MiningLeaks: Water Pollution and Child Mortality in Africa Mélanie Gittard ¹ and Irène Hu²

EEA 2022

Development Health Session

August 24th, 2022

- 1. Paris School of Economics/CIRED/ENPC
- 2. Paris School of Economics/Université Paris 1-Panthéon Sorbonne

Introduction	Data and Context	Empirical Strategy	Results	Robustness	Conclusion
0000	0 0000	0 00	0000	0	000

Motivation and research question

- ightarrow Ambiguous effects of industrial mining activity on local population's health
 - Positive externalities : local industrial development, job creations, consumption, access to services and facilities (health centers, roads...) [Kotsadam and Tolonen, 2016; Mamo, Moradi et al. (2019)]
 - Negative externalities : exposure to pollution, conflicts, corruption, migration [Atkin, 2016; Corno and de Walque 2012; Berman, Couttenier et al. (2017); Aragon and Rud (2016)]
 - $\rightarrow\,$ Focus on water pollution

Introduction	Data and Context	Empirical Strategy	Results	Robustness	Conclusion
0000	0 0000	0 00	00000	0	000

Motivation and research question

ightarrow Ambiguous effects of industrial mining activity on local population's health

- Positive externalities : local industrial development, job creations, consumption, access to services and facilities (health centers, roads...) [Kotsadam and Tolonen, 2016; Mamo, Moradi et al. (2019)]
- Negative externalities : exposure to pollution, conflicts, corruption, migration [Atkin, 2016; Corno and de Walque 2012; Berman, Couttenier et al. (2017); Aragon and Rud (2016)]
- \rightarrow Focus on water pollution

Research question

• What are the effects of **mining-induced water pollution** on child mortality in Africa ?

Introduction	Data and Context	Empirical Strategy	Results	Robustness	Conclusion
0000	00000	000	0 0000	0	000

Effects on health when exposure is proxied by distance

- Tolonen (2018) : decrease of infant mortality within 10km (vs. [10km;100km]) during the opening/operating phases across 8 countries in SSA
- Von der Goltz and Barnwal (2019) : gains in asset wealth, but increased women's anemia/stunting in young children within 5km (vs. [5km;20km])

Introduction	Data and Context	Empirical Strategy	Results	Robustness	Conclusion
0000	00000	000	0 0000	0	000

Effects on health when exposure is proxied by distance

- Tolonen (2018) : decrease of infant mortality within 10km (vs. [10km;100km]) during the opening/operating phases across 8 countries in SSA
- Von der Goltz and Barnwal (2019) : gains in asset wealth, but increased women's anemia/stunting in young children within 5km (vs. [5km;20km])
- \rightarrow Exposure to mine proxied by distance without taking into account the relative topographic position \rightarrow average effects of both positive and negative externalities
- → If replication within 8 countries works, results do not hold with extended sample (highly context-dependent) Replication analysis

Introduction	Data and Context	Empirical Strategy	Results	Robustness	Conclusion
0000	0 0000	000	0 0000	0	000

Effects on health when exposure is proxied by distance

- Tolonen (2018) : decrease of infant mortality within 10km (vs. [10km;100km]) during the opening/operating phases across 8 countries in SSA
- Von der Goltz and Barnwal (2019) : gains in asset wealth, but increased women's anemia/stunting in young children within 5km (vs. [5km;20km])
- \rightarrow Exposure to mine proxied by distance without taking into account the relative topographic position \rightarrow average effects of both positive and negative externalities
- → If replication within 8 countries works, results do not hold with extended sample (highly context-dependent) Replication analysis

Our contributions

- ightarrow Build a dataset of industrial mining activity handchecked start up years
- $\rightarrow\,$ Take into account the topography of villages and industrial mining sites to capture the effects of mining-induced water pollution on health

Introduction 00●0	Data and Context 0 0000	Empirical Strategy 0 00	Results 0 0000	Robustness 0 0	Conclusion 0 00
This pa	per				

 $\rightarrow\,$ What are the effects of industrial mining- induced water pollution on children's mortality in Africa ?

Introduction 00●0	Data and Context 0 0000	Empirical Strategy 0 00	Results 0 0000	Robustness O O	Conclusion 0 00
This pa	per				

 $\rightarrow\,$ What are the effects of industrial mining- induced water pollution on children's mortality in Africa ?

Data

- \rightarrow Demographic Health Survey (DHS), 26 countries 1986-2018
- \rightarrow SNL Mining and Metals + manual work : 2,016 mines crossing DHS

Introduction 00●0	Data and Context 0 0000	Empirical Strategy 0 00	Results 0 0000	Robustness O O	Conclusion 0 00
This pa	per				

 $\rightarrow\,$ What are the effects of industrial mining- induced water pollution on children's mortality in Africa ?

Data

- \rightarrow Demographic Health Survey (DHS), 26 countries 1986-2018
- \rightarrow SNL Mining and Metals + manual work : 2,016 mines crossing DHS

Method

- $\rightarrow\,$ Two-way fixed effects using topographic position to proxy exposure to a mine. Matching strategy reduces bias when using distance as proxy
- $\rightarrow\,$ Compare 12 and 24 months mortality rates of villages upstream vs. downstream, before vs. after the opening of a mine

Introduction 00●0	Data and Context 0 0000	Empirical Strategy 0 00	Results 0 0000	Robustness O O	Conclusion 0 00
This pa	per				

 $\rightarrow\,$ What are the effects of industrial mining- induced water pollution on children's mortality in Africa ?

Data

- \rightarrow Demographic Health Survey (DHS), 26 countries 1986-2018
- \rightarrow SNL Mining and Metals + manual work : 2,016 mines crossing DHS

Method

- \rightarrow Two-way fixed effects using topographic position to proxy exposure to a mine. Matching strategy reduces bias when using distance as proxy
- \rightarrow Compare 12 and 24 months mortality rates of villages upstream vs. downstream, before vs. after the opening of a mine

Results

- $\rightarrow\,$ Being downstream of a mine opening increases by 27% the 24 months mortality rate
- $\rightarrow\,$ Effects persistent up to 3 years after the mine opens, and start during the investment phase

Introduction	Data and Context	Empirical Strategy	Results	Robustness	Conclusion
000●	0000	0 00	0000	0	000

Introduction

Data and Context

Empirical Strategy

Results

Robustness

Introduction	Data and Context	Empirical Strategy	Results	Robustness	Conclusion
0000	• 0000	0 00	0 0000	0	000

Introduction

Data and Context

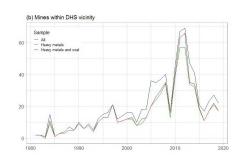
Empirical Strategy

Results

Robustness

Introduction Data and C	ontext Empirical Strategy	r Results	Robustness	Conclusion
0000 0 •000	0 00	0000	0	000

