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CHALLENGES OF FORECASTING 
 

Yogi Berra: “It’s tough to make predictions, 

especially about the future.”  
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But how do economic agents form expectations? 

  



 

 

THE “STANDARD” (NOISY INFORMATION) MODEL 

Fundamental (State): 

𝑥𝑡 = 𝜌𝑥𝑡−1 + 𝜔𝑡 

Signal (Measurement): 

𝑦𝑡
𝑖 = 𝑥𝑡 + 𝜈𝑡

𝑖 

 

  



 

 

THE “STANDARD” (NOISY INFORMATION) MODEL 

Fundamental (State): 

𝑥𝑡 = 𝜌𝑥𝑡−1 + 𝜔𝑡 

Signal (Measurement): 

𝑦𝑡
𝑖 = 𝑥𝑡 + 𝜈𝑡

𝑖 

Kalman filter: 

𝐸(𝑥𝑡|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑡) ≡ 𝑥𝑡|𝑡
𝑖 = 𝑥𝑡|𝑡−1

𝑖 + 𝐺(𝑦𝑡
𝑖 − 𝑥𝑡|𝑡−1

𝑖 ) 

 

  



 

 

THE “STANDARD” (NOISY INFORMATION) MODEL 

Fundamental (State): 

𝑥𝑡 = 𝜌𝑥𝑡−1 + 𝜔𝑡 

Signal (Measurement): 

𝑦𝑡
𝑖 = 𝑥𝑡 + 𝜈𝑡

𝑖 

Kalman filter: 

𝐸(𝑥𝑡|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑡) ≡ 𝑥𝑡|𝑡
𝑖 = 𝑥𝑡|𝑡−1

𝑖 + 𝐺(𝑦𝑡
𝑖 − 𝑥𝑡|𝑡−1

𝑖 ) 

Prediction:  

𝑥𝑡+ℎ|𝑡
𝑖 = 𝜌𝑥𝑡+ℎ−1|𝑡

𝑖 = 𝜌ℎ𝑥𝑡|𝑡
𝑖  

 

  



 

 

THE “STANDARD” (NOISY INFORMATION) MODEL 

Fundamental (State): 

𝑥𝑡 = 𝜌𝑥𝑡−1 + 𝜔𝑡 

Signal (Measurement): 

𝑦𝑡
𝑖 = 𝑥𝑡 + 𝜈𝑡

𝑖 

Kalman filter: 

𝐸(𝑥𝑡|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑡) ≡ 𝑥𝑡|𝑡
𝑖 = 𝑥𝑡|𝑡−1

𝑖 + 𝐺(𝑦𝑡
𝑖 − 𝑥𝑡|𝑡−1

𝑖 ) 

Prediction:  

𝑥𝑡+ℎ|𝑡
𝑖 = 𝜌𝑥𝑡+ℎ−1|𝑡

𝑖 = 𝜌ℎ𝑥𝑡|𝑡
𝑖  

Practice:  

𝑥𝑡+ℎ|𝑡
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Add factor is subjective adjustment. 

“Model” 



 

 

INFLATION FORECASTS 

Prediction in the standard noisy-information model:  

𝑥𝑡+ℎ|𝑡
𝑖 = 𝜌𝑥𝑡+ℎ−1|𝑡

𝑖 = 𝜌ℎ𝑥𝑡|𝑡
𝑖  

 

When estimating a regression of the forecast 𝑥𝑡+ℎ|𝑡
𝑖  on the forecast  𝑥𝑡+ℎ−1|𝑡

𝑖 : 

I. The fit of the regression should be perfect (𝑅2 = 1) for any ℎ ≥ 1.  

II. The regression coefficient recovers 𝜌, the persistence parameter, for any ℎ ≥ 1.  

  



 

 

