
Identifying Monetary Policy Shocks

Through External Variable Constraints∗

Francesco Fusari†

August 19, 2022

Abstract

This paper proposes a new strategy for the identification of monetary policy shocks

in structural vector autoregressions (SVARs). It combines traditional sign restric-

tions with external variable constraints on high-frequency monetary surprises and

central bank’s macroeconomic projections. I use it to characterize the transmission

of US monetary policy over the period 1965-2007. First, I find that contractionary

monetary policy shocks induce a drop in output, sharpening the ambiguous implic-

ations of standard sign-restricted SVARs. Second, I show that the identified mone-

tary policy shocks and monetary policy equations are consistent, respectively, with

an historical reading of the times and Taylor-type rules. Finally, I propose an algo-

rithm for robust Bayesian inference in SVARs identified with external variable con-

straints, providing further evidence in support of this approach.
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1 Introduction and Related Literature

Starting with the seminal paper of Sims (1980), a large number of studies has employed

structural vector autoregressions (SVARs) to evaluate how monetary policy affects the

real economy. Coherently with theoretical predictions, early SVAR literature based on

short-run restrictions (e.g. Christiano et al., 1996) found that monetary tightenings have

contractionary effects on output. The soundness of contemporaneous zero restrictions,

however, has later been questioned by Uhlig (2005), who suggests to identify monetary

policy shocks through sign restrictions on the impulse responses (henceforth standard or

traditional sign restrictions). This methodology, that only achieves set-identification of

the structural model, has the advantage of hinging on rather uncontroversial identifying

assumptions. By using it, Uhlig (2005) finds that the effects of monetary contractions

on output are not necessarily negative and may even be expansionary.

This paper proposes a refinement to standard sign restrictions, whose ability to pro-

perly identify monetary policy shocks has been recently called into question. In particu-

lar, Wolf (2020) provides an insightful interpretation of the ambiguous findings obtained

by Uhlig (2005). Using Smets and Wouters’s (2007) model as data-generating process,

he argues that sign restrictions are likely to mistake positive demand and supply shocks

for ‘masquerading’ contractionary monetary policy shocks, that are thus misleadingly

found to raise output. Although theoretically grounded, sign restrictions may therefore

not be enough to accurately identify monetary policy shocks. To address this issue, I

combine them with external variable constraints. They reduce the number of admissible

solutions and are thus a useful tool to sharpen identification. Specifically, I only retain

the structural models which, in addition to satisfying standard sign restrictions, deliver

monetary policy shocks that exhibit a certain relationship with Greenbook forecasts and

high-frequency monetary surprises. The latter measure the changes in the three-month-

ahead federal funds rate futures over a 30-minute window around each Federal Open
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Market Committee (FOMC) announcement. They capture therefore the unpredictable

component of monetary policy and plausible measures of monetary policy shocks should

thus display a substantial positive correlation with them. Using the terminology of Wolf

(2020), shocks with this feature are likely to actually be monetary policy shocks rather

than mere demand or supply shocks ‘masquerading’ as such. The Greenbook forecasts

represent instead a proxy of the information set of the Federal Reserve (Fed) about the

current and future state of the economy. Hence, only candidate monetary policy shocks

that are uncorrelated with them should be retained as solutions to the identification

problem. If not, the effects of changes in monetary policy might be confused with those

induced by the release of central bank private information and with the realization of

the expected conditions to which the Fed is reacting. Once traditional sign restrictions

are combined with external variable constraints, contractionary monetary policy shocks

are incontrovertibly found to decrease output. This result sheds light on the ambiguous

findings achieved by Uhlig (2005) and contributes to restore the conventional wisdom

about the transmission of US monetary policy in set-identified SVARs.

This paper is closely connected to two recent contributions in the literature on set-

identification of monetary policy shocks. Antoĺın-Dı́az and Rubio-Ramı́rez (2018) com-

bine traditional sign restrictions with narrative sign restrictions around key historical

episodes, while Arias et al. (2019), motivated by Taylor-type rules, constrain the sign of

the coefficients of the monetary policy equation. Importantly, I find that the structural

models recovered through my identification strategy meet their identifying assumptions

and thus exhibit two crucial features. First, monetary policy shocks are consistent with

an historical reading of the times and, second, structural monetary policy equations are

reconcilable with Taylor-type monetary policy rules. Conversely, although their results

are coherent with mine, the monetary policy shocks identified by these two alternative

approaches are found to be correlated with the Greenbook forecasts and to display a
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weak correlation with monetary surprises. Moreover, Antoĺın-Dı́az and Rubio-Ramı́rez

(2018) and Arias et al. (2019) impose restrictions by assuming a uniform Haar prior on

the space of orthonormal matrices. As pointed out by Baumeister and Hamilton (2015),

such a prior is however informative about objects of interest as impulse response func-

tions. It is essential to stress that the findings obtained under my identification scheme,

unlike those achieved through theirs, are still valid when inference is performed using

a prior-robust algorithm based on numerical optimization methods.