Data : SNL Mining and Metal


- Privately-owned and on license
- Industrial mines' location (GPS coordinates), start up and closure years, commodity type and production
- Intensively used in the literature [Aragon and Rud (2016), Berman, Couttenier et al. (2017), Kotsadam and Tolonen (2016), Tolonen (2018, 2019), Von der Goltz and Barnwal (2019), Mamo, Moradi et al. (2019)]

Introduction	Data and Context	Empirical Strategy	Results	Robustness	Conclusion
0000	○ ●000	000	0000	0	000

Data : SNL Mining and Metal


- Privately-owned and on license
- Industrial mines' location (GPS coordinates), start up and closure years, commodity type and production
- Intensively used in the literature [Aragon and Rud (2016), Berman, Couttenier et al. (2017), Kotsadam and Tolonen (2016), Tolonen (2018, 2019), Von der Goltz and Barnwal (2019), Mamo, Moradi et al. (2019)]
- ightarrow 3,815 industrial mines in Africa
- ightarrow 2,016 within 100km of a DHS Cluster
- → Handwork : 278 had information on start and closure years, we hand-checked 1,738 mines using online research, aerial and satellite images, information from company's website and activity report

Introduction 0000	Data and Context ○ ○●○○	Empirical Strategy 0 00	Results 0 0000	Robustness O O	Conclusion 0 00
Mining	in Africa				

- $\rightarrow\,$ Spatial variation of opened mines within Africa
- → Temporal variation Map Graph
- → Focus on heavy metals (results robust when including all metals) List of heavy metals

- \rightarrow Foreign investments in Africa increased in the 2000s with the increase of commodity prices
- $\rightarrow~$ Mine openings follow the same pattern as industrial metal prices

Introduction	Data and Context	Empirical Strategy	Results	Robustness	Conclusion
0000	0 00●0	000	00000	0	000

Demographic and Health Surveys (DHS)

- (Repeated) cross-sectional surveys, 1986-2018, 26 out of 54 African countries (with at least 2 waves). DHS Waves
- Outcomes of interest : 12 and 24 months mortality. Focus on children under 5 years old Desc. table

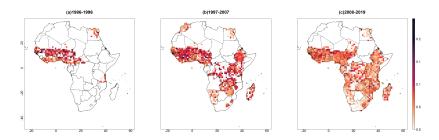
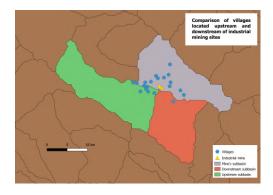


Figure – Spatial variation of 24-month mortality rates

Introduction	Data and
0000	0
	0000

and Context

Empirical Strategy 0 00


Results	Robustness	Conclusion
0	0	0
0000	0	00

HydroBASINS from HydroSHEDS

- Subdivides water basins into multiple tributary basins according to the concept of Pfafstetter
- Up- and downstream connectivity of each subbasin
- Finest level : average area of 100 km²

Comparative advantages

- ightarrow Take into account groundwater
- $\rightarrow\,$ DEM and topography to rivers is not obvious
- \rightarrow Deal with DHS random reshuffling

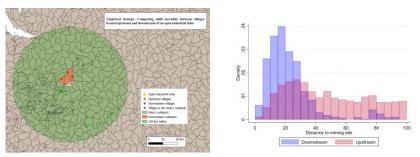
Introduction 0000	Data and Context 0 0000	Empirical Strategy ● ○○	Results 0 0000	Robustness 0 0	Conclusion 0 00

Introduction

Data and Context

Empirical Strategy

Results


Robustness

Introduction 0000	Data and Context 0 0000	Empirical Strategy ○ ●○	Results 0 0000	Robustness O O	Conclusion 0 00
Match	ing strategy				

- Challenges
 - Relying on distance to the closest mine introduces bias : endogeneous matching with unbalanced samples

Introduction	Data and Context	Empirical Strategy	Results	Robustness	Conclusion
0000	0 0000	○ ●○	0 0000	0	000
Match	ing strategy				

- Challenges
 - Relying on distance to the closest mine introduces bias : endogeneous matching with unbalanced samples
- Main contribution
 - Matching strategy based on the DHS cluster's topographic position relative to the mine
 - Conservative matching strategy (include only up and down)
 - Difference in the distribution of distance to mine : results robust to changes in buffers (up to 30km)

Introduction	Data and Context	Empirical Strategy	Results	Robustness	Conclusion
0000	0 0000	○ ○●	0000	0	000

$$\begin{aligned} \text{Death}_{i,v,c,m,SB} = &\alpha_0 + \alpha_1 \text{Opened}_{b,i,v} + \alpha_2 \text{Downstream}_{v,SB} \\ &+ \alpha_3 \text{Opened}_{b,i,v} \times \text{Downstream}_{v,SB} + \alpha_4 X_i \\ &+ \gamma_S B + \gamma_{SB-trend} + \gamma_{c,b} + \epsilon_v \end{aligned} \tag{1}$$

• $Death_{i,v,c,d} = \begin{cases} 1 \text{ if child } i \text{ died before 12 months and [interview date - birth date]} \ge 12 \text{ months} \\ 0 \text{ if child } i \text{ is alive after 12 months and [interview date - birth date]} \ge 12 \text{ months} \\ \text{NA if child } i's [interview date - birth date] < 12 months \end{cases}$

Introduction	Data and Context	Empirical Strategy	Results	Robustness	Conclusion
0000	0 0000	○ ○●	0000	0	000

$$\begin{aligned} \text{Death}_{i,v,c,m,SB} = &\alpha_0 + \alpha_1 \text{Opened}_{b,i,v} + \alpha_2 \text{Downstream}_{v,SB} \\ &+ \alpha_3 \text{Opened}_{b,i,v} \times \text{Downstream}_{v,SB} + \alpha_4 X_i \\ &+ \gamma_S B + \gamma_{SB-trend} + \gamma_{c,b} + \epsilon_v \end{aligned} \tag{1}$$

- $Death_{i,v,c,d} = \begin{cases} 1 \text{ if child } i \text{ died before 12 months and [interview date birth date]} \ge 12 \text{ months} \\ 0 \text{ if child } i \text{ is alive after 12 months and [interview date birth date]} \ge 12 \text{ months} \\ \text{NA if child } i' \text{s [interview date birth date]} < 12 \text{ months} \end{cases}$
- $Opened_{b,v} = \begin{cases} 1 \text{ if mine (in SB) opened before child } i \text{ 's birthyear} \\ 0 \text{ if the mine has opened after the birthyear} \end{cases}$