SPF INFLATION FORECASTS 
Regression: 𝑥𝑡+ℎ|𝑡

𝑖 = 𝜌𝑥𝑡+ℎ−1|𝑡
𝑖 + 𝑒𝑟𝑟𝑜𝑟 
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ROBUSTNESS 1: AR(1) CAPTURES WELL THE "MODEL" 
Regressions: 𝑥𝑡+ℎ|𝑡

𝑖 = ∑ 𝝆′
𝑝
𝒛𝑡+ℎ−𝑝|𝑡

𝑖
𝑝 + 𝑒𝑟𝑟𝑜𝑟 

 



 

 

ROBUSTNESS 2: DISAGREEMENT ABOUT THE "MODEL" 
Regression: 𝑥𝑡+ℎ|𝑡

𝑖 = 𝜌𝑖𝑥𝑡+ℎ−1|𝑡
𝑖 + 𝑒𝑟𝑟𝑜𝑟 
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RECAP 
Regression:  

𝑥𝑡+ℎ|𝑡
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𝑖 + 𝑒𝑟𝑟𝑜𝑟𝑡,ℎ 

Practice (SPF):  

𝑥𝑡+ℎ|𝑡
𝑖 = 𝜌ℎ𝑥𝑡|𝑡

𝑖 + {𝑎𝑑𝑑 𝑓𝑎𝑐𝑡𝑜𝑟}𝑡,ℎ 
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RECAP 
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OECD: An add-factor is the adjustment made to equation-based projection over the forecasting period. 

For example, if an equation has under-predicted a variable in recent periods, then an "add factor" may 

be added to the equation if it is judged that the equation will under-predict over the forecast period as 

well. In short, add factors are equation-residuals applied over the forecast period.  

 

Larry Klein: “After the preparation of preliminary predictions from the … Wharton-EFU Model, there 

is a discussion of the assumptions and properties of the prediction with business and government 

specialists. A priori information on impending labor disputes, hedge purchasing, production 

bottlenecks, major economic decisions and similar phenomena are then suggested for further 

modification of parameter or residual values, and a revised forecast in prepared.” 

Add factor is information about the future (“forward information”, “news”, etc.) 



 

 

NOISY FORWARD INFORMATION  

Fundamental (State): 

𝑥𝑡 = 𝜌𝑥𝑡−1 + 𝜔𝑡 

Signal (Measurement): 

𝑦𝑡,𝑡+ℎ
𝑖 = 𝑥𝑡+ℎ + 𝜈𝑡,𝑡+ℎ

𝑖  
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Intuition: as ℎ ↑, signals become less precise ⇒for some 𝐻 we get 𝑥𝑡+𝐻|𝑡
𝑖 ≈ 𝜌𝑥𝑡+𝐻−1|𝑡

𝑖  
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HOW CAN ONE MAKE IT USEFUL? 
Goldstein (2021) provides a key insight!  

Model:  

𝒙𝑡|𝑡
𝑖 = 𝒙𝑡|𝑡−1

𝑖 + G(𝒚𝑡
𝒊 − 𝒙𝑡|𝑡−1

𝑖 ) = 𝒙𝑡|𝑡−1
𝑖 + G(𝒙𝑡 + 𝝂𝑡

𝒊 − 𝒙𝑡|𝑡−1
𝑖 ) = (𝐼 − 𝐺)𝒙𝑡|𝑡−1

𝑖 + 𝐺(𝒙𝑡 + 𝝂𝑡
𝒊) 

Take the average across individuals (hence we drop superscript 𝑖) and obtain: 

𝒙𝑡|𝑡 = (𝐼 − 𝐺)𝒙𝑡|𝑡−1 + 𝐺𝒙𝑡 

Subtract the bottom equation from top equation:  

