired to the cluster.

Second, we restrict the group of downstream DHS clusters to the ones that lie within one of the three
closest sub-basins downstream of the mine's sub-basin, to focus on the potentially most contaminated
areas if pollution follows the water �ow. We focus on the de�nition of sub-basins and not on river �ows
as mining activity contaminates surface as well as groundwater resources, as we intend to capture both
type of pollution. Section 5.3.3 looks at the heterogeneity of the main results according to geographical
characteristics of sub-basins, including the presence of rivers, their importance, coverage area, or direction
and magnitude of the �ow for instance.

Third, to pair each cluster with only one mining site, we proceed as follows, based on the upstream and
downstream concepts explained. If a DHS was in both groups (i.e downstream a mine A and upstream
a mine B), then it is automatically assigned to the downstream group, and it is paired to the mine from
which it is downstream (i.e it is paired to mine A), regardless of its activity status. At this stage, some
clusters may still be counted twice, as they can be upstream of several mines, or in the three closest
sub-basins downstream of several mines. To complete the uniqueness of the coupling, we paired each
cluster to the nearest mine, regardless of its activity status as well.

Now, the coupling is terminated. In conclusion, the DHS clusters are attached to the nearest mine
from which they are downstream up to the third sub-basin level, or else attached to the nearest mine

14



upstream up to a radius of 100km. The �nal remaining problem relates to the clusters that are in the
mine's same sub-basin, which we have so far identi�ed as being downstream. We eliminated from the
main analysis all DHS villages which are located in the same sub-basin of the mines from which they
were matched. Also, this reduces the noise linked to the random displacement of DHS villages 15, and
avoids to allocate villages as being downstream whereas they are upstream due to the displacement, as
it drops the closest areas around the mine.

The matching is illustrated in Figure 6a which represents a sample of sub-basins, a mine, the main
sub-basin of the mine, the three closest downstream sub-basins and the DHS villages upstream at 100km.
The �gure points to the fact that for each mine, the upstream treatment area is larger than the treated
area. This mechanically balances the group of control and treated for statistical analysis, but also creates
a di�erence in the distance to the mine distribution between the upstream and downstream villages, as
shown in Figure 6b. We observe that the DHS in the downstream group follow a left-centered distribution,
with the highest density around 10-15km, while the villages upstream are rather evenly distributed up
to 100km. This bias mechanically introduced by the matching is discussed in the robustness section ??,
which shows that the main result is maintained when we restrict the total sample to di�erent distances,
in order to convince that we are isolating an e�ect linked to the position downstream rather than from
a distance to the mine.

4.2 Identi�cation Strategy

The main analysis relies on a Di�erence-in-di�erences strategy using the topographic position (upstream-
downstream) of a DHS cluster relative to a mine deposit in order to identify the channel of water pollution.
We propose a staggered Di�erence-in-Di�erence speci�cation, with a subbasin �xed e�ect panel for each
mine. We isolate the mechanism of water pollution by building the treatment and control groups using
an upstream-downstream comparison. We use the de�nition of a subbasin and the level 12 of the Pfaf-
stetter classi�cation (the �nest) to de�ne for each subbasin the subbasins that are located upstream and
downstream. We restrict our analysis using the matching strategy explained in previous section 4.1.2. We
compare health outcomes in upstream-downstream areas, both before and after the opening the paired
mine. The empirical strategy can be formally written as follows:

Deathi,v,c,m,SB =α0 + α1Openedbirthyear,i,v + α2Downstreamv,SB

+ α3Openedbirthyear,i,v ×Downstreamv,SB + α4Xi

+ γSB + γSB−trend + γc,birthyear + εv

(1)

With Deathi,v,c,m,SB a dummy equal to one if child i from DHS village v of country c, has reached the
nth month and has died (n being 12 for the 12-month old mortality, same for 24 months). Openedbirthyear,i,v
is a dummy equal to 1 if the mine, which is located in subbasin SB, has opened before child i's year of
birth. Downstreamv,SB is a dummy of relative position (equal to 1 if village DHS v is located in the
downstream subbasin SB, and 0 if it is upstream), Xi a vector of child and mother level controls (mother's
age, age square, years of education, urban residency). Finally, γSB is a subbasin �xed e�ect, γSB−trend

a subbasin linear birthyear trend and γc,birthyear a country-birthyear �xed e�ect. This analysis is a stag-
gered design as the treatment shock (mine opening) does not occur at the same time for each DHS cluster.

The main regression is run without the DHS clusters that lie within the same sub-basin as the mine
they are coupled with, as discussed in previous section. The list of countries and survey years used in the
main regression are given in Table ??, they are the countries that had at least more than one DHS round

15"In DHS household surveys the GPS coordinate displacement process is carried out as follows: urban clusters are
displaced a distance up to two kilometers (0-2 km) and rural clusters are displaced a distance up to �ve kilometers (0-5
km), with a further, randomly-selected 1% (every 100th) of rural clusters displaced a distance up to 10 kilometers (0-10
km)", as mentionned in [USAID, 2013]
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(to limit di�erences in terms of temporal variation) 16. Finally, the main regression is made for mine
that are associated with heavy metal mines (metals with density higher than 5gcm−3 [Bri�a et al., 2020],
which are the metals listed in Table 19 in Section A.2.2 of the Appendix 17. We also include coal mines,
as their extraction is associated with mercury and arsenic that are highly toxic heavy metals. Section
6.1.3 shows that the main results are stable according to the list of metals and Section A.5 when dropping
one country one by one.

4.3 Descriptive statistics and parallel trends

In this section, we describe the balance tables that play a key role in our analysis, out of parsimony.
Sections A.1 and A.3.2 in the Appendix displays extensive descriptive statistics.

Table 1: Balance Table - Double Di�erence with Topographic Treatment - Descriptive Statistics

Before Mine Opening After Mine Opening Within Within Within

Upstream Downstream Di� Upstream Downstream. Di�

N Mean N Mean (4-2) N Mean N Mean (9-7) (7-2) (9-4) (12-11)
/(SD) /(SD) /(p.v) /(SD) /(SD) /(p.v) /(p.v) /(p.v) /(p.v)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Dth<12

All 44725 0.071 8102 0.073 0.003 24697 0.055 5085 0.054 -0.001 -0.015 -0.019 -0.004

(0.256) (0.26) (0.398) (0.228) (0.226) (0.717) (0) (0) (0.511)

Mines 279 235 204 186

Dth<24

All 33688 0.092 6114 0.097 0.005 17465 0.069 3582 0.075 0.006 -0.023 -0.022 0.001

(0.289) (0.296) (0.271) (0.254) (0.263) (0.239) (0) (0) (0.494)

Mines 279 234 192 172

Notes: Standard errors and p-values in parentheses. Outcomes descriptive statistics of under 12 and 24 months mortality,for villages
Upstream and Downstream mining sites, for individuals born before and after the opening of the mine.

Balance Table 1 displays descriptive statistics of under 12 and 24 months mortality, for DHS villages
surveyed before any mine opening, and those surveyed after the beginning of industrial activity. Table 1
compares the changes in infantile mortality before and after the opening of a mine, for places upstream vs

downstream of the mining site, following the matching strategy. It displays also the number of individuals
and paired mines in each group of the analysis. Maps from Figures 21 22 23 24 in Appendix display
the spatial and temporal distribution of mining sites and DHS clusters, as well as main outcomes (infan-
tile mortality rates and mine opening), restricted to the sample of the main analysis. Figure 25 in the
Appendix identi�es the country with the biggest stock of open mines in our sample (Ghana, Zimbabwe,
Tanzania with the highest density of open mines nearby DHS), as well as insights on the variation in
mine opening over the period per country.

On average, Upstream and Downstream areas have non-signi�cant di�erences in terms of under 12 and
24 months mortality (columns 5 and 10). For both Upstream and Downstream clusters, the opening of a

16The list of countries within our sample are : Benin, Burkina Faso, RDC, Burundi, Cote d'Ivoire, Cameroon, Ethiopia,
Ghana, Guinea, Kenya, Liberia, Lesotho, Madagascar, Mali, Malawi, Nigeria, Niger, Namibia, Rwanda, Sierra Leone,
Senegal, Togo, Tanzania Zambia and Zimbabwe

17The list of metals of the main sample are : Gold, Copper, Iron Ore, U308, Nickel, Platinum, Zinc, Chromite, Illmenite,
Lanthanides, Manganese, Tin, Cobalt, Tungsten, Tantalum, Vanadium, Niobium, Heavy mineral Sands, Silver, Lead and
Coal

16



Figure 7: Linear Trends dropping investment phase

(a) Infant mortality Rate - 12 months (b) Infant mortality Rate - 24 months

Notes : The Figure plots the trends of (a) 12-month and (b) 24-month mortality rates. Years since the opening
of mine are in abscissa. The control group is DHS clusters upstream of the matched mine, while the treated are
DHS clusters downstream. The mortality rates are computed on individuals that reached the age of 12 and 24
months. Figures (a) and (b) allow for a break at year -3, which corresponds to the exploration phase.
Sources : authors' elaboration on DHS, SNL and HydroSheds data.

mine signi�cantly decreases the mortality probability (columns 11 and 12), which is in line with the result
of [Benshaul-Tolonen, 2018], and with the fact that mortality rates decrease over time in Africa (Figures
22 23). Table 1 shows that this reduction is overall slightly more important in upstream areas than in
downstream areas for under 24-month mortality (column 13), while it is the contrary for under 12 months
mortality. This is suggestive evidence that positive e�ects (in the sense of reduction of mortality) found by
[Benshaul-Tolonen, 2018] of mining activity are weakened due to pollution exposition through water con-
tamination. Of course, Table 1 does not include any controls, and is mainly used to test whether control
and treated (i.e upstream and downstream areas) are statistically di�erent, which is not the case. Table
20 replicates this exercise for control variables, and we observe some statistical di�erences relative to the
topographic position as well as the opening of the mine, showing the importance to test for parallel trends.

The key assumption of the DiD strategy is that the outcome, i.e infantile mortality rates, in upstream
and downstream areas would follow the same time trend in the absence of the mine opening. The common
trends assumption cannot be tested, however, we can observe the pre-treatment data and the evolution
of infantile mortality before each mine opening according to the topographic position. Figure 7 plots the
linear trends of the 12 and 24-month mortality rates, and distinguishes between control (upstream) and
treated (downstream) DHS cluster, before and after the opening of the coupled mine. Figure 7a and 7b
allow for a break at year -3, which corresponds to the exploration phase, and is shown in the event study
(Figure 8b section 5.2) to have an impact on the outcome. This reduce also noise around the timing of
opening. The linear trends show that upstream and downstream communities follow similar trends in
both outcomes before the mine openings, which suggests the parallel trend assumption.
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5 Results

This section displays the results of our main analysis. The �rst section displays the overall e�ects of mining
activity on local population's health according to the topographic treatment. The second section looks
at the dynamic impact of the staggered DiD strategy and describes the event study of the e�ects. Third,
we display the heterogeneity of the e�ect according to households', mines' and geographic characteristics.

5.1 Average e�ects of mine opening

This section displays the main results of this paper from equation 1. Table 2 gathers our main results
with mine sub-basin and country-birth-year �xed e�ects. We also include mine sub-basin and birthyear
linear trends, adjusting for spatial and period-speci�c cofounders and trends, and commodity �xed e�ects
(Section 6.1.5 shows that the results are stable when dropping �xed e�ects one by one). Columns (1)
and (2) give the results for the under 12 months mortality, while columns (3) and (4) for the under 24
months mortality. Columns (1) and (3) show the results for the whole main sample, which is de�ned in
the previous Section 4. We remind that the main sample drops all the DHS clusters that lie within the
same sub-basin as the mining site, and keep only mines where the primary commodity is linked with the
use of heavy metals (so heavy metals from Table 19 plus coal). The countries used in the regressions are
listed in Table 13. Section A.2.2 shows that the main results are stable according to the list of metals
and Section A.5 when dropping countries one by one. Columns (2) and (4) give the estimators for the
same sample while dropping the three years previous to the opening of the mine that can be identi�ed as
a pre-opening period of investment and exploration phase [Benshaul-Tolonen, 2018], as we can interpret
in the event study (Figure 8b). This also enables to reduce the noise linked to the timing of the opening.