Introduction	Data and Context	Empirical Strategy	Results	Robustness	Conclusion
0000	0 0000	○ ○●	0000	0	000

$$\begin{aligned} \text{Death}_{i,v,c,m,SB} = &\alpha_0 + \alpha_1 \text{Opened}_{b,i,v} + \alpha_2 \text{Downstream}_{v,SB} \\ &+ \alpha_3 \text{Opened}_{b,i,v} \times \text{Downstream}_{v,SB} + \alpha_4 X_i \\ &+ \gamma_S B + \gamma_{SB-trend} + \gamma_{c,b} + \epsilon_v \end{aligned} \tag{1}$$

•
$$Death_{i,v,c,d} = \begin{cases} 1 \text{ if child } i \text{ died before 12 months and [interview date - birth date]} \ge 12 \text{ months} \\ 0 \text{ if child } i \text{ is alive after 12 months and [interview date - birth date]} \ge 12 \text{ months} \\ \text{NA if child } i's [interview date - birth date] < 12 months \end{cases}$$

• Opened_{b,v} =
$$\begin{cases} 1 \text{ if mine (in SB) opened before child } i \text{ 's birthyear} \\ 0 \text{ if the mine has opened after the birthyear} \end{cases}$$

• Downstream_{v,SB} =
$$\begin{cases} 1 \text{ DHS } v \text{ is located in the 3 nearest downstream SB} \\ 0 \text{ if it is upstream, within 100km} \end{cases}$$

Introduction	Data and Context	Empirical Strategy	Results	Robustness	Conclusion
0000	0	0	0	0	0
				-	

$$\begin{aligned} \text{Death}_{i,v,c,m,SB} = &\alpha_0 + \alpha_1 \text{Opened}_{b,i,v} + \alpha_2 \text{Downstream}_{v,SB} \\ &+ \alpha_3 \text{Opened}_{b,i,v} \times \text{Downstream}_{v,SB} + \alpha_4 X_i \\ &+ \gamma_S B + \gamma_{SB-trend} + \gamma_{c,b} + \epsilon_v \end{aligned} \tag{1}$$

•
$$Death_{i,v,c,d} = \begin{cases} 1 \text{ if child } i \text{ died before 12 months and [interview date - birth date]} \ge 12 \text{ months} \\ 0 \text{ if child } i \text{ is alive after 12 months and [interview date - birth date]} \ge 12 \text{ months} \\ \text{NA if child } i's [interview date - birth date] < 12 months \end{cases}$$

• Opened_{b,v} =
$$\begin{cases} 1 \text{ if mine (in SB) opened before child } i \text{ 's birthyear} \\ 0 \text{ if the mine has opened after the birthyear} \end{cases}$$

• Downstream_{v,SB} =
$$\begin{cases} 1 \text{ DHS } v \text{ is located in the 3 nearest downstream SB} \\ 0 \text{ if it is upstream, within 100km} \end{cases}$$

- X_i a vector of child and mother level controls (mother's age, age square, years
 of education, urban residency).
- γ_{SB} subbasin fixed-effects, $\gamma_{SB-trend}$ subbasin linear birthyear trends and $\gamma_{c,birthyear}$ country-birthyear fixed-effects.

In troduction	Data and Context	Empirical Strategy	Results	Robustness	Conclusion
0000	0 0000	0 00	0000	0	000

Introduction

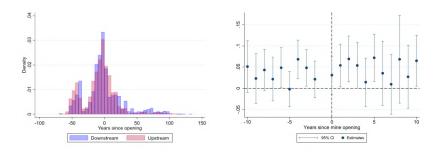
Data and Context

Empirical Strategy

Results

Robustness

Introduction	Data and Context	Empirical Strategy	Results	Robustness	Conclusion
0000	00000	000	0 ●000	0	000


Main results : indirect evidence of water pollution

		Death <12m	Death < 24m		
	All	Drop investment phase [t-1 ;t-3]	A II	Drop investment phase [t-1;t-3]	
	(1)	(2)	(3)	(4)	
Downstream×Open	0.000727	0.00967	0.0229**	0.0273**	
	[0.00756]	[0.00866]	[0.00985]	[0.0109]	
Downstream	- 0.0140**	-0.0201***	-0.0174***	-0.0197***	
	[0.00612]	[0.00668]	[0.00673]	[0.00736]	
Open	0.00707	0.00171	0.00213	- 0.00727	
	[0.00526]	[0.00647]	[0.00715]	[0.00905]	
Birth order number	0.00371***	0.00357***	0.00488***	0.00477***	
	[0.000745]	[0.000788]	[0.000918]	[0.000972]	
Mother's age	-0.0108***	-0.0108***	-0.0126***	-0.0125***	
	[0.00117]	[0.00125]	[0.00152]	[0.00163]	
Mother's age square	0.000151***	0.000151***	0.000167***	0.000164***	
	[0.0000185]	[0.0000196]	[0.0000237]	[0.0000252]	
Years edu.	-0.00134***	- 0.00128***	- 0.00174***	- 0.00183***	
	[0.000287]	[0.000307]	[0.000365]	[0.000390]	
Urban	-0.00628**	-0.00696**	-0.0121***	-0.0142***	
	[0.00285]	[0.00307]	[0.00356]	[0.00381]	
N	82571	75076	60814	55218	
R2	0.0264	0.0278	0.0365	0.0385	
Outcome Mean	0.0652	0.0666	0.0851	0.0873	
Outcome Mean - Downstream	0.0657	0.0662	0.0887	0.090	
Outcome Mean - Upstream	0.0650	0.0666	0.0844	0.0868	

 \rightarrow Being downstream of a mine opening increases by 2.3 p.p. the 24-month mortality rate (27% increase) Parallel trends Balance Table

Introduction	Data and Context	Empirical Strategy	Results	Robustness	Conclusion
0000	0000	000	0 0●00	0	000

Dynamic impact - event study

- $\rightarrow\,$ Evidence of detrimental effects on local environment during the investment phase
- $\rightarrow\,$ Increase of under 24-month mortality rate up to 3 years after a mine opens
- \rightarrow Work in progress : delay in the positive externalities or household adaptation ?