𝒙𝑡|𝑡
𝑖 − 𝒙𝑡|𝑡 = (𝐼 − 𝐺)(𝒙𝑡|𝑡−1

𝑖 − 𝒙𝑡|𝑡−1) + 𝐺𝝂𝑡
𝑖  

We can estimate this equation-by-equation with OLS and recover 𝐼 − 𝐺 

𝑥𝑡+ℎ|𝑡
𝑖 − 𝑥𝑡+ℎ|𝑡 = 𝛽0(𝑥𝑡+𝐻|𝑡

𝑖 − 𝑥𝑡+𝐻|𝑡−1) + 𝛽1(𝑥𝑡+𝐻−1|𝑡
𝑖 − 𝑥𝑡+𝐻−1|𝑡−1) +  
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A TEST OF FORWARD INFORMATION 

Dependent variable: 𝑥𝑡+1|𝑡
𝑖 − 𝑥𝑡+1|𝑡 𝑥𝑡+2|𝑡

𝑖 − 𝑥𝑡+2|𝑡 𝑥𝑡+3|𝑡
𝑖 − 𝑥𝑡+4|𝑡 𝑥𝑡+4|𝑡

𝑖 − 𝑥𝑡+4|𝑡 

𝑥𝑡|𝑡−1
𝑖 − 𝑥𝑡|𝑡−1 -0.013 -0.013 -0.063*** -0.062*** 

  )0.025(  )0.021(  )0.012(  )0.020( 

𝑥𝑡+1|𝑡−1
𝑖 − 𝑥𝑡+1|𝑡−1 0.220*** 0.003 0.021 0.032 

  )0.052(  )0.040(  )0.044(  )0.034( 

𝑥𝑡+2|𝑡−1
𝑖 − 𝑥𝑡+2|𝑡−1 0.130*** 0.458*** -0.095** -0.056* 

  )0.050(  )0.057(  )0.046(  )0.032( 

𝑥𝑡+3|𝑡−1
𝑖 − 𝑥𝑡+3|𝑡−1 -0.126** -0.120** 0.486*** 0.103* 

  )0.061(  )0.057(  )0.069(  )0.059( 

𝑥𝑡+4|𝑡−1
𝑖 − 𝑥𝑡+4|𝑡−1 0.071 0.056 0.037 0.362*** 

  )0.066(  )0.043(  )0.038(  )0.044( 

Constant -0.008 -0.001 0.005 0.007 

  )0.009(  )0.006(  )0.008(  )0.008( 

Obs. 3,854 3,856 3,855 3,853 

𝑅2 0.053 0.146 0.213 0.178 

BIC 10,515 8,565 7,434 7,323 

BIC for standard noisy info 10,822 8,763 7,635 7,484 

 



 

 

ANOTHER TEST OF FORWARD INFORMATION 

Dependent variable:  

𝑥𝑡|𝑡
𝑖 − 𝑥𝑡|𝑡 (backcasts) 

Full 

Sample 
1980s 1990s 2000s 2010s 

𝑥𝑡|𝑡−1
𝑖 − 𝑥𝑡|𝑡−1 0.018 0.118 0.017** -0.000 0.002** 

  )0.014(  )0.082(  )0.008(  )0.000(  )0.001( 

𝑥𝑡+1|𝑡−1
𝑖 − 𝑥𝑡+1|𝑡−1 0.009 0.014 0.032** 0.000 0.002 

  )0.016(  )0.084(  )0.015(  )0.000(  )0.001( 

𝑥𝑡+2|𝑡−1
𝑖 − 𝑥𝑡+2|𝑡−1 -0.029 -0.202** -0.034*** 0.001 0.000 

  )0.018(  )0.085(  )0.013(  )0.001(  )0.003( 

𝑥𝑡+3|𝑡−1
𝑖 − 𝑥𝑡+3|𝑡−1 0.009 0.078 0.013 -0.000 0.002 

  )0.018(  )0.123(  )0.015(  )0.001(  )0.002( 

𝑥𝑡+4|𝑡−1
𝑖 − 𝑥𝑡+4|𝑡−1 0.001 -0.007 -0.009 -0.000 0.002** 

  )0.014(  )0.067(  )0.009(  )0.001(  )0.001( 

Constant 0.004 0.027 0.002 0.000 0.001 

  )0.005(  )0.037(  )0.002(  )0.000(  )0.002( 

Obs. 3,849 559 1,068 1,272 950 

𝑅2 0.004 0.023 0.023 0.003 0.002 

Intuition of the test: when all forecasters observe realized inflation in the same way, the deviation 

of their backcasts from the mean should not be persistent. 