The results show that being downstream when a mine opens increases by 2.3 percentage points (p.p)
the 24-month mortality rate. This corresponds to an increase by 27% as the average 24-month mortality
increases from 8.5% to 10.8%. When dropping the investment phase, the mortality rates at 24 monhts
increase by 2.7 p.p, which represents an increase of 31%. The higher coe�cient in Column (4) is coherent
as it reduces the noise around the timing of the mine opening, and as it is likely that small production
had began also during the investment phase. The results are not signi�cant concerning the 12-month
mortality rate, and are very close to zero, showing no di�erence between individuals leaving upstream to
those leaving downstream. This could suggest a lag in the e�ect of water pollution on children's health,
or be the consequences of the compensated e�ects between the negative externalities (such as pollution)
and positive ones (such as the construction of health facilities).
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Table 2: E�ects of industrial mining activity on under 12, 24 mortality - Topographic Treatment
- All Households

Death <12m Death < 24m

All Drop investment phase [t-1;t-3] All Drop investment phase [t-1;t-3]

(1) (2) (3) (4)

Downstream×Open 0.000727 0.00967 0.0229** 0.0273**
[0.00756] [0.00866] [0.00985] [0.0109]

Downstream -0.0140** -0.0201*** -0.0174*** -0.0197***
[0.00612] [0.00668] [0.00673] [0.00736]

Open 0.00707 0.00171 0.00213 -0.00727
[0.00526] [0.00647] [0.00715] [0.00905]

Birth order number 0.00371*** 0.00357*** 0.00488*** 0.00477***
[0.000745] [0.000788] [0.000918] [0.000972]

Mother's age -0.0108*** -0.0108*** -0.0126*** -0.0125***
[0.00117] [0.00125] [0.00152] [0.00163]

Mother's age square 0.000151*** 0.000151*** 0.000167*** 0.000164***
[0.0000185] [0.0000196] [0.0000237] [0.0000252]

Years edu. -0.00134*** -0.00128*** -0.00174*** -0.00183***
[0.000287] [0.000307] [0.000365] [0.000390]

Urban -0.00628** -0.00696** -0.0121*** -0.0142***
[0.00285] [0.00307] [0.00356] [0.00381]

Constant 0.237*** 0.242*** 0.296*** 0.304***
[0.0180] [0.0193] [0.0238] [0.0255]

Birthmonth FE Yes Yes Yes Yes
Ctry-Bthyear FE Yes Yes Yes Yes
SB FE Yes Yes Yes Yes
SB Bthyear trend Yes Yes Yes Yes
Commodity FE Yes Yes Yes Yes
Drop [t-1,t-3] No Yes No Yes

N 82571 75076 60814 55218
R2 0.0264 0.0278 0.0365 0.0385
Outcome Mean 0.0652 0.0666 0.0851 0.0873
Outcome Mean - Downstream 0.0657 0.0662 0.0887 0.090
Outcome Mean - Upstream 0.0650 0.0666 0.0844 0.0868

Notes: Standard errors clustered at the village level, ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01. The variables Downstream and Opened
are dummies which indicate whether the individual lives in a village downstream of at least one mining site, and whether the site
opened before the birth year of the child. Each village DHS is paired to only one mining site, so that each individual appears only
once in the regression. Other variables are control variables. The sample focuses on heavy metal mines. Columns (1) and (2) give
the results for the 12 months mortality rate, while (3) and (4) for the 24 months mortality rate. Columns (2) and (4) dipslay the
results without the investment phase, meaning without the three years preceding the opening of the mine.
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5.2 Dynamic impact of mine opening

We extend our results by analyzing the dynamic e�ects of the opening of an industrial mine. We run a
staggered di�erence-in-di�erence and estimate the following equation:

Deathi,v,c,m,SB =

10∑
t=−10

βt1[birthyear=t]Openedbirthyear,i,v ×Downstreamv,SB

+ α4Xi + γSB + γSB−trend + γc,birthyear + εv

(2)

We plot in �gure 8a the distribution of the years before and after the mine opening across downstream
and upstream villages to make sure of the comparability of our two groups. The results of the event study
are plotted in �gure 8b. The distribution gives the proportion of mines that are pure controls, i.e those
that have not been opened yet (the negative part of the distribution), as well as those that are historical
mines (as we have mines opened since 100 years). As the goal of the analysis is to estimate the e�ect of
the opening of the mine, and that the Distribution from Figure 8a shows that the majority of the sample
is within [-10,10], we plot the event study using this time window.

We �nd a positive and signi�cant e�ect of mine's opening on 24 month mortality rate up to three years
after: the opening of a mine increase the 24 months mortality rate by 0.05 percentage points. The e�ect
is persistent during at least three years . More interestingly, we �nd similar positive and signi�cant e�ect
three years before the opening, suggesting that the investment phase also produce detrimental e�ects on
the local environment and on child mortality.

Figure 8: Event study graphs - 24 months mortality rates

(a) Distribution of years since opening (b) Event Study

Notes : Figure (a) plots the distribution of the years before and after the mine opening across downstream and
upstream villages, for the 24 months mortality rates sample. Negative values correspond to mines that did not
open yet at the birth year of the child. Figure (b) plots the coe�cient of our treatment before and after the
opening of a mine on the 24-month mortality rates. It gives the average treatment e�ects of mine opening on
24-month mortality, 10 years before the mine opening and 10 years after.
Sources : authors' elaboration on DHS and SNL data.
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5.3 Heterogeneity analysis

This section explores the heterogeneity of the main result, focusing on under 24 months mortality, ac-
cording to some household, mine, and geographic-speci�c characteristics.

5.3.1 Household Characteristics

Table 3: E�ects of industrial mining activity on under 24 mortality - Topographic Treatment -
All Households, rural households, and control for migration

Death < 24m
All All Rural Households Rural Households
(1) (2) (3) (4)

Downstream×Open 0.0229** 0.0235* 0.0326*** 0.0290*
[0.00985] [0.0133] [0.0121] [0.0163]

Downstream -0.0174*** -0.0170* -0.0249*** -0.0262***
[0.00673] [0.00958] [0.00720] [0.0101]

Open 0.00213 -0.00880 -0.00171 -0.0102
[0.00715] [0.0113] [0.00817] [0.0129]

Birth order number 0.00488*** 0.00327*** 0.00629*** 0.00447***
[0.000918] [0.00125] [0.00108] [0.00149]

Mother's age -0.0126*** -0.0127*** -0.0155*** -0.0159***
[0.00152] [0.00203] [0.00182] [0.00244]

Mother's age square 0.000167*** 0.000171*** 0.000202*** 0.000211***
[0.0000237] [0.0000319] [0.0000279] [0.0000376]

Years edu. -0.00174*** -0.00235*** -0.00139*** -0.00207***
[0.000365] [0.000491] [0.000529] [0.000724]

Urban -0.0121*** -0.0147***
[0.00356] [0.00514]

Migrant 0.00918*** 0.00586

Constant 0.296*** 0.310*** 0.347*** 0.366***
[0.0238] [0.0314] [0.0287] [0.0379]

Birthmonth FE Yes Yes Yes Yes
Ctry-Bthyear FE Yes Yes Yes Yes
SB FE Yes Yes Yes Yes
SB Bthyear trend Yes Yes Yes Yes
Commodity FE Yes Yes Yes Yes

N 60814 36377 44999 26745
R2 0.0365 0.0467 0.0432 0.0539
Outcome Mean 0.0851 0.0925 0.0909 0.0997

Notes: Standard errors clustered at the village level, ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01. The
variables Downstream and Opened are dummies which indicate whether the individual lives in
a village downstream of at least one mining site, and whether the site opened before the birth
year of the child. Each village DHS is paired to only one mining site, so that each individual
appears only once in the regression. Other variables are control variables. The sample focuses
on heavy metal mines. Column (1) display the main result for all households, while column
(2) show the same results controlling for household where the mother has migrated. Columns
(3) and (4) replicate this analysis focusing on rural households.

Table 3 displays the main result (Column 1), and restricts the sample for rural households (Column
2). We �nd a stronger e�ect of our treatment among rural households: the opening of a mine increases
the mortality under 24 months by 3.3 percentage points within households located downstream of a mine,
compared to households living upstream (which corresponds to an increase of the mean mortality rates
by 37%). The remoteness and scarcity of facilities can explain the e�ects, as well as the increased lack of
monitoring among industrial mining sites that are far away. Columns (3) and (4) show that our results
are robust when controlling for households where the mother has reported to have migrated. Please note
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the fall in the observation number between Columns (1) and (2): indeed, the sample in Columns (2) and
(4) is restricted to individuals that answered the question (which is around 60% Table 18). The variable
asked mothers whether they have ever migrated to the village, or if they have always lived there. This
variable controls for in-migration, which is an important e�ect of the opening of a mine that attract new
working population (cf Section 6.1.4 for more discussion on bias linked to migration).

Table 4: E�ects of industrial mining activity on under 24 mortality - Topographic Treatment -
All Households, control for piped water access and visits to health facilities

Death < 24m
(1) (2) (3) (4)

Downstream × Open 0.0229** 0.0230** 0.0187* 0.0188*
[0.00985] [0.00984] [0.0102] [0.0102]

Downstream -0.0174*** -0.0175*** -0.0150** -0.0151**
[0.00673] [0.00671] [0.00692] [0.00691]

Open 0.00213 0.00196 0.00481 0.00456
[0.00715] [0.00716] [0.00758] [0.00759]

Birth order number 0.00488*** 0.00485*** 0.00537*** 0.00534***
[0.000918] [0.000919] [0.000967] [0.000967]

Mother's age -0.0126*** -0.0126*** -0.0122*** -0.0122***
[0.00152] [0.00153] [0.00160] [0.00160]

Mother's age square 0.000167*** 0.000166*** 0.000160*** 0.000159***
[0.0000237] [0.0000237] [0.0000250] [0.0000250]

Years edu. -0.00174*** -0.00169*** -0.00139*** -0.00132***
[0.000365] [0.000368] [0.000387] [0.000391]

Urban -0.0121*** -0.0106*** -0.0100*** -0.00805**
[0.00356] [0.00375] [0.00385] [0.00406]

Piped Water -0.00465 -0.00589
[0.00357] [0.00381]

Visited Health Facility -0.00588** -0.00579**
[0.00287] [0.00287]

Constant 0.296*** 0.296*** 0.288*** 0.289***
[0.0238] [0.0237] [0.0249] [0.0249]

Birthmonth FE Yes Yes Yes Yes
Country-Bthyear FE Yes Yes Yes Yes
SB FE Yes Yes Yes Yes
SB Bthyear trend Yes Yes Yes Yes
Commodity FE Yes Yes Yes Yes

N 60814 60814 54333 54333

Notes:Standard errors clustered at the village level, ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p <
0.01. The variables Downstream and Opened are dummies which indicate whether
the individual lives in a village downstream of at least one mining site, and whether
the site opened before the birth year of the child. Each village DHS is paired to only
one mining site, so that each individual appears only once in the regression. Other
variables are control variables. The sample focuses on heavy metal mines.

Table 4 shows that our main results hold when we control for households that have access to piped
water as a main source of drinking water and for whether mothers have visited a health facility within
the past 12 months. The fact that our coe�cient remains in the same order of magnitude is reassuring
for our estimations, in order to avoid potential omitted variable bias.

5.3.2 Mine's Characteristics

Our results hold when controlling for the nature of the ownership of the mine ( Table 5 column 1). A
mine was considered as domestic if at least one of the owning company is from the same country as the
country of location, and they represent 17.8 percent of a mine sample. We �nd no e�ect of mine opening
when we restrict the sample to domestically owned mines (column 2) whereas our results hold when
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we restrict to the foreign-owned only mines (column 3). This could be explained by the less dramatic
management of a mine if a national company is involved. We look at the openpit nature of the industrial
site, which concern 21.6 percent of our mines sample, and �nd that our results hold when controlling for
the mining type (column 4). We �nd signi�cant e�ects that are threefold when we restrict to the openpit
mines sample (column 6), and no signi�cant e�ect when we exclude the openpit mines (column 5).

Table 5: E�ects of industrial mining activity on under 24 mortality - Topographic Treatment -
All Households mine ownership and type

Death < 24m

(1) (2) (3) (4) (5) (6)

Ownership control Domestic owner Foreign owner Mining type control Non open-pit mines Open-pit mines

Downstream×Open 0.0229** 0.00294 0.0259** 0.0228** 0.0235 0.0691**
[0.00987] [0.0220] [0.0119] [0.00984] [0.0176] [0.0287]

Downstream -0.0173** 0.0185 -0.0213*** -0.0170** -0.0101 -0.0326
[0.00673] [0.0204] [0.00722] [0.00670] [0.0154] [0.0210]

Open 0.00251 0.0205 0.00299 0.00271 -0.00970 -0.0356*
[0.00717] [0.0240] [0.00793] [0.00713] [0.0151] [0.0200]

Birth order number 0.00487*** 0.00624*** 0.00454*** 0.00486*** 0.00606*** 0.00604***
[0.000918] [0.00199] [0.00103] [0.000918] [0.00143] [0.00162]

Mother's age -0.0126*** -0.00526 -0.0143*** -0.0126*** -0.0134*** -0.0139***
[0.00152] [0.00327] [0.00173] [0.00152] [0.00237] [0.00255]

Mother's age square 0.000166*** 0.0000454 0.000195*** 0.000167*** 0.000177*** 0.000181***
[0.0000237] [0.0000517] [0.0000267] [0.0000237] [0.0000371] [0.0000398]

Years edu. -0.00174*** -0.00217*** -0.00155*** -0.00174*** -0.00152*** -0.00141**
[0.000365] [0.000696] [0.000433] [0.000365] [0.000543] [0.000602]

Urban -0.0121*** -0.0229** -0.0103*** -0.0121*** -0.00861 -0.0103*
[0.00356] [0.00909] [0.00391] [0.00355] [0.00529] [0.00604]

Domestic ownership -0.0364
[0.0341]

Mine type -0.0469**
[0.0203]

Open Pit -0.0157
[0.0365]

Constant 0.303*** 0.173*** 0.322*** 0.314*** 0.311*** 0.318***
[0.0246] [0.0516] [0.0270] [0.0249] [0.0477] [0.0407]

Birthmonth FE Yes Yes Yes Yes Yes Yes
Ctry-Bthyear FE Yes Yes Yes Yes Yes Yes
SB FE Yes Yes Yes Yes Yes Yes
SB Bthyear trend Yes Yes Yes Yes Yes Yes
Commodity FE Yes Yes Yes Yes Yes Yes

N 60814 11722 49078 60814 23160 16896
R2 0.0366 0.0481 0.0384 0.0366 0.0454 0.0459
Outcome Mean 0.0851 0.0749 0.0876 0.0851 0.0772 0.0755

Notes: Standard errors clustered at the village level, ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01. The variables Downstream and Opened are dummies
which indicate whether the individual lives in a village downstream of at least one mining site, and whether the site opened before the birth year
of the child. Each village DHS is paired to only one mining site, so that each individual appears only once in the regression. Other variables are
control variables. The sample focuses on heavy metal mines. All columns give the results for the 24 months mortality rate.