In troduction	Data and Context	Empirical Strategy	Results	Robustness	Conclusion
0000	00000	000	0 00●0	0	000

Heterogeneity analysis

- Water and health access
 - Results robust when controlling for access to piped water and visit to health care facilities Table
- Mine's characteristics
 - Results robust when controlling for country of ownership and mine type
 - \rightarrow Effects driven by foreign and open-pit mines (the most numerous) Table
 - Results robusts when controlling for different commodity types Table Graphs

Introduction	Data and Context	Empirical Strategy	Results	Robustness	Conclusion
0000	0 0000	0 00	0 0000	0	000

Heterogeneity analysis : focus on migration

- Households' place of residency and migration status
 - \rightarrow In-migration and urbanisation within downstream? Balancing tests
 - $\rightarrow~$ Stronger effects among rural households
 - \rightarrow Robust results when controlling for in-migration Table
 - \rightarrow Migrants' selection Table

Introduction	Data and Context	Empirical Strategy	Results	Robustness	Conclusion
0000	0 0000	000	0 000●	0	000

Heterogeneity analysis : focus on migration

- Households' place of residency and migration status
 - \rightarrow In-migration and urbanisation within downstream? Balancing tests
 - $\rightarrow~$ Stronger effects among rural households
 - \rightarrow Robust results when controlling for in-migration Table
 - \rightarrow Migrants' selection Table
- Further work : study out-migration
 - \rightarrow Households' composition, women and spouses' occupation, spouses' education, census or migration modules data

Introduction 0000	Data and Context 0 0000	Empirical Strategy 0 00	Results 0 0000	Robustness ● ○	Conclusion 0 00

Introduction

Data and Context

Empirical Strategy

Results

Robustness

Introduction	Data and Context	Empirical Strategy	Results	Robustness	Conclusion
0000	0 0000	0 00	00000	•	0 00

Robustness checks

- Balanced panel
 - \rightarrow Comparison of stable groups : switchers vs never treated (pure control) vs always treated (wrong control) Graph
 - ightarrow Robust results : effects mainly identified through switchers Table
- Heterogeneous treatment effects with TWFE (De Chaisemartin and d'Hautfoeuille, 2020) Graph

Introduction	Data and Context	Empirical Strategy	Results	Robustness	Conclusion
0000	0 0000	0 00	00000	•	000

Robustness checks

- Balanced panel
 - \rightarrow Comparison of stable groups : switchers vs never treated (pure control) vs always treated (wrong control) Graph
 - ightarrow Robust results : effects mainly identified through switchers Table
- Heterogeneous treatment effects with TWFE (De Chaisemartin and d'Hautfoeuille, 2020) Graph
- Geographical distance study
 - \rightarrow Results robust up to 30km : distance is not a driver of the results Table

Introduction	Data and Context	Empirical Strategy	Results	Robustness	Conclusion
0000	0 0000	000	0000	•	000

Robustness checks

- Balanced panel
 - \rightarrow Comparison of stable groups : switchers vs never treated (pure control) vs always treated (wrong control) Graph
 - ightarrow Robust results : effects mainly identified through switchers Table
- Heterogeneous treatment effects with TWFE (De Chaisemartin and d'Hautfoeuille, 2020) Graph
- Geographical distance study
 - \rightarrow Results robust up to 30km : distance is not a driver of the results Table
- Other tests

Introduction Data and Context Empirical Strategy Results Robustness Conclusio 0000 0 0 0 0 0 0 0000 00 000 000 000	0
--	---

Introduction

Data and Context

Empirical Strategy

Results

Robustness

l ntroduction 0000	Data and Context 0 0000	Empirical Strategy 0 00	Results 0 0000	Robustness O O	Conclusion ○ ●○
Conclusion					

Contributions

- \rightarrow Build the most complete database on industrial mine opening in Africa, increased external validity of result and wider heterogeneity analysis
- $\rightarrow\,$ Empirical evidence of the effects of mining-induced water pollution on child mortality
 - $\rightarrow\,$ Being downstream of a mine opening increases by 27% the 24-month mortality rate

l ntroduction 0000	Data and Context 0 0000	Empirical Strategy 0 00	Results 0 0000	Robustness O O	Conclusion ○ ●○
Conclus	sion				

Contributions

- $\rightarrow\,$ Build the most complete database on industrial mine opening in Africa, increased external validity of result and wider heterogeneity analysis
- $\rightarrow\,$ Empirical evidence of the effects of mining-induced water pollution on child mortality
 - $\rightarrow\,$ Being downstream of a mine opening increases by 27% the 24-month mortality rate

Next steps

- → Difference between surface vs groundwater pollution : triple DiD of subbasins with and without rivers, include geological structure [Taylor (2021)]
- $\rightarrow\,$ Effects on other health outcomes : fertility rates, anthropometric measures, stunting, anemia among young children...
- $\rightarrow\,$ Key role of mine opening : IV using commodity prices
- $\rightarrow\,$ De Chaisemartin and d'Hautfoeuille's (2022) estimator for heterogeneous treatment effects of TWFE with staggered adoption design

In troduction	Data and Context	Empirical Strategy	Results	Robustness	Conclusion
0000	0	0	0	0	0
	0000	00	0000	0	0.

Thank you very much for your attention!

Discussion

melanie.gittard@psemail.eu and irene.hu@psemail.eu

Figure – Expansion of the Sierra rutile plant, in Sierra Leone. Satellite images from 1985 and 2020

Source : Google timelapse

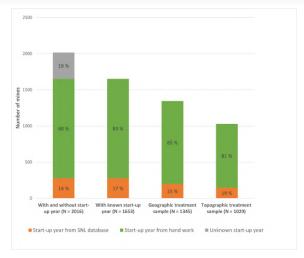


Figure - Description of handwork and industrial mines samples

Figure – Mines across start-up years

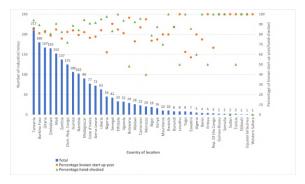


Figure – Mines across country of location

Country	Survey Years	#Clusters	#Children <5Υ
BF	1993, 1999, 2003, 2010	694	23,846
BJ	2001, 2012, 2017	62	1,911
BU	2010, 2016	317	8,280
CD	2007, 2013	82	5,092
CI	1994, 1998, 2012	196	4,838
CM	1991, 2004, 2011, 2018	90	2,513
ET	2000, 2005, 2010, 2016	100	2,956
GH	1993, 1998, 2003, 2008, 2014	1,217	12,074
GN	1999, 2005, 2012, 2018	360	11,775
KE	2003, 2008, 2014	233	4,130
LB	1986, 2007, 2013	190	7,537
LS	2004, 2009, 2014	336	2,810
MD	1997, 2008	131	3,301
ML	1996, 2001, 2006, 2012, 2018	570	19,147
MW	2000, 2004, 2010, 2015	207	6,651
NG	1990, 2003, 2008, 2013, 2018	105	3,993
NI	1992, 1998	40	1,105
NM	2000, 2006, 2013	138	2,175
RW	2005, 2008, 2010, 2014	7 13	14,615
SL	2008, 2013	377	13,717
SN	1993, 1997, 2005, 2010, 2012, 2014, 2015, 2016, 2017	363	10,111
ΤG	1988, 1998, 2013	104	2,187
ΤZ	1999, 2010, 2015	325	6,866
UG	2000, 2006, 2011, 2016	305	9,031
ZM	2007, 2013, 2018	364	10,966
ZW	1999, 2005, 2010, 2015	468	8,307