  



 

 

HOW TO EXTRACT FORWARD INFORMATION? 

Recall 𝑥𝑡+ℎ|𝑡
𝑖 = 𝜌𝑥𝑡+ℎ−1|𝑡

𝑖 + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 

 

The residual measures forward information:    

 

𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍 ≡ 𝐹𝐼𝑡+ℎ|𝑡
𝑖 = (𝑥𝑡+ℎ|𝑡−1

𝑖 − 𝜌𝑥𝑡+ℎ−1|𝑡−1
𝑖 ) + (𝐆ℎ+1 − 𝜌𝐆ℎ)(𝒙𝑡 − 𝒙𝑡|𝑡−1

𝑖 ) +

(𝐆ℎ+1 − 𝜌𝐆ℎ)𝝂𝑡
𝑖   
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𝑖 ) +
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In practice: 𝐹𝐼𝑡+ℎ|𝑡
𝑖 = 𝑥𝑡+ℎ|𝑡

𝑖 − (𝑐̂𝑡 + 𝜌̂𝑡𝑥𝑡+ℎ−1|𝑡
𝑖 ) 

• Allow time-varying intercept (e.g. changes in trend inflation) 

• Estimate 𝜌 on a long forecast horizon ℎ (as ℎ ↑, forward info is less precise 

and the bias is smaller). Allow 𝜌 to vary over time as well.   
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FORWARD INFORMATION 

Variable: Mean 
Standard 

deviation 
Serial correlation 

Correlation 

between horizons 

𝐹𝐼𝑡|𝑡 -0.150 1.122 -0.275  

𝐹𝐼𝑡+1|𝑡 -0.078 0.454 0.204 -0.258 

𝐹𝐼𝑡+2|𝑡 -0.029 0.182 -0.073 0.324 

𝐹𝐼𝑡+3|𝑡 -0.017 0.134 -0.209 0.069 

𝐹𝐼𝑡+4|𝑡 -0.010 0.104 0.011 -0.094 

Actual inflation 2.704 1.992 0.350  

Properties:  

• The variation of forward information over time decreases in the horizon. This pattern is in line with 

diminishing information in forward signals for longer horizons. It is also driven by the decay in the 

change of weights on signals across horizons.  
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𝐹𝐼𝑡+4|𝑡 -0.010 0.104 0.011 -0.094 

Actual inflation 2.704 1.992 0.350  

Properties:  

• The variation of forward information over time decreases in the horizon. This pattern is in line with 

diminishing information in forward signals for longer horizons. It is also driven by the decay in the 

change of weights on signals across horizons.  

• Series for forward information should be serially correlated due to the overlap in forward signals over 

time. That is, previous forward signals which look beyond time 𝑡 are still useful for the forecast made 

at time 𝑡.  

• The series for forward information are correlated across horizons because the same signals are 

applied at each horizon. The correlation should eventually decay due to the diminishing variation.   
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FORWARD INFORMATION 

Cross-sectional variation in inflation forecasts and forward information 

 𝑣𝑎𝑟(𝑥𝑡+ℎ|𝑡
𝑖 ) 𝑣𝑎𝑟(𝜌𝑖𝑥𝑡+ℎ−1|𝑡

𝑖 ) 𝑣𝑎𝑟(𝐹𝐼𝑡+ℎ|𝑡
𝑖 ) √

𝑣𝑎𝑟(𝐹𝐼𝑡+ℎ|𝑡
𝑖 )

𝑣𝑎𝑟(𝑥𝑡+ℎ|𝑡
𝑖 )

 

ℎ = 0 0.889 0.398 1.143 1.134 

ℎ = 1 0.610 0.533 0.700 1.071 

ℎ = 2 0.498 0.336 0.324 0.807 

ℎ = 3 0.481 0.308 0.279 0.762 

ℎ = 4 0.459 0.304 0.178 0.623 

 

Forward information (forecasters have different news about the future) accounts for a large share of 

forecast disagreement.  