5.3.3 Geographic Characteristics

In this section, we are looking at the heterogeneity of the main result on 24 months mortality rates,
according to the characteristics of the area at the level of the mine (i.e the area including the three
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closest downstream sub-basins, and upstream areas up to 100km), such as the presence of rivers in the
downstream sub-basins, the importance of the water �ow and coverage of the area.

[WORK IN PROGRESS]

6 Robustness and Sensitivity analysis

6.1 Robustness

In this section, we propose a list of robustness checks, such as the restriction of the main sample to a
balanced sample and a restriction of the analysis according to di�erent distances to the industrial site.
We also discuss about the sample selection of mines and about the migrant selection issue.

6.1.1 Balanced Panel

In this section, we replicate the main analysis on a restricted balanced panel of mine sub-basins. As
the staggered DiD is driven by the changes in mortality rates of switchers, the goal is both to verify
that the results are robust when we restrict to a balanced panel, and also to exactly identify the group
of switchers. Figure 9 plots the di�erent groups from the balanced panel, and displays the group of
switchers, the always treated and never treated control groups. The balanced panel is built as explained
in the following paragraphs.

Figure 9: Balanced Panel - Group identi�cation

Notes : The Figure plots the groups areas accross the three groups of the balanced panel, for the 24-month
mortality rate.
Sources : authors' elaboration on DHS and SNL data.

Thanks to the balanced panel, we restrict the sample to pure controls. The setting of this paper veri�es
the existence of stable groups, meaning that there are groups for which the exposure to the treatment do
not change [de Chaisemartin and D'Haultf÷uille, 2020]. Please note that groups are made of subgroups,
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which are the level at which we de�ne the treatment to build the balanced panel. Subgroups have unique
mine sub-basin, and gather all individuals living within the three closest sub-basins downstream or up-
stream within 100km of the mine, for each year. It is easy to identify the subgroups that are the switchers,
meaning the subgroups that experienced a change in the exposition to mining activity through the open-
ing of an industrial mine, that are the subgroups playing a key role in the two-way �xed e�ects estimation.

The design distinguishes three "super groups". First, the subgroup for which a mine has opened
between two di�erent years (for which there are DHS observations), Group 1: the independent variable
changes from 0 to 1. Second, the subgroup of areas for which the mine has always been opened and are
thus always treated (Group 2: the independent variable which is an interaction, is always equal to 1),
and third the subgroup of areas where mines have not yet opened (Group 3: the independent variable
is equal to 0.). The third group is made of subgroups for which the mine has not opened yet but the
opening is planned in the future, and of mines where no DHS cluster was surveyed after it opened. Please
note that the way we built the group, make it possible that Group 2 includes open mines that have been
surveyed only downstream or only upstream, as well as Group 3. As this is not the treatment that we
want to study, the balance table corrects for this.

Table 6: Balanced Sample - Descriptive Statistics

Group 1 : Switchers 0-1 Groups 2+3 Group 2 : 1-1 Group 3 : 0-0

All Before Opening After Opening

N Mean N Mean N Mean N Mean N Mean N Mean N
/(SD) /(SD) /(SD) /(SD) /(SD) /(SD)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Dth<12

All 2532 0.061 1932 0.064 600 0.052 15462 0.067 4228 0.054 11234 0.072

(0.24) (0.245) (0.222) (0.25) (0.226) (0.258)

Mines 14 14 14 72 31 41

Dth<24

All 1762 0.079 1378 0.081 384 0.07 12097 0.091 3160 0.073 8937 0.098

(0.27) (0.273) (0.256) (0.288) (0.26) (0.297)

Mines 13 13 13 75 31 44

Notes: Standard errors and p-values are in parentheses. Outcomes' descriptive statistics of under 12 and 24 months mortality, for
villages within the Group 1 Switchers for individuals born before and after the opening of the mine, then Group 2 always treated
and Group 3 never treated.

The treatment being downstream of an open mine might not be re�ected by Groups 1, 2, and 3. The
balanced sample is made as follows. First, we only keep subgroups that have individuals both downstream
and upstream. For subgroups in Group 2 and 3, meaning that the surveys have occurred only after the
opening (Group 2) or before the opening (Group 3), we restrict to subgroups that have observations
both upstream and downstream. Accordingly, for Group 1 made of Switchers, we restrict the sample
to subgroups that have individuals surveyed both downstream and upstream in both periods, i.e before
and after the opening. Table 6 gives the size of the three Groups in the balanced panel, as well as the
associated number of mines, for both the 12 and 24 months mortality rates. Please note that the sample
of the 12 months mortality rates and 24 months mortality rates are di�erent. This is explained by the
fact that we balanced the sample after droppping the individuals who did not reach the age of 12 months,
as well as those who did not reach the age of 24 months, which explains the di�erence. Table 6 shows
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that the group 1 of Switchers accounts for around 13% of the total balanced sample. We observe that the
average mortality rates have decreased over time, before and after the opening of the mining site in the
Switcher Group, linked to the decrease of infantile mortality in Africa over time, which is in coherence
with Balance Table 1 and Figures 4 and 5, and which highlights the importance of controlling for trends.
Figure 9 plots the groups in order to identify where the switchers lie, and what are the areas that are
key in the main estimation.

Columns (1) and (3) in Table 7 show the results of the main estimation for the 12 and 24-month
mortality rates. Columns (2) and (4) replicate the main analysis for the balanced panel (23% of the
main sample). Column (4) shows that when focusing on the balanced panel, being downstream of an
opened mine increases the 24-month mortality rate by 3 p.p, which represents an increase by 33% of the
mortality. Please note that, despite the small sample, the results remain signi�cant, which is coherent
with the fact that the switchers from Group 1 drive the main estimation's results.

Table 7: E�ects of industrial mining activity on under 12, 24 mortality - Topographic Treatment
- All Households and Balanced Panel Sample

Death <12m Death < 24m
All Balanced Panel All Balanced Panel
(1) (2) (3) (4)

Downstream × Open 0.000727 0.0132 0.0229** 0.0305**
[0.00756] [0.0123] [0.00985] [0.0151]

Downstream -0.0140** -0.0170** -0.0174*** -0.0211**
[0.00612] [0.00734] [0.00673] [0.00829]

Open 0.00707 0.0136 0.00213 0.0191
[0.00526] [0.0222] [0.00715] [0.0321]

Birth order number 0.00371*** 0.00230 0.00488*** 0.00236
[0.000745] [0.00157] [0.000918] [0.00196]

Mother's age -0.0108*** -0.0127*** -0.0126*** -0.0150***
[0.00117] [0.00276] [0.00152] [0.00351]

Mother's age square 0.000151*** 0.000187*** 0.000167*** 0.000209***
[0.0000185] [0.00276] [0.0000237] [0.0000544]

Years edu. -0.00134*** -0.00167** -0.00174*** -0.00188**
[0.000287] [0.000729] [0.000365] [0.000896]

Urban -0.00628** 0.00538 -0.0121*** 0.00141
[0.00285] [0.00557] [0.00356] [0.00761]

Constant 0.237*** 0.264*** 0.296*** 0.336***
[0.0180] [0.0425] [0.0238] [0.0550]

Birthmonth FE Yes Yes Yes Yes
Country-Bthyear FE Yes Yes Yes Yes
SB FE Yes Yes Yes Yes
SB Bthyear trend Yes Yes Yes Yes
Commodity FE Yes Yes Yes Yes

N 82571 17979 60814 13839
R2 0.0264 0.0380 0.0365 0.0482
Outcome Mean 0.0652 0.0661 0.0851 0.0897

Notes: Standard errors clustered at the village level, ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
The variables Downstream and Opened are dummies which indicate whether the individual
lives in a village downstream of at least one mining site, and whether the site opened before
the birth year of the child. Each village DHS is paired to only one mining site, so that each
individual appears only once in the regression. Other variables are control variables. The
sample focuses on heavy metal mines. Columns (2) and (4) display the main estimation
on the balance Panel.
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6.1.2 Distinction with geographic treatment

As discussed in Section 4.1.2, the matching strategy creates di�erences in terms of the distance to the mine
between the downstream and upstream Groups. Figure 10a plots the distribution of the distance for both
groups, and shows that downstream DHS clusters are mainly within 40 km of the mine, centered around
20km, while upstream areas are homogeneously distributed up to 100km. As the main contribution of
this paper is to advocate that using proximity as a proxy for exposure to a mine embraces contradictory
phenomena that compensate each other (positive and negative externalities), and that the average does
not permit to identify the mechanism of water pollution, it is important to convince that our main es-
timation is driven by a di�erence in the topographic position of individuals rather than their distance
to the mine. To do so, we replicate the main estimator for samples restricted to speci�c distance brackets.

Figure 10b plots the main estimate of the interaction variable on the 24-month mortality rates,
according to samples based on distance: the �rst point on the left represents the main result for the
whole sample up to 100km, the second one for the sample restricted to 90km, the third one up to 80
km and so on. Figure 10b shows that the main result remains stable and statistically signi�cant, up to
20km. Please note that for the sample restricted to 20km, the number of observations is very low, and
the sample is highly imbalanced in favor of downstream areas, explaining why the statistical signi�cance
does not hold. Please note that the regressions are made for the main sample, including heavy metal
mines plus coal, and without DHS clusters located within the mine's sub-basin.

Figure 10: Impact accross distance to the matched mining site

(a) (b)

Notes :Figure (a) plots the distribution of the distance of DHS clusters to the matched mining site, both for
clusters downstream and upstream, for the 24 months mortality rates sample. Figure (b) gives the average
treatment e�ect of being downstream of an open mine on the 24-month mortality for di�erent samples. Please
note that Figure (b) plots the results of 9 di�erent regressions, with di�erent sample sizes: the �rst dot corresponds
to the overall sample, as it includes all clusters within 100km, while the second dot restricts the sample to the
cluster that are within 90km of the mine, and so on. Please note that the sample size of the regressions decreases,
as at the end the sample size of the regression for the clusters within 20km is relatively small.
Sources : authors' elaboration on DHS and SNL data.
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6.1.3 Sample Selection of Mines

Table 8 shows that our results hold for mines extracting all types of commodities (column 1), although
the coe�cient is less precisely estimated and from a small magnitude than heavy metals and coal mines.
Column (1) shows that the e�ect of being downstream of an open mine increase the mortality rates by
1.8 p.p (i.e 21%) for all mines, which is lower than the main result. This is coherent with the fact that
heavy metals are environmentally and biologically toxic elements, associated with the mines with the
highest impacts in terms of pollution. Our results are also stable when we restrict ourselves to heavy
metal mines (listed in Table 19) but exclude coal (column 2). Last but not least, we �nd no signi�cant
e�ects of industrial gold mines only, which contrasts with the results from the literature.

Table 8: E�ects of industrial mining activity on under 12, 24 mortality - Topographic Treatment

Death < 24m
All Mines Heavy Metals without Coal Mines Gold Mines

(1) (2) (3)

Downstream × Open 0.0179* 0.0208** 0.00789
[0.00947] [0.00966] [0.0168]

Downstream -0.0120* -0.0181*** -0.0171*
[0.00673] [0.00672] [0.00875]

Open 0.00186 0.00274 0.00514
[0.00600] [0.00706] [0.0103]

Birth order number 0.00522*** 0.00470*** 0.00588***
[0.000819] [0.000903] [0.00140]

Mother's age -0.0123*** -0.0124*** -0.0155***
[0.00136] [0.00150] [0.00233]

Mother's age square 0.000163*** 0.000164*** 0.000207***
[0.0000212] [0.0000234] [0.0000362]

Years edu. -0.00173*** -0.00170*** -0.00148**
[0.000325] [0.000359] [0.000648]

Urban -0.0121*** -0.0123*** -0.0139**
[0.00312] [0.00351] [0.00558]

Constant 0.287*** 0.292*** 0.350***
[0.0211] [0.0234] [0.0361]

Birthmonth FE Yes Yes Yes
Country-Bthyear FE Yes Yes Yes
SB FE Yes Yes Yes
SB Bthyear trend Yes Yes Yes
Commodity FE Yes Yes Yes

N 75512 62277 29835
r2 0.0355 0.0371 0.0414
Outcome Mean 0.0832 0.0843 0.0967

Notes:Standard errors clustered at the village level, ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
The variables Downstream and Opened are dummies which indicate whether the individual
lives in a village downstream of at least one mining site, and whether the site opened before
the birth year of the child. Each village DHS is paired to only one mining site, so that
each individual appears only once in the regression. Other variables are control variables.
Column (1) focuses on all mine types, Colum (2) the heavy metal list without coal, and
Column (3) with only Gold.