Countries and DHS surveys included in our paper

	Mean (1)	SD (2)	M ed (3)	M in (4)	Max (5)	N (6)
Living in the matched mine's subbasin						
All children	0.356	0.479	0	0	1	163,056
Children having reached 12months	0.356	0.479	0	0	1	1 28, 31 7
Children having reached 24 months	0.357	0.479	0	0	1	94,565
Mortality Rates						
Death <12m	0.064	0.245	0	0	1	1 28, 31 7
${\sf Death}\ {<}12m\ ({\sf outside}\ {\sf mine's}\ {\sf subbasin})$	0.065	0.247	0	0	1	82,609
Death <24 m	0.084	0.278	0	0	1	95,565
${\sf Death}\ {<}24{\sf m}\ ({\sf outside}\ {\sf mine's}\ {\sf subbasin})$	0.085	0.279	0	0	1	60,849
${\sf Death} < 1{\sf m}$	0.032	0.176	0	0	1	161,374
${\sf Death}$ < 1m (outside mine's subbasin)	0.032	0.176	0	0	1	103,920

Descriptive statistics of mortality rates

Back

Figure - Spatial variation of 12-month mortality rates per period

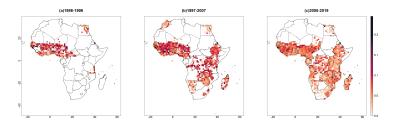


Figure - Spatial variation of 24-month mortality rates per period

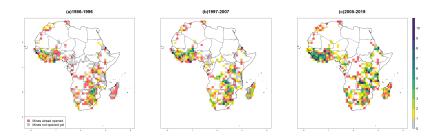
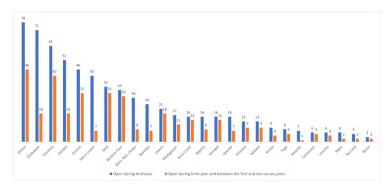



Figure - Spatial and temporal variation of mine opening

Figure – Number of open mines during birth year and between first and last wave

Back

Metals	Main chemical coumpounds (1)	density (gcm^{-3}) (2)	Nb. Mines (3)	Total Individual Sample (%) (4)
Heavy Metals				
Gold	Gold	19.3	581	41.88
Copper	Copper	8.96	89	5.03
Iron ore	Iron	7.87	54	8.72
U308	Uranium	8.39	36	1.60
Nickel	Nickel	8.9	25	5.06
Platinum	Platinum	21.45	21	0.43
Zinc	Zinc	7.14	19	2.46
Chromite	Iron	[4.5,5.09]	16	0.57
Ilmenite	Chromium titanium	4.6	14	3.67
Lanthanides	Lanthane(57) Lutecium(71)	[6.1, 9.8]	13	1.95
Manganese	Manganese	7.21	12	0.62
Tin	Tin	[5.7;7.26]	10	4.87
Cobalt	Cobalt	8.9	7	0.56
Tungsten	Tugsten	19.25	6	1.06
Tantalum	Tantalum	16.69	5	0.15
Vanadium	Vanadium	6.12	4	0.04
Niobium	Niobium	8.57	3	0.39
Heavy Mineral Sands	Zirconium Titanium Tungsten Thorum	[4.5,17.6]	3	0.16
Silver	Silver	10.49	1	0.00
Lead	Lead	11.29	1	0.06
Non-Heavy Metals				
Diamonds	Carbon	3.5	115	11.73
Coal	Carbon Mercury7 Arsenic?	1.35	55	2.19
Bauxite	Aluminium	2.79	23	1.94
Graphite	Carbon	2.26	21	0.82
Phosphate	Phosphate	1.83	14	2.78
I tabition	I ishi	0.52		0.80

34/53

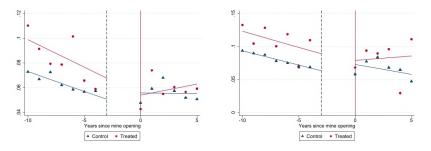


Figure – Linear Trends dropping investment phase, 12-month and 24-month mortality rates

Back to main results

In-migration and rural households

			eath < 24m	
	A II	All	Rural Households	Rural Households
	(1)	(2)	(3)	(4)
Downst ream × Open	0.0229**	0.0235*	0.0326***	0.0290*
	[0.00985]	[0.0133]	[0.0121]	[0.0163]
Downst ream	-0.0174***	-0.0170*	-0.0249***	-0.0262***
	[0.00673]	[0.00958]	[0.00720]	[0.0101]
Open	0.00213	-0.00880	-0.00171	-0.0102
	[0.00715]	[0.0113]	[0.00817]	[0.0129]
Birth order num ber	0.00488***	0.00327***	0.00629***	0.00447***
	[0.000918]	[0.00125]	[0.00108]	[0.00149]
Mother's age	-0.0126***	-0.0127***	-0.0155***	-0.0159***
	[0.00152]	[0.00203]	[0.00182]	[0.00244]
Mother's age square	0.000167***	0.000171***	0.000202***	0.000211***
	[0.0000237]	[0.0000319]	[0.0000279]	[0.0000376]
Years edu.	-0.00174***	-0.00235***	-0.00139***	-0.00207***
	[0.000365]	[0.000491]	[0.000529]	[0.000724]
Urban	-0.0121*** [0.00356]	-0.0147*** [0.00514]		
Migrant		0.00918***		0.00586
N	60814	36377	44999	26745
R2	0.0365	0.0467	0.0432	0.0539
Outcome Mean	0.0305	0.0925	0.0909	0.0997

Piped water as main drinking source and visited health facility in the last 12 months $% \left({{\left[{{{\rm{T}}_{\rm{T}}} \right]}_{\rm{T}}} \right)$

		Dea th	< 24m	
	(1)	(2)	(3)	(4)
Downstream × Open	0.0229**	0.0230**	0.0187*	0.0188*
Boundeream x open	[0.00985]	[0.00984]	[0.0102]	[0.0102]
Downst ream	-0.0174 ***	-0.0175 ***	-0.0150**	-0.0151**
	[0.00673]	[0.00671]	[0.00692]	[0.00691]
Open	0.00213	0.00196	0.00481	0.00456
	[0.00715]	[0.00716]	[0.00758]	[0.00759]
Birth order number	0.00488***	0.00485 ***	0.00537***	0.00534***
	[0.000918]	[0.000919]	[0.000967]	[0.000967]
Mother's age	-0.0126***	-0.0126***	-0.0122 ***	-0.0122***
0	[0.00152]	[0.00153]	[0.00160]	[0.00160]
Mother's age square	0.000167***	0.000166***	0.000160***	0.000159**
	[0.0000237]	[0.0000237]	[0.0000250]	[0.0000250]
Years ed u.	-0.00174***	-0.00169***	-0.00139***	-0.00132***
	[0.000365]	[0.000368]	[0.000387]	[0.000391]
Urban	-0.0121***	-0.0106***	-0.0100***	-0.00805**
	[0.00356]	[0.00375]	[0.00385]	[0.00406]
Piped Water		-0.00465		-0.00589
		[0.00357]		[0.00381]
Visited Health Facility			-0.00588**	-0.00579**
,			[0.00287]	[0.00287]
N	60814	60814	5 43 33	54333