  



 

 

DOES FORWARD INFORMATION MATTER? 

Policy rule: 𝑟𝑡 = 𝑐 + 𝛾𝜋𝑡|𝑡
𝐺𝐵 + 𝜃1𝑔𝑎𝑝𝑡|𝑡

𝐺𝐵 + 𝜃2𝑔𝑟𝑡|𝑡
𝐺𝐵 + 𝜌1

𝑟𝑟𝑡−1 + 𝜌2
𝑟𝑟𝑡−2 + 𝜀𝑡 

  )1( (2 )  (3) 

𝜋𝑡|𝑡
𝐺𝐵 0.051**   

(0.021)   
(𝑐̂𝑡−1 + 𝜌̂𝑡−1𝜋𝑡−1)  0.031 0.124 

 (0.053) (0.083) 

𝐹𝐼𝑡|𝑡
𝐺𝐵  0.058*** 0.151*** 

 (0.018) (0.039) 

𝐹𝐼𝑡+1|𝑡
𝐺𝐵    0.176*** 

  (0.059) 

𝐹𝐼𝑡+2|𝑡
𝐺𝐵    0.069 

  (0.087) 

𝐹𝐼𝑡+3|𝑡
𝐺𝐵    0.134 

  (0.191) 

𝐹𝐼𝑡+4|𝑡
𝐺𝐵    0.205 

  (0.276) 

𝑔𝑎𝑝𝑡|𝑡
𝐺𝐵 0.025* 0.024 0.027 

(0.014) (0.015) (0.017) 

𝑔𝑟𝑡|𝑡
𝐺𝐵 0.149*** 0.149*** 0.143*** 

(0.039) (0.039) (0.038) 
𝑟𝑡−1 1.134*** 1.151*** 1.089*** 

(0.099) (0.111) (0.128) 
𝑟𝑡−2 -0.184** -0.196** -0.185* 

(0.089) (0.097) (0.103) 
𝑅2 0.982 0.982 0.984 
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COVID: FORWARD INFORMATION BOOMING 

Estimate 𝑥𝑡+ℎ|𝑡
𝑖 = 𝜌𝑥𝑡+ℎ−1|𝑡

𝑖 + 𝑒𝑟𝑟𝑜𝑟, before and after the outbreak 
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Estimate 𝑥𝑡+ℎ|𝑡
𝑖 = 𝜌𝑥𝑡+ℎ−1|𝑡

𝑖 + 𝑒𝑟𝑟𝑜𝑟, before and after the outbreak 

 

ℎ = 3 ℎ = 1 

  

 
The term structure of persistence is shifted downward in response to a big event. 
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CONCLUDING REMARKS 
• Some key questions: 

o How do people form expectations? 
o Why do we see disagreement in forecasts? 
o What is the role of news? 
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• We offer a simple framework to measure forward information (private signals 

about future “fundamentals”). 

• Forward information appears to be an important force. 

  



 

 

CONCLUDING REMARKS 
• Some key questions: 

o How do people form expectations? 
o Why do we see disagreement in forecasts? 
o What is the role of news? 

 

• We offer a simple framework to measure forward information (private signals 

about future “fundamentals”). 

• Forward information appears to be an important force. 

Key insights:  
o Forward information accounts for the practice of "add-factoring" (forecast 

adjustment). 
o Information varies not only across agents, but also across horizons 

(information about the past could be homogenous!). 