6.1.4 Migrant Selection

It is also detrimental to the analysis to understand the role played by in and out migration. All the
above-mentioned empirical strategies struggle with residential sorting, namely the migratory movements
correlated to industrial mining activity. For treatments based on geographical proximity, the results are
biased if the opening of a mining site generates selected migration from treatment to control areas (or
the reverse). For instance, it might trigger selection in the in-migration: the workforce might migrate
from control (far from the mine) to treatment areas, and the workforce might be a selected population.
Using the DHS, both [Benshaul-Tolonen, 2018] and [Von der Goltz and Barnwal, 2019] control for this
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phenomenon by excluding in-migrants from the analysis (either restricting the sample to individuals that
have always lived here, or by excluding only new migrants that came two years before the opening of a
mining site). However, the selection bias due to out-migration has been only lightly dealt with and there
seems to be a way to improve. Indeed, we cannot omit the fact that if a mining site pollutes or creates
e�ects that are highly detrimental to local populations, only those with the highest means might well
be able to move away to a less exposed area, leaving the poorest and most vulnerable ones behind and
thus creating an upward bias to our estimates. To deal with this issue, [Benshaul-Tolonen, 2018] has (i)
looked at the negative change in infant health in the control communities (same trend), and has found
no deterioration in the distance bins further away from mines ; (ii) ran a Spatial lag model to capture
non-linear e�ects with distance from the mine. [Mamo et al., 2019] have implemented a Spatial Durbin
model to control for spatial spillovers (at the grid cell level).

We delve deeper into the selection of our surveyed sample by looking at the migration status of
respondents, keeping in mind that we can only trace in-migration and not out-migration. DHS surveys
the number of years the respondent has lived in the village, town or city where she was interviewed, and
we consider a person to be a migrant if she answered a speci�c number of years to this question. We
�nd no signi�cant e�ect of our treatment variable on the migration outcome (column 1 of table 9), when
controlling for migration, restricting to migrants or stayers sample (columns 2 and 3). This absence of
signi�cant results provides a �rst evidence of a migrant selection bias. Yet, still further work needs to be
undertaken to build stronger evidence.

Table 9: E�ects of industrial mining activity on under 24 mortality - Topographic Treatment -
Migrant Selection

Migrant Death < 24m
Non-migrant sample Migrant sample

(1) (2) (3)

Downstream × Open 0.0325 0.0284 0.0253
[0.0342] [0.0228] [0.0174]

Downstream -0.0293 -0.0192 -0.0182
[0.0269] [0.0160] [0.0123]

Open -0.0161 -0.00201 -0.0108
[0.0216] [0.0180] [0.0142]

Birth order number 0.000695 0.00329* 0.00258
[0.00203] [0.00197] [0.00163]

Mother's age 0.0148*** -0.00962*** -0.0146***
[0.00319] [0.00306] [0.00281]

Mother's age square -0.000247*** 0.000132*** 0.000195***
[0.0000498] [0.0000479] [0.0000440]

Years edu. 0.00227** -0.00153** -0.00295***
[0.00105] [0.000756] [0.000649]

Urban 0.0274** -0.0258*** -0.0104*
[0.0120] [0.00820] [0.00628]

Constant 0.382*** 0.250*** 0.359***
[0.0496] [0.0468] [0.0440]

N 36377 14518 21807
R2 0.166 0.0743 0.0599
Outcome Mean 0.600 0.0870 0.0962

Notes: Standard errors clustered at the village level, ∗p < 0.1,∗∗ p <
0.05,∗∗∗ p < 0.01. The variables Downstream and Opened are dummies which
indicate whether the individual lives in a village downstream of at least one min-
ing site, and whether the site opened before the birth year of the child. Each
village DHS is paired to only one mining site, so that each individual appears
only once in the regression. Other variables are control variables. The sample
focuses on heavy metal mines.
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6.1.5 Other tests

We �nd stability in our results when dropping �xed e�ects one by one: birth month, commodity, and
sub-basins birth year trend (Table 10) until keeping the two-way �xed e�ects in Column (4) (i.e keeping
the mine sub-basin �xed e�ect and the country-birthyear �xed e�ect).

Table 10: E�ects of industrial mining activity on under 12, 24 mortality - Topographic Treatment
- Fixed E�ects and controls dropping one by one

Death < 24m
(1) (2) (3) (4)

Downstream × Open 0.0229** 0.0227** 0.0201** 0.0195**
[0.00985] [0.00983] [0.00958] [0.00953]

Downstream -0.0174*** -0.0174*** -0.0182*** -0.0178***
[0.00673] [0.00671] [0.00669] [0.00670]

Open 0.00213 0.00219 0.00345 0.00262
[0.00715] [0.00716] [0.00715] [0.00708]

Birth order number 0.00488*** 0.00482*** 0.00480*** 0.00479***
[0.000918] [0.000917] [0.000916] [0.000916]

Mother's age -0.0126*** -0.0125*** -0.0125*** -0.0125***
[0.00152] [0.00152] [0.00152] [0.00152]

Mother's age square 0.000167*** 0.000166*** 0.000166*** 0.000165***
[0.0000237] [0.0000237] [0.0000237] [0.0000237]

Years edu. -0.00174*** -0.00176*** -0.00176*** -0.00177***
[0.000365] [0.000364] [0.000365] [0.000364]

Urban -0.0121*** -0.0147***
[0.00356] [0.00514]

Constant -0.0121*** -0.0122*** -0.0120*** -0.0120***
[0.00356] [0.00356] [0.00356] [0.00356]

Country-Bthyear FE Yes Yes Yes Yes
SB FE Yes Yes Yes Yes
SB Bthyear trend Yes Yes Yes No
Commodity FE Yes Yes No No
Birthmonth FE Yes No No No
N 60814 60814 60814 60814
R2 0.0365 0.0362 0.0361 0.0355
Mean 0.0851 0.0851 0.0851 0.0851

Notes:Standard errors clustered at the village level, ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p <
0.01. The variables Downstream and Opened are dummies which indicate whether
the individual lives in a village downstream of at least one mining site, and whether
the site opened before the birth year of the child. Each village DHS is paired to
only one mining site, so that each individual appears only once in the regression.
Other variables are control variables. The sample focuses on heavy metal mines.
Column (1) includes all the Fixed E�ects from the main speci�cation, Column (2)
excludes birth month FE, Column (3) main primary commodity FE, and Column
(4) excludes the sub-basin trend, to display exactly a two-way FE model
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6.2 Sensitivity analysis

We make sure that our results are robust when controlling for the fact that 81 percent of our �nal sample
was hand-checked (column 2 of table 11). We �nd no signi�cant e�ect when we restrict to the non
hand-checked sample (column 3) but notice that our coe�cient of interest remain from the same sign and
order of magnitude. Our results are therefore mainly found thanks to our hand work (column 4), that is
extensively described in the appendix.

Table 11: E�ects of industrial mining activity on under 12, 24 mortality - Topographic Treatment
- Sensitivity Controls

Death < 24m
(1) (2) (3) (4)

Downstream × Open 0.0229** 0.0228** 0.0252 0.0249**
[0.00985] [0.00984] [0.0309] [0.0106]

Downstream -0.0174*** -0.0176*** -0.0175 -0.0193***
[0.00673] [0.00673] [0.0236] [0.00703]

Open 0.00213 0.00212 -0.0400 0.00148
[0.00715] [0.00715] [0.0329] [0.00763]

Birth order number 0.00488*** 0.00488*** 0.00402* 0.00500***
[0.000918] [0.000918] [0.00233] [0.00100]

Mother's age -0.0126*** -0.0126*** -0.0154*** -0.0122***
[0.00152] [0.00152] [0.00421] [0.00164]

Mother's age square 0.000167*** 0.000167*** 0.000223*** 0.000158***
[0.0000237] [0.0000237] [0.0000682] [0.0000253]

Years edu. -0.00174*** -0.00174*** -0.00199*** -0.00161***
[0.000365] [0.000365] [0.000718] [0.000424]

Urban -0.0121*** -0.0121*** -0.0126 -0.0120***
[0.00356] [0.00356] [0.0108] [0.00381]

Hand Checked 0.0463
[0.0330]

Constant 0.296*** 0.257*** 0.340*** 0.292***
[0.0238] [0.0372] [0.0651] [0.0255]

N 60814 60814 8695 52112
r2 0.0365 0.0366 0.0571 0.0380
Outcome Mean 0.0851 0.0851 0.0781 0.0863

Notes:Standard errors clustered at the village level, ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p <
0.01. The variables Downstream and Opened are dummies which indicate whether
the individual lives in a village downstream of at least one mining site, and whether
the site opened before the birth year of the child. Each village DHS is paired to
only one mining site, so that each individual appears only once in the regression.
Other variables are control variables. Sample is on heavy metal mines.
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7 Discussion

7.1 Heterogeneous treatment e�ects with two-way �xed e�ects:
[de Chaisemartin and D'Haultf÷uille, 2020]

In the previous section, we estimated the e�ects by using standard di�erence-in-di�erences designs. How-
ever, recent developments in the estimation of di�erence-in-di�erences in staggered adoption designs
([Borusyak et al., 2021], [Goodman-Bacon, 2018], [Callaway and Sant'Anna, 2019],
[de Chaisemartin and D'Haultf÷uille, 2020]) show that the estimated ATT is a weighted sum of di�erent
ATTs with weights that may be negative (cf. Table [WORK IN PROGRESS]). The negative weights
are an issue when the treatment e�ect is heterogeneous between groups over time, as one could have
the treatment coe�cient in those regressions is negative while the treatment e�ect is positive in every
group and time period. We will show that in our context, standard estimation could indeed be ex-
posed to these negative weighting issues and it could lead to substantial estimation errors. Therefore, we
use [de Chaisemartin and D'Haultf÷uille, 2020] estimation procedure to estimate the treatment e�ects
in groups switching from no treatment to treatment compared to those remaining untreated. Another
possibility is to take the "not-yet-treated" as a comparison group, [Callaway and Sant'Anna, 2019].

The estimator proposed by [de Chaisemartin and D'Haultf÷uille, 2020] ensures that the treatment ef-
fects are estimated using only comparisons of units switching from no treatment to treatment compared to
those remaining untreated. We also use their placebo estimate of [de Chaisemartin and D'Haultf÷uille, 2020]
that compares the evolution of child mortality from t− 10 to t− 1 in villages that are treated and those
not treated (t being the date of opening of the site). The results are plotted in �gure 11 where we see
that there's a positive and signi�cant e�ect of the mine opening three years before the o�cial start date,
which corresponds to the exploration and investment phase. We �nd coe�cients higher in magnitude
than in the event from our main results, but still need to take them with caution as we are still working
on mastering the extent, hypothesis, and conditions of these new estimators.

Figure 11: [de Chaisemartin and D'Haultf÷uille, 2020] Dynamic estimator

Notes : The Figure plots the results from the dynamic estimator built by
[de Chaisemartin and D'Haultf÷uille, 2020], using the didmultiplegtcommandfromSTATA, forthe24 −
monthmortalityrates.
Sources :authors′elaborationonDHSandSNLdata.

[WORK IN PROGRESS]
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7.2 Additional robustness check: cell �xed e�ect panel

We will implement a panel analysis at the grid cell level, with information on its upstream-downstream
status. This has the advantage of dealing with the DHS 2-10 km random reshu�ing issue, as we will take
the average infant mortality by cell and no longer rely on individual-level analysis.

[WORK IN PROGRESS]

8 Conclusion

This paper identi�es a negative externality of industrial mining on local population living standards, as
we show that industrial mining sites increase infant mortality in surrounding villages, indirectly through
the contamination of water resources. We propose a staggered Di�erence-in-Di�erence strategy, where the
treatment relies on an upstream-downstream topographic treatment. We isolate the mechanism of water
pollution by building the treatment and control groups using an upstream-downstream comparison. We
compare the e�ect on the health of villages located upstream and downstream of a mine deposit, before
and after its opening. We �nd that being downstream when a mine opens increases by 2.3 percentage
points (p.p) the 24-month mortality rate, which corresponds to an increase of 27% of the mortality rates.
This result is an important contribution to the literature, as it enters into the debate on the positive and
negative e�ects of industrial mining activity on health which �nds a reduction in 12 months mortality
rates using a treatment based on proximity to the mine [Benshaul-Tolonen, 2018]. First, the replication
of a DiD analysis using geographical distance to the mine as a proxy for exposition to mining activity
does not hold using our extended sample, which suggests the limited external validity of such a result.
Second, our main result and analysis are robust to several robustness checks and underline the necessity
to use a topographic treatment to understand the ambiguous e�ects of mining on living standards in
developing countries and to be able to identify the negative externalities such as environmental pollution.
Our main contribution is to be the �rst, to the extent of our knowledge, to identify the channel of water
pollution, even if we identify it indirectly.