Robustness : ownership and mining type

				ath < 24m		
	(1)	(2)	(3)	(4)	(5)	(6)
	Ownership control	Domestic owner	Foreign owner	Mining type control	Non open-pit mines	Open-pit mines
Downst ream×Open	0.0229**	0.00294	0.0259**	0.0228**	0.0235	0.0691**
	[0.00987]	[0.0220]	[0.0119]	[0.00984]	[0.0176]	[0.0287]
Downstream	-0.0173**	0.0185	-0.02 13 ***	-0.0170**	-0.0101	-0.0326
	[0.00673]	[0.0204]	[0.0072 2]	[0.00670]	[0.0154]	[0.0210]
Open	0.00251	0.0205	0.00299	0.00271	-0.00970	-0.0356*
	[0.00717]	[0.0240]	[0.00793]	[0.00713]	[0.0151]	[0.0200]
Birth order num ber	0.00487***	0.00624***	0.00454***	0.00486***	0.00606***	0.00604***
	[0.000918]	[0.00199]	[0.00103]	[0.000918]	[0.00143]	[0.00162]
Mother's age	-0.0126***	-0.00526	-0.0143***	-0.0126***	-0.0134***	-0.0139***
	[0.00152]	[0.00327]	[0.00173]	[0.00152]	[0.00237]	[0.00255]
Mother's age square	0.000166***	0.0000454	0.000195***	0.000167***	0.000177***	0.000181***
	[0.0000237]	[0.0000517]	[0.0000267]	[0.0000237]	[0.0000371]	[0.0000398]
Years edu.	-0.00174***	-0.00217***	-0.00155***	-0.00174***	-0.00152***	-0.00141**
	[0.000365]	[0.000696]	[0.000433]	[0.000365]	[0.000543]	[0.000602]
Urban	-0.0121***	-0.0229**	-0.0103 ***	-0.012 1***	-0.00861	-0.0103*
	[0.00356]	[0.00909]	[0.00391]	[0.00355]	[0.00529]	[0.00604]
Domestic ownership	-0.0364 [0.0341]					
Mine type				-0.0469** [0.0203]		
Open Pit					-0.0157 [0.0365]	
N	60814	11722	49078	60814	23160	16896
R2	0.0366	0.0481	0.0384	0.0366	0.0454	0.0459
Outcome Mean	0.0851	0.0749	0.0876	0.0851	0.0772	0.0755

		Before	e Mine (Opening		After Mine Opening					Within	Within	'Within
	Upstream Downstream Diff		Ups	Upstream Downstream.			Diff						
	N	Mean /(SD)	N	Mean /(SD)	(4-2) /(p.v)	N	Mean /(SD)	N	Mean /(SD)	(9-7) /(p.v)	(7-2) /(p.v)	(9-4) /(p.v)	(12-11 /(p.v)
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
Dth<12													
AII	44725	0.071	8102	0.073	0.003	24697	0.055	5 085	0.054	-0.001	-0.015	-0.019	-0.004
		(0.256)		(0.26)	(0.398)		(0.228)		(0.226)	(0.717)	(0)	(0)	(0.51
Mines	279		235			204		186					
Dth<24													
All	33688	0.092	6114	0.097	0.005	17465	0.069	3582	0.075	0.006	-0.023	-0.022	0.001
		(0.289)		(0.296)	(0.271)		(0.254)		(0.263)	(0.239)	(0)	(0)	(0.494
Mines	279		234			192		172					

Balance table of mortality rates

Robustness	1	ba	anced	panel	sample	
------------	---	----	-------	-------	--------	--

	Deat	h <12 m	Dea t	n < 24m
	All	Balanced Panel	All	Balanced Panel
	(1)	(2)	(3)	(4)
Downstream × Open	0.000727	0.0132	0.0229**	0.0305 **
	[0.00756]	[0.0123]	[0.00985]	[0.015 1]
Downstream	-0.0140**	-0.0170**	-0.0174***	-0.0211**
	[0.00612]	[0.00734]	[0.00673]	[0.00829]
Open	0.00707	0.0136	0.00213	0.0191
	[0.00526]	[0.0222]	[0.00715]	[0.032 1]
Birth order number	0.00371***	0.00230	0.00488***	0.00236
	[0.000745]	[0.00157]	[0.000918]	[0.00196]
Mother's age	-0.0108***	-0.0127***	-0.0126***	-0.0150***
	[0.00117]	[0.00276]	[0.00152]	[0.00351]
Mother's age square	0.000151***	0.000187***	0.000167***	0.000209***
	[0.0000185]	[0.00276]	[0.0000237]	[0.0000544]
Years edu.	-0.00134***	-0.00167**	-0.00174***	-0.00188**
	[0.000287]	[0.000729]	[0.000365]	[0.000896]
Urban	-0.00628**	0.00538	-0.0121***	0.00141
	[0.00285]	[0.00557]	[0.00356]	[0.00761]
Constant	0.237***	0.264 ***	0.296***	0.336***
	[0.0180]	[0.0425]	[0.0238]	[0.0550]
N	82571	17979	60814	13839
R2	0.0264	0.0380	0.0365	0.0482
Outcome Mean	0.0652	0.0661	0.0851	0.0897

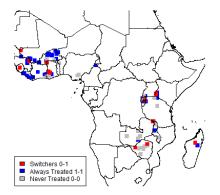
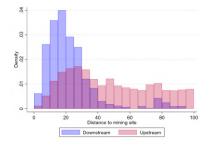
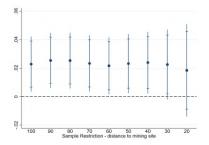