Further work for this paper will be to reproduce the main analysis for other health outcomes available
within the DHS, such as looking at the e�ect on fertility, anthropometric measures, cough, diarrhea,
anemia, and so on. Our main results �nd an increase in the 24-months mortality rate, but not for the
12-month mortality rate, suggesting that the absorption of contaminated water has delayed e�ects on
biophysical development. Looking at other health outcomes would help understanding the process of
pollution a�ecting child health in more details. A second on going work is use an instrumental variable
strategy, using the international price of metal commodity as an IV for mine opening, as discussed in
Section 3.2. We will also use production quantity outcomes available in the SNL database (but for a
limited number of mines) to look at the heterogeneity of the e�ect according to the intensity of the
pollution (that will be done also using the IV strategy). A large discussion on the broader magnitude
e�ects and external validity of our analysis is also to be conducted. Further work can be done also to
re�ne the de�nition of upstream and downstream positions using river networks and digital elevation
maps, inspired by [Du�o and Pande, 2007] and [Garg et al., 2018], which could di�erientate the impacts
on ground-water and on surface river water resources. First, we will control for the presence of river
networks according to the magnitude of the river �ow and importance, using the HydroSHEDS data on
river basins. In a wokring paper,[Taylor, 2021] uses geological structure form gridded dataset of soil,
intact regolith and sedimentary deposit thicknesses from [Pelletier et al., 2016] to build a global indicator
of ground water potential (shallow bedrocks being correlated with the presence of aquifers), strategy that
could be replicated as well in order to di�erientate between contamination of surface and ground water
resources.
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A Appendix

A.1 Descriptive Statistics

A.1.1 Data

Table 12 displays for each country the number and years of DHS waves, and the total number of DHS
clusters and children under 5 years old, that we use for our empirical strategy. We see that the overall DHS
sample gather 36 countries overall Africa, from 1986 to 2018. In our main empirical analysis, we decided
to only keep DHS countries that had at least two survey rounds, in order to have comparable temporal
variation across countries. Finally, our �nal sample accounts for countries (cf. Table 13): Tanzania,
Burkina-Faso, Ghana, Zimbabwe, Mali, Democratic Republic of Congo, Guinea, Namibia, Madagascar,
Cote d'Ivoire, Sierra Leone, Liberia, Nigeria, Senegal, Ethiopia, Uganda, Botswana, Malawi, Cameroon,
Morocco, Niger, Kenya, Mauritania, Rwanda, Burundi, Lesotho, Togo, Eswatini, Algeria, Benin, Eritrea,
Republic of the Congo, Guinea-Bissau, Somalia, Sudan, Tunisia, Djibouti, Equatorial Guinea (by order
of importance in terms of mining activity according to Figure 15).

Table 12: DHS surveys in sample

Country Survey Years #Clusters #Children<5Y

AO 2015 625 14177
BF 1993, 1999, 2003, 2010 1413 36744
BJ 1996, 2001, 2012, 2017 1752 31884
BU 2010, 2016 930 20824
CD 2007, 2013 836 27307
CF 1994 230 2639
CI 1994, 1998, 2012 674 12227
CM 1991, 2004, 2011, 2018 1619 31279
EG 1992, 1995, 2000, 2003, 2005, 2008, 2014 7741 75394
ET 2000, 2005, 2010, 2016 2313 42173
GA 2012 334 5911
GH 1993, 1998, 2003, 2008, 2014 2037 17931
GN 1999, 2005, 2012, 2018 1289 26588
KE 2003, 2008, 2014 2391 32235
KM 2012 252 3134
LB 1986, 2007, 2013 776 16224
LS 2004, 2009, 2014 1199 10269
MA 2003 480 6030
MD 1997, 2008 860 15932
ML 1996, 2001, 2006, 2012, 2018 1867 52996
MW 2000, 2004, 2010, 2015 2655 56688
MZ 2011 610 10950
NG 1990, 2003, 2008, 2013, 2018 3830 106848
NI 1992, 1998 503 11332
NM 2000, 2006, 2013 1290 13630
RW 2005, 2008, 2010, 2014 1176 21927
SL 2008, 2013 787 17483
SN 1993, 1997, 2005, 2010, 2012, 2014, 2015, 2016, 2017 2572 73084
SZ 2006 274 2706
TD 2014 624 18441
TG 1988, 1998, 2013 768 13869
TZ 1999, 2010, 2015 1259 20520
UG 2000, 2006, 2011, 2016 1765 37603
ZA 2017 671 3397
ZM 2007, 2013, 2018 1585 29105
ZW 1999, 2005, 2010, 2015 1431 19847
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Table 13: DHS surveys in regression sample

Country Survey Years #Clusters #Children<5Y

BF 1993, 1999, 2003, 2010 694 23,846
BJ 2001, 2012, 2017 62 1,911
BU 2010, 2016 317 8,280
CD 2007, 2013 82 5,092
CI 1994, 1998, 2012 196 4,838
CM 1991, 2004, 2011, 2018 90 2,513
ET 2000, 2005, 2010, 2016 100 2,956
GH 1993, 1998, 2003, 2008, 2014 1,217 12,074
GN 1999, 2005, 2012, 2018 360 11,775
KE 2003, 2008, 2014 233 4,130
LB 1986, 2007, 2013 190 7,537
LS 2004, 2009, 2014 336 2,810
MD 1997, 2008 131 3,301
ML 1996, 2001, 2006, 2012, 2018 570 19,147
MW 2000, 2004, 2010, 2015 207 6,651
NG 1990, 2003, 2008, 2013, 2018 105 3,993
NI 1992, 1998 40 1,105
NM 2000, 2006, 2013 138 2,175
RW 2005, 2008, 2010, 2014 713 14,615
SL 2008, 2013 377 13,717
SN 1993, 1997, 2005, 2010, 2012, 2014, 2015, 2016, 2017 363 10,111
TG 1988, 1998, 2013 104 2,187
TZ 1999, 2010, 2015 325 6,866
UG 2000, 2006, 2011, 2016 305 9,031
ZM 2007, 2013, 2018 364 10,966
ZW 1999, 2005, 2010, 2015 468 8,307

38



Tables 14, 15, 16, 17 and 18 display the descriptive statistics of all our outcome and control variables
across six di�erent samples: (1) all children under �ve year old living in the vicinity of an industrial mine,
which correspond to our topographic analysis (2) same but restricted to children having reached the 12
months in order to calculate the 12 months mortality rate (3) same with 24 months. We then exclude
in the samples (4), (5), (6) the children living in the mine's same subbasin. These descriptive �gures are
important in order to show that our analysis does not su�er from selection biases across the samples we
use for our di�erent regressions.

Table 14: Descriptive Statistics of mortality rates

Mean SD Med Min Max N
(1) (2) (3) (4) (5) (6)

Living in the matched mine's subbasin

All children 0.356 0.479 0 0 1 163,056

Children having reached 12months 0.356 0.479 0 0 1 128,317

Children having reached 24 month) 0.357 0.479 0 0 1 94,565

Mortality Rates

Death <12m 0.064 0.245 0 0 1 128,317

Death <12m (outside mine's subbasin) 0.065 0.247 0 0 1 82, 609

Death <24m 0.084 0.278 0 0 1 95,565

Death <24m (outside mine's subbasin) 0.085 0.279 0 0 1 60,849

Death < 1m 0.032 0.176 0 0 1 161,374

Death < 1m (outside mine's subbasin) 0.032 0.176 0 0 1 103,920

Notes: We present the mortality rates at n months, conditionnally on having reached n months,
for the whole sample and the sample living outside of the mine's same subbasin.

39



Table 15: Descriptive Statistics of timing and position relative to mines

Mean SD Med Min Max N
(1) (2) (3) (4) (5) (6)

Open mine at birth

All children 0.394 0.489 0 0 1 163,056

Children having reached 12 months 0.382 0.486 0 0 1 128,317

Children having reached 24 months 0.370 0.482 0 0 1 94,565

All children, outside mine's subbasin 0.372 0.483 0 0 1 104,996

Children having reached 12 months, outside mine's subbasin 0.361 0.480 0 0 1 82,609

Children having reached 24 months, outside mine's subbasin 0.346 0.476 0 0 1 60,849

Living downstream of a mine

All children 0.458 0.498 0 0 1 163,056

Children having reached 12 months 0.459 0.498 0 0 1 128,317

Children having reached 24 months 0.459 0.459 0 0 1 94,565

All children, outside mine's subbasin 0.159 0.366 0 0 1 104,996

Children having reached 12 months, outside mine's subbasin 0.160 0.366 0 0 1 82,609

Children having reached 24 months, outside mine's subbasin 0.159 0.366 0 0 1 60,849
Distance from the matched mine

All children 30.316 27.801 20.199 0.170 99.992 163,056

Children having reached 12 months 30.322 27.822 20.137 0.170 99.992 128,317

Children having reached 24 months 30.342 27.850 20.179 0.170 99.992 94,565

All children, outside mine's subbasin 43.478 26.516 36.126 1.076 99.992 104,996

Children having reached 12 months, outside mine's subbasin 43.491 26.547 36.146 1.076 99.992 82,609

Children having reached 24 months, outside mine's subbasin 43.543 26.567 36.239 1.076 99.992 60,849

Notes: We present the descriptive statistics within six di�erent samples: (1) all children (2) children having reached
12 months (3) children having reached 24 months (4) all children not living in the mine's subbasin (5) children having
reached 12 months and not living in the mine's subbasin (6) children having reached 24 months and not living in the
mine's subbasin.
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Table 16: Descriptive Statistics of children's characteristics (A)

Mean SD Med Min Max N
(1) (2) (3) (4) (5) (6)

Birth order number

All children 3.704 2.443 3 1 17 163,056

Children having reached 12 months 3.702 2.440 3 1 17 128,317

Children having reached 24 months 3.710 2.439 3 1 17 94,565

All children, outside mine's subbasin 3.723 2.436 3 1 17 104,996

Children having reached 12 months, outside mine's subbasin 3.723 2.434 3 1 17 82,609

Children having reached 24 months, outside mine's subbasin 3.725 2.428 3 1 17 60,849

Male

All children 0.506 0.499 1 0 1 163,056

Children having reached 12 months 0.506 0.499 1 0 1 128,317

Children having reached 24 months 0.505 0.499 1 0 1 94,565

All children, outside mine's subbasin 0.508 0.499 1 0 1 104,996

Children having reached 12 months, outside mine's subbasin 0.508 0.499 1 0 1 82,609

Children having reached 24 months, outside mine's subbasin 0.509 0.499 1 0 1 60,849

Small size at birth

All children 0.159 0.366 0 0 1 153,130

Children having reached 12 months 0.156 0.362 0 0 1 120,549

Children having reached 24 months 0.153 0.360 0 0 1 88,915

All children, outside mine's subbasin 0.160 0.366 0 0 1 98,410

Children having reached 12 months, outside mine's subbasin 0.156 0.363 0 0 1 77,334

Children having reached 24 months, outside mine's subbasin 0.155 0.361 0 0 1 59,957

Average size at birth

All children 0.454 0.498 0 0 1 153,130

Children having reached 12 months 0.455 0.498 0 0 1 120,549

Children having reached 24 months 0.456 0.498 0 0 1 88,915

All children, outside mine's subbasin 0.456 0.498 0 0 1 98,410

Children having reached 12 months, outside mine's subbasin 0.456 0.498 0 0 1 77,334

Children having reached 24 months, outside mine's subbasin 0.455 0.498 0 0 1 59,957

Large size at birth

All children 0.387 0.487 0 0 1 153,130

Children having reached 12 months 0.389 0.488 0 0 1 120,549

Children having reached 24 months 0.391 0.488 0 0 1 88,915

All children, outside mine's subbasin 0.384 0.486 0 0 1 98,410

Children having reached 12 months, outside mine's subbasin 0.388 0.498 0 0 1 77,334

Children having reached 24 months, outside mine's subbasin 0.390 0.488 0 0 1 59,957

Notes: We present the descriptive statistics within six di�erent samples: (1) all children (2) children having
reached 12 months (3) children having reached 24 months (4) all children not living in the mine's subbasin (5)
children having reached 12 months and not living in the mine's subbasin (6) children having reached 24 months
and not living in the mine's subbasin.
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Table 17: Descriptive Statistics of children's characteristics (B)

Mean SD Med Min Max N
(1) (2) (3) (4) (5) (6)

Cough in last 2 weeks

All children 0.239 0.426 0 0 1 145,095

Children having reached 12 months 0.230 0.442 0 0 1 112,458

Children having reached 24 months 0.212 0.409 0 0 1 81,606

All children, outside mine's subbasin 0.237 0.426 0 0 1 93,337

Children having reached 12 months, outside mine's subbasin 0.229 0.420 0 0 1 72,291

Children having reached 24 months, outside mine's subbasin 0.210 0.404 0 0 1 52,424

Fever in last 2 weeks

All children 0.252 0.434 0 0 1 145,034

Children having reached 12 months 0.248 0.432 0 0 1 112,421

Children having reached 24 months 0.221 0.415 0 0 1 81,584

All children, outside mine's subbasin 0.250 0.433 0 0 1 93,333

Children having reached 12 months, outside mine's subbasin 0.247 0.431 0 0 1 72,294

Children having reached 24 months, outside mine's subbasin 0.220 0.414 0 0 1 52,426

Diarrhea in last 2 weeks

All children 0.166 0.372 0 0 1 146,097

Children having reached 12 months 0.161 0.368 0 0 1 113,251

Children having reached 24 months 0.123 0.329 0 0 1 82,199

All children, outside mine's subbasin 0.168 0.374 0 0 1 94,073

Children having reached 12 months, outside mine's subbasin 0.163 0.370 0 0 1 72,867

Children having reached 24 months, outside mine's subbasin 0.126 0.331 0 0 1 52,841

Notes: We present the descriptive statistics within six di�erent samples: (1) all children (2) children having reached
12 months (3) children having reached 24 months (4) all children not living in the mine's subbasin (5) children having
reached 12 months and not living in the mine's subbasin (6) children having reached 24 months and not living in the
mine's subbasin.
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Table 18: Descriptive Statistics of mothers' characteristics

Mean SD Med Min Max N
(1) (2) (3) (4) (5) (6)

Mother's age

All children 29.088 7.027 28 15 49 163,056

Children having reached 12 months 29.546 6.982 29 15 49 128,317

Children having reached 24 months 30.033 6.940 29 15 49 94,565

All children, outside mine's subbasin 29.212 7.034 28 15 49 104,996

Children having reached 12 months, outside mine's subbasin 29.677 6.990 29 15 49 82,609

Children having reached 24 months, outside mine's subbasin 30.157 6.953 29 15 49 60,849

Years of education

All children 3.419 4.088 1 0 22 162,992

Children having reached 12 months 3.402 4.077 1 0 22 128,265

Children having reached 24 months 3.364 4.066 1 0 22 94,524

All children, outside mine's subbasin 3.044 3.893 0 0 21 104,996

Children having reached 12 months, outside mine's subbasin 3.024 3.881 0 0 21 82,609

Children having reached 24 months, outside mine's subbasin 2.973 3.859 0 0 21 60,849

Migrant

All children 0.600 0.490 1 0 1 101,039

Children having reached 12 months 0.602 0.490 1 0 1 79,472

Children having reached 24 months 0.604 0.489 1 0 1 58,339

All children, outside mine's subbasin 0.594 0.491 0 0 1 63,421

Children having reached 12 months, outside mine's subbasin 0.596 0.491 0 0 1 49,717

Children having reached 24 months, outside mine's subbasin 0.600 0.490 0 0 1 36,398

Urban

All children 0.290 0.454 0 0 1 161,304

Children having reached 12 months 0.289 0.453 0 0 1 127,243

Children having reached 24 months 0.287 0.453 0 0 1 93,970

All children, outside mine's subbasin 0.261 0.439 0 0 1 104,489

Children having reached 12 months, outside mine's subbasin 0.260 0.439 0 0 1 82,282

Children having reached 24 months, outside mine's subbasin 0.257 0.437 0 0 1 60,659

Piped water as main drinking water source

All children 0.256 0.436 0 0 1 163,056

Children having reached 12 months 0.257 0.438 0 0 1 128,317

Children having reached 24 months 0.256 0.437 0 0 1 94,565

All children, outside mine's subbasin 0.249 0.432 0 0 1 104,996

Children having reached 12 months, outside mine's subbasin 0.250 0.433 0 0 1 82,609

Children having reached 24 months, outside mine's subbasin 0.249 0.432 0 0 1 60,849

Visited health facility in last 12 months

All children 0.607 0.489 1 0 1 145,018

Children having reached 12 months 0.591 0.492 1 0 1 114,557

Children having reached 24 months 0.585 0.493 1 0 1 89,956

All children, outside mine's subbasin 0.596 0.491 1 0 1 93,093

Children having reached 12 months, outside mine's subbasin 0.580 0.494 1 0 1 73,435

Children having reached 24 months, outside mine's subbasin 0.573 0.495 1 0 1 54,365

Ever had miscarriage

All children 0.144 0.351 0 0 1 144,841

Children having reached 12 months 0.148 0.355 0 0 1 114,457

Children having reached 24 months) 0.152 0.359 0 0 1 85,001

All children, outside mine's subbasin 0.144 0.351 0 0 1 92,313

Children having reached 12 months, outside mine's subbasin 0.149 0.356 0 0 1 72,903

Children having reached 24 months, outside mine's subbasin 0.154 0.361 0 0 1 53,987

Notes: We present the descriptive statistics within six di�erent samples: (1) all children (2) children having
reached 12 months (3) children having reached 24 months (4) all children not living in the mine's subbasin (5)
children having reached 12 months and not living in the mine's subbasin (6) children having reached 24 months
and not living in the mine's subbasin. 43



A.1.2 Handwork

Out of the 3815 industrial mines recorded by the SNL database in Africa, 2016 were located within 100
km of a DHS cluster (with at least 2 waves of DHS). 278 had information on the opening and closing
years within the database, and for the 1738 remaining mines, we searched for their years of opening and
closure as well as their current activity status, i.e. whether the mining site looked active or inactive.
The handwork consisted in reading the reports (comments and work history) available in the database,
and browsing through the aerial images available on the SNL platform which provided the exact GPS
coordinates and main location labels. This information was corroborated with online research (press
releases, mining companies' websites, specialized websites on global mining activities, etc.) as well as
Google maps and Google timelapse satellite imagery. Therefore, we were able to trace back to 1984 and
check the start of the construction of a mining site and its expansion. A mine was noted as being still
currently active if trucks could be seen around the site through Google maps satellite imagery. The exact
startup year could not be determined for 18 percent of our sample (�rst bar of �gure 12), and these mines
are dropped in our regressions. In total, we, therefore, hand-checked 83% of the mines located within 100
km of a DHS cluster, and for which we know their year of opening (second bar of �gure 12). We then
associate each DHS cluster according to the strategy describe in section 4 and are left with the sample
used for the geographic treatment (third bar of �gure 12). Last but not least, we restrict our samples to
mines that have DHS clusters within the three closest downstream subbasins, which corresponds to our
topographic treatment sample.

Figure 12: Description of hand work and industrial mines samples

Notes : Our baseline sample is composed of the 2016 mines that are located within 100 km of a DHS cluster with
at least two survey waves (bar 1). Our regression analysis is conducted only on mines for which the startup year
was available or could be retrieved by the handwork (bar 2). The geographic treatment consists of the mines
which were matched according to the described methodology in section XX (bar 3). The topographic treatment
sample consists of mines located within the three closest subbasins of DHS (bar 4).
Sources : authors' elaboration on DHS and SNL data.

The exact startup year could not be determined for 18 percent of our sample (�rst bar of �gure 12),
and these mines are dropped in our regressions. In total, we, therefore, hand-checked 83% of the mines
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located within 100 km of a DHS cluster, and for which we know their year of opening (second bar of �gure
12). We then associate each DHS cluster to its closest mine: and are left with the sample used for the
geographic treatment (third bar of �gure 12). Last but not least, we restrict our samples to mines that
have DHS clusters within the three closest downstream subbasins, which corresponds to our topographic
treatment sample. Among the sample of mines with startup year, 83.2 percent opened after 1981 which
is the �rst year of birth within the DHS child surveys. For each of the following graphs, we study the
whole sample of 2016 mines and plot the percentage of mines that were hand-checked and the percentage
of mines that ends up having a startup year and are thus included in our study. We conduct this analysis
on all the available mines within 100 km of a DHS cluster in order to be transparent on the creation of
our sample compared to the original one.

The distribution across each mining site's primary commodity of production can be found in Figure
14. Half of our sample consists in gold mining sites. Figure 15 and map XX [to be added] represent the
distribution across country of location. Ownership information is available for 65 percent of our sample
and the main owners are from the USA, UK, Canada, Australia, and China (Figure 17). 331 out of the
2016 mines have opening and closure dates. On average, industrial mining sites have opened during 18,3
years in this subsample, but the median is 8 years. Figure ?? represents the distribution across length of
opening.

Figure 13: Mines across start-up year

Notes :This �gure displays the number of mines that opened during a speci�c year. Our baseline sample is
composed of the 2016 mines that are located within 100 km of a DHS cluster with at least two survey waves.
We retrieve the information on the start up year for 1653 mines either from the SNL database or by hand work.
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Figure 14: Mines across primary commodity

Notes :This graph displays the number of mines for each of the primary commodities available in the SNL
database. Our main results are based on heavy metals and coal. Our baseline sample is composed of the 2016
mines that are located within 100 km of a DHS cluster with at least two survey waves. We retrieve the information
on the start up year for 1653 mines either from the SNL database or by handwork.

Figure 15: Mines across country of location

Notes :This graph displays the number of mines by country of location. Our baseline sample is composed of the
2016 mines that are located within 100 km of a DHS cluster with at least two survey waves. We retrieve the
information on the start up year for 1653 mines either from the SNL database or by handwork.
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Figure 16: Mines across owner's country

Notes :This graph displays the number of mines by owning company's registration country. Each mine can
be owned by several companies from di�erent countries, and we can thus attribute the same mine to several
countries. Our baseline sample is composed of the 2016 mines that are located within 100 km of a DHS cluster
with at least two survey waves. We retrieve the information on the start up year for 1653 mines either from the
SNL database or by handwork.

Figure 17: Mines across foreign and domestic ownership

Notes :This graph displays the number of mines across their domestic or foreign ownership. Each mine can be
owned by several companies from di�erent countries, and we consider domestic ownership if at least one of the
owners is registered in the country where the mine is located. Our baseline sample is composed of the 2016 mines
that are located within 100 km of a DHS cluster with at least two survey waves. We retrieve the information on
the start up year for 1653 mines either from the SNL database or by handwork.
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Figure 18: Length of timing activity

Notes : This graph displays the average length of activity for the 331 mines for which we know both the start up
and closure year. Our baseline sample is composed of the 2016 mines that are located within 100 km of a DHS
cluster with at least two survey waves. We retrieve the information on the start up year for 1653 mines either
from the SNL database or by handwork.
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A.2 Context

A.2.1 Mine Life Cycle

Figure 19: Expansion of the Sierra rutile plant, 1985-2020.

(a) Satellite image from 1985 (b) Satellite image from 2020

Notes : The two satellite images represent the expansion of the Sierra rutile plant, in Sierra Leone. Retention
dams can be seen.
Sources :Google Earth engine Timelapse.

Figure 20: Industrial mine's life cycle

Notes : The �gure schematizes the main stages of an industrial mining project .
Sources : Authors' elaboration, largely inspired by Coelho, Teixeira and Goncalves (2011)

A.2.2 Mine types

Table 19 gives the chemical properties of each metal, including their main chemical compounds (Col-
umn 1), their density (Column 2), and displays their share in the main estimation sample (in terms of
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Table 19: Metals, chemical properties and sample distribution

Metals Main chemical coumpounds density (gcm−3) Nb. Mines Total Individual Sample (%)
(1) (2) (3) (4)

Heavy Metals

Gold Gold 19.3 581 41.88

Copper Copper 8.96 89 5.03

Iron ore Iron 7.87 54 8.72

U308 Uranium 8.39 36 1.60

Nickel Nickel 8.9 25 5.06

Platinum Platinum 21.45 21 0.43

Zinc Zinc 7.14 19 2.46

Chromite Iron [4.5,5.09 ] 16 0.57
Chromium

Ilmenite titanium 4.6 14 3.67

Lanthanides Lanthane(57) [6.1,9.8] 13 1.95
Lutecium(71)

Manganese Manganese 7.21 12 0.62

Tin Tin [5.7;7.26] 10 4.87

Cobalt Cobalt 8.9 7 0.56

Tungsten Tugsten 19.25 6 1.06

Tantalum Tantalum 16.69 5 0.15

Vanadium Vanadium 6.12 4 0.04

Niobium Niobium 8.57 3 0.39

Heavy Mineral Sands Zirconium [4.5,17.6] 3 0.16
Titanium
Tungsten
Thorum

Silver Silver 10.49 1 0.00

Lead Lead 11.29 1 0.06

Non-Heavy Metals

Diamonds Carbon 3.5 115 11.73

Coal Carbon 1.35 55 2.19
Mercury?
Arsenic?

Bauxite Aluminium 2.79 23 1.94

Graphite Carbon 2.26 21 0.82

Phosphate Phosphate 1.83 14 2.78

Lithium Lithium 0.53 14 0.80

Rutile titanium 4.23 2 0.29

Potash(Salt) Potassium 0.89 1 0.17

Notes:
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the number of mines Column (3) and Total Individual Sample (Column (4)). Heavy metals are de�ned
according to their density as being greater than 5gcm−3 [Bri�a et al., 2020]. If small amounts of heavy
metals can be mandatory, a high and abnormal concentration of heavy metals may cause health issues
due to chronic toxicity. Heavy metals released in mining activity are toxic elements that degrade the
environment and human biology. This is the case as well for heavy metals released during the min-
ing and burning of coal, which is linked to toxic heavy metals such as lead, mercury, arsenic, nickel
[Global Energy Monitor Wiki, 2021]. This is the reason why the main regression analysis includes heavy
metals and coal mines, to capture the negative externalities linked to the most toxic mines. Table 29b
from Section 29b shows the stability of the main result according to the sample selection of mines and
including the whole sample.

A.3 Empirical Strategy

A.3.1 Identi�cation Strategy

Figure 21: Outcomes spatial distribution

Notes : Figures (a) and (b) represent the means of 12/24 month mortality rates for each DHS waves available
(listed in table 12), from 1986 to 2019. Means are computed at the grid level (100km mean size). The mortality
rates are estimated without the children that did not reach 12/24 months at the time of the survey. Figure (c)
displays the stock of mines that have opened before 2019 (including mines that opened before 1986). Means are
computed at the grid level (100km mean size).
Sources : authors' elaboration on DHS and SNL data.

A.3.2 Descriptive Statistics and Parallel Trends

Table 20 gives the balance table for control variables, for the sample regressions both for 12 and 24
months mortality rates. Figures 22, 23 and 24 display the spatial variation of the main outcomes per
period, for the restricted sample used in the main regression analysis.