Figure – Balanced panel - group identification

Balancing tests

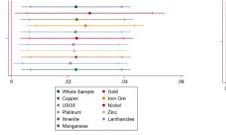

		Befor	e Mine (Opening			After	Mine C	pening		Within Up.	Within Dwn.	Within
	Ups	tream	Dow	nst re a m	Diff	Ups	tream	Dow	nst rea m .	Diff		1	
	N	Mean /(SD)	N	Mean /(SD)	(4-2) /(p.v)	N	Mean /(SD)	N	Mean /(SD)	(9-7) /(p.v)	(7-2) /(p.v)	(9-4) /(p.v)	(12-11) /(p.v)
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
Hou		ider 24 Ch haracteris		a mple		1							
% U	rban Hou	ise ho ld											
All	33688	0.272	6114	0.162	-0.11	17465	0.269	3582	0.269	0	-0.003	0.106	0.11
		(0.445)		(0.369)	(0)		(0.443)		(0.443)	(0.958)	(0.438)	(0)	(0)
Mines	279		234			192		172			92	49	9
м	lother Ch	na ra te ristic	s										
	Age												
All	33688	30.185	6114	29.924	-0.26	17465	30.233	3582	29.929	-0.304	0.048	0.005	-0.044
		(6.999)		(6.963)	(0.007)		(6.843)		(7.033)	(0.018)	(0.451)	(0.974)	(0.842)
Year	rs of Edu	cation											
All	33688	2.347	6114	3.063	0.716	17465	3.795	3582	4.697	0.902	1.449	1.635	0.186
		(3.528)		(3.794)	(0)		(4.17)		(4.07)	(0)	(0)	(0)	(0.737)
	% Migra	nt											
All	19223	0.602	4148	0.57	-0.032	10533	0.61	2494	0.591	-0.019	0.008	0.021	0.013
		(0.489)		(0.495)	(0)		(0.488)		(0.492)	(80.0)	(0.196)	(0.098)	(0.655)
Mines	2 48		186			150		133			61	30	6

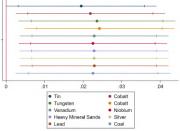
Robusness : dropping fixed-effects


	Death < 24m					
	(1)	(2)	(3)	(4)		
Downstream × Open	0.0229**	0.0227**	0.0201**	0.0195**		
	[0.00985]	[0.00983]	[0.00958]	[0.00953]		
Downstream Open	- 0. 01 74*** [0.00673] 0.0021 3 [0.0071 5]	-0.0174*** [0.00671] 0.00219 [0.00716]	-0.0182*** [0.00669] 0.00345 [0.00715]	-0.0178*** [0.00670] 0.00262 [0.00708]		
Birth order number	0.00488***	0.00482***	0.00480***	0.00479***		
	[0.000918]	[0.000917]	[0.000916]	[0.000916]		
Mother's age	-0.0126***	-0.0125***	-0.0125***	-0.0125***		
	[0.00152]	[0.00152]	[0.00152]	[0.00152]		
Mother's age square	0.000167***	0.000166***	0.000166***	0.000165***		
	[0.0000237]	[0.0000237]	[0.0000237]	[0.0000237]		
Years edu.	-0.00174***	-0.00176***	-0.00176***	-0.00177***		
	[0.000365]	[0.000364]	[0.000365]	[0.000364]		
Urban	- 0.0121*** [0.00356]	-0.0147*** [0.00514]				
Constant	-0.0121***	-0.0122***	-0.0120***	-0.0120***		
	[0.00356]	[0.00356]	[0.00356]	[0.00356]		
Country-Bthyear FE SB FE SB Bthyear trend Commodity FE Birthmonth FE	Yes Yes Yes Yes Yes	Yes Yes Yes No	Yes Yes No No	Yes Yes No No No		
N	60814	60814	60814	60814		
R 2	0.0365	0.0362	0.0361	0.0355		
M ean	0.0851	0.0851	0.0851	0.0851		

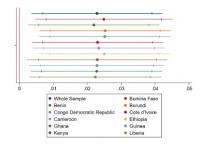
Robustness : sensitivity to handwork

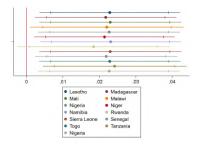
	Death < 24m				
	(1)	(2)	(3)	(4)	
Downstream × Open	0.0229**	0.0228**	0.0252	0.0249**	
	[0.00985]	[0.00984]	[0.0309]	[0.0106]	
Downstream	- 0. 01 74***	- 0.0176***	-0.0175	-0.0193***	
	[0.00673]	[0.00673]	[0.0236]	[0.00703]	
Open	0.00213	0.00212	-0.0400	0.00148	
	[0.00715]	[0.00715]	[0.0329]	[0.00763]	
Birth order number	0.00488***	0.00488***	0.00402*	0.00500***	
	[0.000918]	[0.000918]	[0.00233]	[0.00100]	
Mother's age	-0.0126***	-0.0126***	-0.0154***	-0.0122***	
	[0.00152]	[0.00152]	[0.00421]	[0.00164]	
Mother's age square	0.000167***	0.000167***	0.000223***	0.000158***	
	[0.0000237]	[0.0000237]	[0.0000682]	[0.0000253]	
Years edu.	-0.00174***	-0.00174***	-0.00199***	-0.00161***	
	[0.000365]	[0.000365]	[0.000718]	[0.000424]	
Urban	- 0.0121***	-0.0121***	-0.0126	-0.0120***	
	[0.00356]	[0.00356]	[0.0108]	[0.00381]	
Hand Checked		0.0463 [0.0330]			
Constant	0.296***	0.257***	0.340***	0.292***	
	[0.0238]	[0.0372]	[0.0651]	[0.0255]	
N	60814	60814	8695	52112	
r2	0.0365	0.0366	0.0571	0.0380	
Outcome Mean	0.0851	0.0851	0.0781	0.0863	


Robustness : across distance brackets

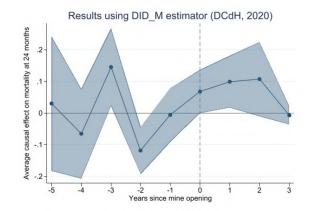


	Death < 24 m			
	All Mines (1)	Gold Mines (3)		
Downstream × Open	0.0179* [0.00947]	0.0208** [0.0966]	0.00789	
	[0.00511]	[0.00000]	[0.0100]	
Downstream	-0.0120*	-0.0181***	-0.0171*	
	[0.00673]	[0.00672]	[0.00875]	
Open	0.00186	0.00274	0.00514	
	[0.00600]	[0.00706]	[0.0103]	
Birth order number	0.00522 ***	0.00470***	0.00588***	
	[0.000819]	[0.000903]	[0.00140]	
Mother's age	-0.0123***	-0.0124***	-0.0155***	
-	[0.00136]	[0.00150]	[0.00233]	
Mother's age square	0.000163***	0.000164***	0.000207***	
	[0.00002 12]	[0.0000234]	[0.0000362]	
Years edu.	-0.00173***	-0.00170***	-0.00148**	
	[0.000325]	[0.000359]	[0.000648]	
Urban	-0.0121***	-0.0123***	-0.0139**	
	[0.00312]	[0.0035 1]	[0.00558]	
N	75512	62277	29835	
r 2	0.0355	0.0371	0.0414	
Outcome Mean	0.0832	0.0843	0.0967	