We plot in Figure 25 the distribution of mines opened within 100 km upstream or within the 3 closest
subbasins downstream during a child's birthyear, so as to see which countries gather the highest number
of industrial mining activity in the vicinity of surveyed households over 1986-2018. Ghana, Zimbabwe,
Tanzania, Zambia, Guinea and Sierra Leone have the highest density of open mines nearby DHS clusters,
while Benin, Burundi, Cameroon, Lesotho and Niger have the lowest number of open mining sites. This
�gure also represents the variation in the number of mines which opened between the �rst and last year
of surveys for each country. We can thus grasp the context of change in industrial mining activity over
our period of interest. Ghana, Tanzania, Guinea, Mali, and Burkina-Faso witness the highest number of
mine openings between 1986 and 2018.

51



Table 20: Balance Table - Double Di�erence with Topographic Treatment - Descriptive Statistics

Before Mine Opening After Mine Opening Within Up. Within Dwn. Within

Upstream Downstream Di� Upstream Downstream. Di�

N Mean N Mean (4-2) N Mean N Mean (9-7) (7-2) (9-4) (12-11)
/(SD) /(SD) /(p.v) /(SD) /(SD) /(p.v) /(p.v) /(p.v) /(p.v)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Under 12 Children Sample

Household Charateristics

% Urban Household

All 44725 0.274 8102 0.16 -0.113 24697 0.275 5085 0.26 -0.015 0.001 0.099 0.098

(0.446) (0.367) (0) (0.446) (0.438) (0.025) (0.762) (0) (0)

Mines 279 235 204 186 104 63 10

Mother Charateristics

Age

All 44725 29.736 8102 29.585 -0.151 24697 29.678 5085 29.309 -0.37 -0.058 -0.276 -0.218

(7.032) (7.011) (0.075) (6.896) (7.035) (0.001) (0.295) (0.028) (0.066)

Years of Education

All 44725 2.383 8102 3.083 0.7 24697 3.82 5085 4.694 0.875 1.437 1.611 0.175

(3.549) (3.79) (0) (4.18) (4.096) (0) (0) (0) (0)

% Migrant

All 26125 0.598 5557 0.571 -0.026 14553 0.605 3482 0.586 -0.02 0.008 0.014 0.007

(0.49) (0.495) (0) (0.489) (0.493) (0.035) (0.132) (0.177) (0.583)

Mines 249 187 157 138 68 35 7

Under 24 Children Sample

Household Charateristics

% Urban Household

All 33688 0.272 6114 0.162 -0.11 17465 0.269 3582 0.269 0 -0.003 0.106 0.11

(0.445) (0.369) (0) (0.443) (0.443) (0.958) (0.438) (0) (0)

Mines 279 234 192 172 92 49 9

Mother Charateristics

Age

All 33688 30.185 6114 29.924 -0.26 17465 30.233 3582 29.929 -0.304 0.048 0.005 -0.044

(6.999) (6.963) (0.007) (6.843) (7.033) (0.018) (0.451) (0.974) (0.842)

Years of Education

All 33688 2.347 6114 3.063 0.716 17465 3.795 3582 4.697 0.902 1.449 1.635 0.186

(3.528) (3.794) (0) (4.17) (4.07) (0) (0) (0) (0.737)

% Migrant

All 19223 0.602 4148 0.57 -0.032 10533 0.61 2494 0.591 -0.019 0.008 0.021 0.013

(0.489) (0.495) (0) (0.488) (0.492) (0.08) (0.196) (0.098) (0.655)

Mines 248 186 150 133 61 30 6

Notes: Standard errors and p-values in parentheses. Outcomes descriptive statistics of under 12 and 24 months mortality,for villages Upstream
and Downstream mining sites, for individuals born before and after the opening of the mine.
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Figure 22: Spatial variation of 12 month mortality rates per periods - Restricted Sample

Notes : The �gures represent the means of 12 month mortality rates averaged at the grid level over (a) 1986-1996,
(b) 1997-2008 and (c) 2008-2019, for the sample of the main analysis. The mortality rates are estimated without
the children that did not reach 12 months at the time of the survey.
Sources : authors' elaboration on DHS data.

Figure 23: Spatial variation of 24 months mortality rates per periods - Restricted Sample

Notes : The �gures represent the means of 24 month mortality rates averaged at the grid level over (a) 1986-
1996, (b) 1997-2008 and (c) 2008-2019, for the sample from the main analysis. The mortality rates are estimated
without the children that did not reach 24 months at the time of the survey.
Sources : authors' elaboration on DHS data.
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Figure 24: Spatial variation of mine opening per periods - Restricted Sample

Notes : The �gures represent the number of mines that opened during the periods over the grid area (160km on
average). A red grid represents an area where no mine opened over the period, but where at least one mine has
opened before the period. A grey cell represents an area where no mine opened over the period, but where at
least one mine will open in the future.
Sources : authors' elaboration on SNL data.

Figure 25: Number of open mines during birth year and between �rst and last wave

Notes : The �gure represents the number of mines that were opened during the birth year of children located
within our topographic treatment sample by country, and the number of mines that were opened during the
birth year of children located within our topographic treatment sample and which opened between the �rst and
last year of survey for each country.
Sources : authors' elaboration on SNL and DHS data.
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A.4 Geographic Treatment

In this section, we propose to replicate the empirical strategy of [Benshaul-Tolonen, 2018], who �nds that
a mine opening is associated with a 5.5 percentage point decrease in 12 months mortality rates. The
identi�cation strategy relies on a treatment based on proximity, comparing individuals living nearby to
those living further from an industrial mine. In this estimation, geographical proximity is used as a proxy
for positive as well as negative externalities of industrial mining, such as exposure to mining pollution.
The identi�cation strategy relies on a di�erence-in-di�erence strategy (DiD), comparing infant mortality
in areas within 10 km of a mine deposit (treatment group) to infant mortality in DHS clusters further
away from a mine deposit (10-100km, control group), before and after the opening of the mine deposit
and within the district. As the strategy is a two-way �xed-e�ects, including a district-�xed e�ect, the
comparison is made within this level of administrative delimitation. The identi�cation can be formally
written as:

Deathi,v,c,m,SB =α0 + α1Openedbirthyear,i,v + α2MineDeposit[0;10km]v

+ α3Openedbirthyear,i,v ×MineDeposit[0;10km]v + α4Xi

γd + γd−bthtrend + γc,birthyear + εv

(3)

With Deathi,v,c,district a dummy equals to one if child i from DHS village v (within district d) of
country c, has reached the nth month and has died (n being 12 for the 12 month old mortality, 24
and so on). Openedbirthyear,i,v is a dummy equal to 1 if at least one mine located within 10 km for
the treatment group, or within 100 km for the control group, has opened before child i's year of birth
(this cohort comparison can be considered here as a source of tripe di�erence).MineDeposit[0;10km]v is a
dummy of proximity (1 if village DHS v is within 10 km (or 100 km) of a mine deposit), Xi a vector of
child/mother level controls (mother's age and age square, years of education, urban status). Finally, γd
is a district �xed e�ect, γd−bthtrend a district birthyear linear trend, and γc,birthyear a country-birthyear
�xed e�ect. Please note that the matching of DHS clusters to mines relies on the same strategy as in
[Benshaul-Tolonen, 2018], and assigns a DHS cluster to the closest mine (without consideration of its
opening status). Thanks to this matching, if a DHS cluster is both in the treatment and control groups
of two di�erent mines (i.e within 10km of mine A and within 10-100km from Mine B), we assign it me-
chanically to the treatment group (so linked to mine A). This creates bias explained in Section 4.1, which
explains the choice for a district �xed e�ects and reduces the noise linked to DHS random displacements.

Firstly, we give our estimators from the exact replication of [Benshaul-Tolonen, 2018] results, using
our own calculation, and �nd similar impacts (Tables 21 and 22). Second, we propose the replication of
the results using our extended sample, including more countries, DHS waves, types of mines, and mines
hand checked, and show the results from [Benshaul-Tolonen, 2018] is mainly determined by the choice of
countries.

A.4.1 Exact replication of [Benshaul-Tolonen, 2018]

The geographic treatment proxies exposure to mining activity using the distance to the site and follows
partly the analysis from [Benshaul-Tolonen, 2018], and �nds contradictory impacts on infantile mortal-
ity. In order to understand better how our results can be compared to the literature, we propose in this
section a replication exercise of the main result from [Benshaul-Tolonen, 2018]. The �rst di�erence be-
tween the two analysis is the sample, as [Benshaul-Tolonen, 2018] uses 43 gold mines that match with 31
DHS surveys from nine countries (Burkina Faso, Cote D'Ivoire, Ethiopia, Ghana, Guinea, Mali, Senegal,
Tanzania, and DRC 18. However, when matching the DHS cluster to the same industrial mining sites
from [Benshaul-Tolonen, 2018], no DHS from DRC remained. At the end, the analysis is only on the 8
�rst countries, in accordance with Figure A6 from Appendix of [Benshaul-Tolonen, 2018]), for a whole
sample of 1-year-old children of 48,151. In the main analysis of this paper, we pull all the available DHS
in Sub-Saharan Africa that matches a total sample of more than 700 industrial mining sites. For this
replication analysis, we used the same mines and DHS survey rounds as [Benshaul-Tolonen, 2018]. Please

18Please note that we used the same DHS survey that we found from the online replication code of
[Benshaul-Tolonen, 2018]
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note that we have few di�erences in terms of the whole sample, as [Benshaul-Tolonen, 2018] counts 37,365
children vs 41,902 for us, that might be explained by the way we calculated the 100km bu�er distance
19. The second main di�erence between both analyses is the independent variable, as we use as a shock
the opening of the industrial mine whereas [Benshaul-Tolonen, 2018] uses the activity status based on
production data given by the SNL product. This accounts for interim years, between the opening and
�nal closing of the mine, where the production has been on hold. We replicated this variable for this
exercise.

Table 21: Replication [Benshaul-Tolonen, 2018] Main Results

Dependent variable Infant mortality �rst 12 months

Sample : Children Children drop spillover Boys Girls
(1) (2) (3) (4)

Industrial × mine deposit (at birth) -0.0472** -0.0474* -0.0289 -0.0781***
[0.0230] [0.0260] [0.0320] [0.0301]

Mine deposit [0;10km] 0.0392** 0.0546*** 0.0517** 0.0561**
[0.0169] [0.0195] [0.0229] [0.0231]

Mother's age -0.0145*** -0.0154*** -0.0155*** -0.0152***
[0.00190] [0.00210] [0.00274] [0.00297]

Mothers's age × Mother's age 0.000222*** 0.000236*** 0.000223*** 0.000245***
[0.0000302] [0.0000335] [0.0000435] [0.0000475]

Years edu. -0.00214*** -0.00230*** -0.00272*** -0.00184**
[0.000489] [0.000547] [0.000827] [0.000760]

Urbanhh -0.0125*** -0.0120** -0.00710 -0.0183***
[0.00428] [0.00480] [0.00687] [0.00659]

Birth-month FE Yes Yes Yes Yes
Country birth year FE Yes Yes Yes Yes
District FE Yes Yes Yes Yes
District BirthYear trend Yes Yes Yes Yes
Drop10-30 km away No Yes Yes Yes
Drop investment phase No Yes Yes Yes

Mean of outcome 0.102 0.104 0.110 0.099
Mean(treatment, pre-treatment) 0.154 0.163 0.173 0.153

Observations 41902 34228 17534 16694

Notes: ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01. Standard errors clustered a DHS cluster level. The variables Mine
deposit [0;10km] and Industrial × mine deposit (at birth) are a replication from [Benshaul-Tolonen, 2018] and
indicate whether the child is born within 10km of at least one industrial mining site and whether this site
was active at the time of the birth. All regressions control for mother's age, age square, mother's education
and whether the household is urban, for district, birth month and country-birth year. The main outcome is
infant mortality in the 12 months since birth. Columns 2-5 drop the two years preceding th opening year,
de�ned as investment phase in [Benshaul-Tolonen, 2018] and the individuals living within 10-30km of the
closest industrial mine. Mean (treatment, pre-treatment) is the sample for the treatment group before the
mine were active. dummies which indicate whether the individual lives in a village within at least one mining
site, and whether the site opened before the birth year of the child. Each village DHS is paired to the closest
opened mining site, so that each individual appears only once in the regression. Other variables are control
variables.

Table 21 displays the replication of the main results from [Benshaul-Tolonen, 2018] Table 2. We �nd
that a mine opening within 10 kilometers is associated with a 4.7 percentage point decrease in infant
mortality rates, while [Benshaul-Tolonen, 2018] found 5.5 p.p. Our results is slightly less signi�cant
than from [Benshaul-Tolonen, 2018], and we identify a di�erent impact according to gender, with a
signi�cant reduction of girl mortality rates of 7 p.p vs a non-signi�cant reduction for boys, which di�ers
from the previous study. To follow [Benshaul-Tolonen, 2018] example, we excluded in Columns 2-5 from
Table 21 individuals born within 10-30 kilometers of the closest industrial mining site and those born
the two years before the opening of a mine, which is a proxy for the investment phase according to
[Benshaul-Tolonen, 2018].
Please note that in accordance with the descriptive statistics from [Benshaul-Tolonen, 2018] we have
in the sample a very high mean of under 12-month mortality rates (from 10 to 17 % according to the
groups). These are relatively high numbers, that do not match with world bank data. This is because

19In the replication codes of [Benshaul-Tolonen, 2018], one can observe that the distance has been determined using the
STATA command nearstat [...] dband(0,25) which relies on di�erent projections (not speci�ed) as ours from R libraries,
explaining the small sample di�erences
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[Benshaul-Tolonen, 2018] drops all the individuals that are still alive but did not reach the age of 12
months yet to measure the mortality, in order to avoid growing mechanically the mortality rates of these
cohorts. Unfortunately, we can read in the codes that if the living individuals were dropped, the children
that died before their 12 months from these speci�c cohorts were not dropped: mechanically, the mortality
rates for all the years preceding the survey rounds are 100 %, which explain the high mean of outcomes.
For replication purposes, we propose to keep this variable and correct this in Table 22, where we observe
average mortality rates around 7%. Figure 26 replicates the Figure A6 from [Benshaul-Tolonen, 2018],
which shows the coe�cient estimates of the main regression for industrial × mine deposit on infant
mortality, each regression excluding the sample from one country as indicated by the country name. The
Figure 26 shows that results are highly sensitive to the presence of Mali, Senegal, and Ghana in the
sample (whereas they do not consist for the majority of the sample (5847, 1098 and 5595 respectively).

Table 22: Replication [Benshaul-Tolonen, 2018] Main Results

Dependent variable Infant mortality �rst 12 months corrected

Sample : Children Children drop spillover Boys Girls
(1) (2) (3) (4)

Industrial × mine deposit (at birth) -0.0494** -0.0471* -0.0439 -0.0631**
[0.0229] [0.0244] [0.0317] [0.0298]

Mine deposit [0;10km] 0.0394** 0.0587*** 0.0682*** 0.0513**
[0.0179] [0.0198] [0.0255] [0.0235]

Mother's age -0.0118*** -0.0123*** -0.0120*** -0.0124***
[0.00175] [0.00196] [0.00256] [0.00283]

Mothers's age × Mother's age 0.000182*** 0.000189*** 0.000172*** 0.000203***
[0.0000279] [0.0000312] [0.0000405] [0.0000452]

Years edu. -0.00143*** -0.00152*** -0.00204*** -0.000803
[0.000455] [0.000510] [0.000772] [0.000715]

Urbanhh -0.0106*** -0.0113*** -0.00501 -0.0196***
[0.00384] [0.00436] [0.00661] [0.00600]

Birth-month FE Yes Yes Yes Yes
Country birth year FE Yes Yes Yes Yes
District FE Yes Yes Yes Yes
District BirthYear trend Yes Yes Yes Yes
Drop10-30 km away No Yes Yes Yes
Drop investment phase No Yes Yes Yes

Mean of outcome 0.079 0.080 0.083 0.077
Mean(treatment, pre-treatment) 0.109 0.118 0.120 0.115

Observations 40386 32873 16823 16050

Notes: ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01. Standard errors clustered a DHS cluster level. The variables Mine
deposit [0;10km] and Industrial × mine deposit (at birth) are a replication from [Benshaul-Tolonen, 2018] and
indicate whether the child is born within 10km of at least one industrial mining site and whether this site
was active at the time of the birth. All regressions control for mother's age, age square, mother's education
and whether the household is urban, for district, birth month and country-birth year. The main outcome is
infant mortality in the 12 months since birth. Columns 2-5 drop the two years preceding th opening year,
de�ned as investment phase in [Benshaul-Tolonen, 2018] and the individuals living within 10-30km of the
closest industrial mine. Mean (treatment, pre-treatment) is the sample for the treatment group before the
mine were active. dummies which indicate whether the individual lives in a village within at least one mining
site, and whether the site opened before the birth year of the child. Each village DHS is paired to the closest
opened mining site, so that each individual appears only once in the regression. Other variables are control
variables.
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Figure 26: Regression results when dropping one country at the time

A.4.2 Full sample analysis

Figure 27 plots the linear trends of the 12 and 24 months mortality rates for the geographic treatment,
including our overall mine and DHS sample. We see that the linear trends assumption seems to be
validated for the 24-month mortality, but not for the 12-month mortality rates.

Figure 27: Linear Trends dropping investment phase - Geographic Treatment

(a) Infant mortality Rate 12 months (b) Infant mortality Rate 24 months

Table 23 and Table 24 display the results, replicating [Benshaul-Tolonen, 2018] estimation strategy,
with our overall sample of mines and DHS surveys. Table 23 focuses on the 12-month mortality rates
and shows that we �nd a signi�cant reduction of infantile mortality by 0.8 p.p only when controlling
for migrants (column (2)). Columns (1) and (2) display the results for the whole sample, while columns
(3) and (4) while dropping the spillovers e�ects (areas between [10-30]km and the tho years before the
mine opening, which represents the investment phase in [Benshaul-Tolonen, 2018]). Columns (5) and (6)
replicate the analysis for the male sample while columns (7) and (8) for the girls.

Table 24 displays result for the 12-month mortality rates (Columns (1)-(4)) and 24 Months mortality
rates (Columns (5)-(8)), and compares the estimators when not including the migrant control variable
(Columns (1), (3) (5) and (7)), and when including it (Columns ((2),(4),(6) and (8)). We also display
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the estimators for the restricted sample of rural areas (Columns (3),(4), (7), and (8)). We observe a sig-
ni�cant reduction of 12 months mortality rates in Column (2), i.e for the overall sample while controlling
for migrants, and �nd no results otherwise. This absence of results suggests that using proximity as a
proxy for exposure to mining activity average contradictory e�ects, including both positive and negative
externalities, and shows the importance of our main estimation strategy which relies on topographic
position.

Table 23: Geographic Treatment

Infant mortality �rst 12 months

All Drop spillover Boys Girls
(1) (2) (3) (4) (5) (6) (7) (8)

Indus. × deposit -0.00259 -0.00823** -0.00189 -0.00575 0.00250 -0.00302 -0.00513 -0.00807
[0.00329] [0.00418] [0.00407] [0.00537] [0.00570] [0.00764] [0.00522] [0.00674]

Deposit 0.00130 0.00374 0.00103 -0.000128 0.00632 0.0113 -0.00366 -0.0109*
[0.00252] [0.00317] [0.00392] [0.00500] [0.00546] [0.00708] [0.00513] [0.00628]

Birth order 0.00389*** 0.00315*** 0.00360*** 0.00320*** 0.00349*** 0.00304*** 0.00382*** 0.00356***
[0.000345] [0.000428] [0.000423] [0.000518] [0.000606] [0.000742] [0.000549] [0.000671]

Mother's age -0.0105*** -0.0107*** -0.0102*** -0.0110*** -0.0116*** -0.0128*** -0.00884*** -0.00924***
[0.000541] [0.000668] [0.000669] [0.000824] [0.000953] [0.00119] [0.000903] [0.00111]

agesquare 0.000147*** 0.000151*** 0.000142*** 0.000156*** 0.000163*** 0.000183*** 0.000121*** 0.000127***
[0.00000853] [0.0000106] [0.0000106] [0.0000131] [0.0000150] [0.0000187] [0.0000142] [0.0000175]

Years edu. -0.000877*** -0.00103*** -0.000874*** -0.00101*** -0.000881*** -0.00103*** -0.000873*** -0.000968***
[0.000135] [0.000167] [0.000164] [0.000200] [0.000238] [0.000290] [0.000216] [0.000265]

Urban -0.00610*** -0.00725*** -0.00708*** -0.00906*** -0.00825*** -0.0111*** -0.00563** -0.00622**
[0.00135] [0.00172] [0.00169] [0.00214] [0.00235] [0.00297] [0.00227] [0.00289]

migrant 0.00543*** 0.00509*** 0.00255 0.00754***
[0.00120] [0.00145] [0.00208] [0.00196]

Constant 0.229*** 0.232*** 0.226*** 0.240*** 0.251*** 0.273*** 0.201*** 0.206***
[0.00826] [0.0101] [0.0103] [0.0126] [0.0146] [0.0181] [0.0138] [0.0169]

Birth-month FE Yes Yes Yes Yes Yes Yes Yes Yes
Ctry-bthyr FE Yes Yes Yes Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes Yes Yes Yes
Dist-bthyr trend Yes Yes Yes Yes Yes Yes Yes Yes
Drop10-30 km No No Yes Yes No No No No
Drop t-2 No No Yes Yes No No No No

N 359219 243645 236573 165202 119860 83570 116696 81601

Notes: ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01. Standard errors clustered a DHS cluster level. The variables Mine deposit [0;10km] and Industrial
× mine deposit (at birth) are a replication from [Benshaul-Tolonen, 2018] and indicate whether the child is born within 10km of at least one
industrial mining site and whether this site was active at the time of the birth. All regressions control for mother's age, age square, mother's
education and whether the household is urban, for district, birth month and country-birth year. The main outcome is infant mortality in the 12
months since birth. dummies which indicate whether the individual lives in a village within at least one mining site, and whether the site opened
before the birth year of the child. Each village DHS is paired to the closest opened mining site, so that each individual appears only once in the
regression. Other variables are control variables.
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Table 24: E�ects of industrial mining activity on under 12, 24 mortality - Geographic Treatment
- All Households

Death <12m Death < 24m
All All Rural Rural All All Rural Rural
(1) (2) (3) (4) (5) (6) (7) (8)

indus.×deposit -0.00259 -0.00823** -0.00259 -0.00627 0.000248 -0.00264 0.000248 -0.00248
[0.00329] [0.00418] [0.00329] [0.00509] [0.00431] [0.00535] [0.00431] [0.00657]

Deposit 0.00130 0.00374 0.00130 0.00313 0.000627 0.00121 0.000627 0.000859
[0.00252] [0.00317] [0.00252] [0.00368] [0.00321] [0.00411] [0.00321] [0.00477]

Indus. 0.00131 0.00222 0.00131 0.00340 0.00116 0.00122 0.00116 0.00190
[0.00155] [0.00200] [0.00155] [0.00230] [0.00201] [0.00259] [0.00201] [0.00297]

Birth order 0.00389*** 0.00315*** 0.00389*** 0.00353*** 0.00512*** 0.00401*** 0.00512*** 0.00447***
[0.000345] [0.000428] [0.000345] [0.000500] [0.000440] [0.000549] [0.000440] [0.000642]

Mother's age -0.0105*** -0.0107*** -0.0105*** -0.0116*** -0.0115*** -0.0124*** -0.0115*** -0.0140***
[0.000541] [0.000668] [0.000541] [0.000787] [0.000704] [0.000873] [0.000704] [0.00103]

Age square 0.000147*** 0.000151*** 0.000147*** 0.000161*** 0.000151*** 0.000167*** 0.000151*** 0.000187***
[0.00000853] [0.0000106] [0.00000853] [0.0000122] [0.0000110] [0.0000136] [0.0000110] [0.0000159]

Years edu. -0.000877*** -0.00103*** -0.000877*** -0.000792*** -0.00145*** -0.00157*** -0.00145*** -0.00132***
[0.000135] [0.000167] [0.000135] [0.000219] [0.000173] [0.000215] [0.000173] [0.000283]

Urban -0.00610*** -0.00725*** -0.00610*** -0.00940*** -0.00995*** -0.00940***
[0.00135] [0.00172] [0.00135] [0.00175] [0.00222] [0.00175]

migrant 0.00543*** 0.00514*** 0.00727*** 0.00630***
[0.00120] [0.00144] [0.00155] [0.00186]

Constant 0.229*** 0.232*** 0.229*** 0.247*** 0.273*** 0.286*** 0.273*** 0.315***
[0.00826] [0.0101] [0.00826] [0.0120] [0.0109] [0.0134] [0.0109] [0.0159]

Birthmonth FE Yes Yes Yes Yes Yes Yes Yes Yes
Cty-Bthyr FE Yes Yes Yes Yes Yes Yes Yes Yes
SB FE Yes Yes Yes Yes Yes Yes Yes Yes
SB/Bthyr trend Yes Yes Yes Yes Yes Yes Yes Yes
Commodity FE Yes Yes Yes Yes Yes Yes Yes Yes

N 359219 243645 359219 179155 265735 179729 265735 132398
R2 0.0195 0.0235 0.0195 0.0281 0.0289 0.0337 0.0289 0.0393
Mean 0.0630 0.0653 0.0630 0.0688 0.0816 0.0851 0.0816 0.0903

Notes:Standard errors clustered at the village level, ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01. The variables Proximity and Opened are dummies
which indicate whether the individual lives in a DHS village within 10 km of at least one mining site, and whether the site opened before the
birth year of the child. Each village DHS is paired to only one mining site, so that each individual appears only once in the regression. Other
variables are control variables. The sample focuses on heavy metal mines.
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A.5 Robustness

Figure 28 displays the DiD estimators for di�erent regression with restricted samples, meaning while
dropping each metal one by one, using the sample for the 24 months mortality rates, and the heavy
metals and coal mine sample. This suggests that our main results are not driven by a speci�c metal.
Accordingly, Figure 29, plots the interaction estimators while dropping countries one by one and show
that our analysis is not driven by a particular country.

Figure 28: Regression results when dropping one heavy metal one by one.

(a) (b)

Figure 29: Regression results when dropping one country one by one.

(a) (b)
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