Robustness : across commodity types


Dropping commodity type one by one

Dropping country one by one



	Migrant	Death < 24m	
		Non-migrant sample	Migrant sample
	(1)	(2)	(3)
Downstream × Open	0.0325	0.0284	0.0253
	[0.0342]	[0.0228]	[0.0174]
Downst ream	-0.0293	-0.0192	-0.0182
	[0.0269]	[0.0160]	[0.0123]
Open	-0.0161	-0.00201	-0.0108
	[0.02 16]	[0.0180]	[0.0142]
Birth order number	0.000695	0.00329*	0.00258
	[0.00203]	[0.00197]	[0.00163]
Mother's age	0.0148***	-0.00962***	-0.0146***
-	[0.00319]	[0.00306]	[0.00281]
Mother's age square	-0.000247***	0.000132***	0.000195***
	[0.0000498]	[0.0000479]	[0.0000440]
Years edu.	0.00227**	-0.0015 3**	-0.00295***
	[0.00105]	[0.000756]	[0.000649]
Urba n	0.0274**	-0.0258***	-0.0104*
	[0.0120]	[0.00820]	[0.00628]
N	36377	145 18	21807
R2	0.166	0.0743	0.0599
Outcome Mean	0.600	0.0870	0.0962

Heterogeneity : focus on migration

De Chaisemartin and d'Haultefoeuille (2020) did _multiplegt Stata command

Replication exercice : geographical distance treatment

$$\begin{aligned} \text{Death}_{i,v,c,m,SB} = &\alpha_{0} + \alpha_{1} \text{Opened}_{birthyear,i,v} + \alpha_{2} \text{MineDeposit}_{[0;10km],v} \\ &+ \alpha_{3} \text{Opened}_{birthyear,i,v} \times \text{MineDeposit}_{[0;10km],v} + \alpha_{4} X_{i} \end{aligned} \tag{2}$$
$$&\gamma_{d} + \gamma_{d-bthrend} + \gamma_{c,birthyear} + \epsilon_{v} \end{aligned}$$

 $\begin{array}{l} Opened_{birthyear,\nu} = \\ \begin{cases} 1 \mbox{ if mine has opened before the birthyear of child } i, \mbox{ living within 100 km} \\ 0 \mbox{ if the mine has opened after the birthyear, \mbox{ living within 100 km}. \end{cases}$

```
 \begin{aligned} & \textit{MineDeposit}_{[0;10km],v} = \\ & \begin{cases} 1 \text{ if child } i \text{ is living DHS cluster } v \text{ within } [0;10km] \text{ from the closest mine} \\ & 0 \text{ if child } i \text{ is living within } [10;100km] \text{ from the closest mine} \end{aligned}
```

 X_i a vector of child/mother level controls (mother's age and age square, years of education, urban status)/ γ_d is a district fixed effect, $\gamma_{d-bthtrend}$ a district birthyear linear trend and $\gamma_{c,birthyear}$ a country-birthyear fixed effect.

Dependent variable	Infant mortality first 12 months					
Sample :	Children (1)	Children drop spillover (2)	Boys (3)	Girls (4)		
		()	()			
Industrial × mine deposit (at birth)	-0.0472**	-0.0474*	-0.0289	-0.0781***		
	[0.0230]	0.0260	[0.0320]	[0.0301]		
Mine deposit [0;10km]	0.0392**	0.0546***	0.0517**	0.0561**		
	[0.0169]	0.0195	[0.0229]	0.0231		
Mother's age	0.0145***	-0.0154 ***	-0.0155***	-0.0152***		
	[0.00190]	[0.00210]	0.00274	[0.00297]		
Mothers's age × Mother's age	0.000222***	0.000236***	0.000223***	0.000245**		
	[0.0000302]	[0.000335]	[0.0000435]	0.0000475		
Years edu.	-0.00214***	0.00230***	-0.00272***	-0.00184**		
	[0.000489]	[0.000547]	0.000827	[0.000760]		
Urban "h	-0.0125***	-0.0120**	0.00710	-0.0183***		
	[0.00428]	[0.00480]	[0.00687]	[0.00659]		
Birth-month FE	Yes	Yes	Yes	Yes		
Country birth year FE	Yes	Yes	Yes	Yes		
District FE	Yes	Yes	Yes	Yes		
District BirthYear trend	Yes	Yes	Yes	Yes		
Drop10-30 km away	No	Yes	Yes	Yes		
Drop investment phase	No	Yes	Yes	Yes		
Mean of outcome	0.102	0.104	0.110	0.099		
Mean(treatment, pre-treatment)	0.154	0.163	0.173	0.153		
Observations	41902	34 228	17534	16694		

Exact replication of Tolonen (2018)

Extended sample with Tolonen's (2018) estimation

	Infant mortality first 12 months							
	All		Drop spillover		Boys		Girls	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Indus. $ imes$ deposit	-0.00259 [0.00329]	-0.00823** [0.00418]	-0.00189 [0.00407]	- 0.00575 [0.00537]	0.00250 [0.00570]	-0.00302 [0.00764]	-0.00513 [0.00522]	- 0.00807 [0.00674]
Deposit	0.00130 [0.00252]	0.00374 [0.00317]	0.00103 [0.00392]	-0.000128 [0.00500]	0.00632 [0.00546]	0.0113 [0.00708]	-0.00366 [0.00513]	-0.0109* [0.00628]
Birth order	0.00389*** [0.000345]	0.00315*** [0.000428]	0.00360*** [0.000423]	0.00320*** [0.000518]	0.00349*** [0.000606]	0.00304*** [0.000742]	0.00382*** [0.000549]	0.00356*** [0.000671]
Mother's age	-0.0105*** [0.000541]	-0.0107*** [0.000668]	-0.0102*** [0.000669]	-0.0110*** [0.000824]	-0.0116*** [0.000953]	-0.0128*** [0.00119]	-0.00884*** [0.000903]	-0.00924*** [0.00111]
agesquare	0.000147*** [0.00000853]	0.000151*** [0.0000106]	0.000142*** [0.0000106]	0.000156*** [0.0000131]	0.000163*** [0.0000150]	0.000183*** [0.0000187]	0.000121*** [0.0000142]	0.000127*** [0.0000175]
Years edu.	-0.000877*** [0.000135]	- 0.00103*** [0.000167]	-0.000874*** [0.000164]	-0.00101*** [0.000200]	- 0.000881*** [0.000238]	- 0.00103*** [0.000290]	-0.000873*** [0.000216]	- 0.000968*** [0.000265]
Urban	-0.00610*** [0.00135]	- 0.00725*** [0.00172]	-0.00708*** [0.00169]	-0.00906*** [0.00214]	-0.00825*** [0.00235]	-0.0111*** [0.00297]	-0.00563** [0.00227]	-0.00622** [0.00289]
migrant		0.00543*** [0.00120]		0.00509*** [0.00145]		0.00255 [0.00208]		0.00754*** [0.00196]
Birth-month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Ctry-bthyr FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
District FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Dist-bthyr trend	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Drop 10-30 km Drop t-2	No No	No No	Yes Yes	Yes Yes	No No	No No	No No	N o N o
N	359219	243645	236573	165202	119860	83570	116696	81601