The idea of using central bank’s forecasts or high-frequency series to better identify

monetary policy shocks is not new: monetary surprises are typically employed as an

external instrument in proxy-SVARs (e.g. Gertler and Karadi, 2015), while Greenbook

projections have been for instance included as endogenous variables in the VAR (Barth

and Ramey, 2002). Recently, Miranda-Agrippino and Ricco (2021) have combined them

to derive an informationally robust instrument for the identification of monetary policy

shocks. Since I rely on the same external information, this paper is inevitably related

to theirs. However, their approach is considerably different from the one I implement.

First of all, my identification strategy does not require any of the external variables to

be a valid instrument. Second, the use of external variable constraints does not achieve

point-identification but is only aimed at sharpening set-identification.

My work also relates to Braun and Brüggerman (2022), who combine restrictions on

the monetary policy equation with a constraint on the relationship between monetary

policy shocks and Romer and Romer’s (2004) narrative series. This paper differs from

their work in several respects. First, they do not directly control for the central bank’s

information set and impose the external variable constraint on a narrative series rather

than high-frequency surprises. Second they do not impose restrictions on the impulse

responses but on the monetary policy equation, as Arias et al. (2019). Third, they only

perform inference through the uniform, but informative, Haar prior.
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The structure of this paper is as follows. Section 2 sets the econometric framework.

Section 3 presents my identification strategy and the main findings. Section 4 relates my

approach to narrative sign restrictions and restrictions on the monetary policy equation.

Section 5 evaluates if my identification scheme effectively controls for the central bank

information channel. Section 6 introduces the prior-robust inference algorithm and the

resulting impulse response functions. Section 7 draws conclusions. Finally, Appendix A

and Appendix B provide robustness checks and further technical details, respectively.

2 The Econometric Framework

This section sets the econometric framework and introduces the use of sign restrictions

(Uhlig, 2005) for the identification of monetary policy shocks.

2.1 The Identification Problem

A reduced-form VAR(p) model takes the form:

yt =

p∑
j=1

AjL
jyt + et (1)

where L is the lag operator and p is the lag order; yt is a k × 1 vector of endogenous

variables; et is a k × 1 vector of reduced-form residuals and Aj , for j = 1, . . . , p, are

matrices of estimated coefficients. Let E(ete
′
t) = Σe be the variance-covariance matrix

of et and A = [A1, . . . , Ap]. If the reduced-form parameters ω = (Σe, A) are such that

the VAR(p) is stationary, the following infinite-order vector moving average (VMA)

representation does exist:

yt =
∞∑
h=0

Chet−h (2)

where Ch is the h-th coefficient matrix of (Ik −
∑p

j=1AjL
j)−1. For h = 0, . . . ,H, the

(i, l)-element of the k×k matrix Ch is the reduced-form impulse response at time t+h
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of the i-th variable in yt to a unit innovation to the l-th entry of et.

Importantly, Σe is non-diagonal and the elements of et are thus contemporaneously

correlated. The identification problem consists therefore in retrieving a linear transfor-

mation of et of the form

et = Pεt (3)

such that the variance-covariance matrix Σε of the resulting structural shocks εt is di-

agonal. Once the structural impact matrix P is known, the structural impulse response

functions (IRFs) at horizon h can then be computed as

Θh = ChP (4)

where the (i, l)-element of the k× k matrix Θh is the impulse response at time t+ h of

the i-th variable in yt to a unit structural shock to the l-th element of εt.

2.2 Set-Identification of SVAR Models

The crucial result behind set-identification is that there are infinitely many matrices P

such that Σε is diagonal. Let us consider the following linear transformation of et,

et = Sηt (5)

where S is the unique lower-triangular Cholesky factor of Σe. From (5), it follows that

the shocks ηt are by construction mutually uncorrelated and have unit variance:

Ση = S−1Σe(S
−1)′ = I (6)

The above, however, is not the only solution to the identification problem. In order

to see this, consider the following orthonormal transformation of ηt:

ε̂t = Q′ηt (7)

where Q′ is a square orthonormal matrix such that Q′Q = QQ′ = I. By exploiting the
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orthonormality of Q and equation (7), it follows that

et = SQQ′ηt = SQε̂t (8)

As proved in equation (9), such an orthonormal transformation succeeds in delivering

a diagonal structural variance-covariance matrix Σε.

Σε = Q−1S−1SS′(S−1)′(Q−1)′ = I (9)

Hence, there are infinitely many solutions to the identification problem, one for each or-

thonormal transformation of S. In this setting, an identification strategy may therefore

be thought of as a set of identifying restrictions that restrain the admissible support

for the orthonormal matrices Q.

2.3 Identification by Sign Restrictions

For a given orthonormal matrix Q and h = 0, . . . ,H, the k × k matrix of candidate

structural impulse responses Θ̂h can be expressed as:

Θ̂h = ChSQ (10)

where the (i, l)-element of Θ̂h is the structural impulse response at time t + h of the

i-th variable in y to a unit structural shock to the l-th element of ε̂t. Sign restrictions

solve the identification problem by constraining the sign of some elements of Θ̂h. This

approach was pioneered by Uhlig (2005), who implements it on the following vector yt

of US monthly variables over the period 1965:M1-2003:M12,

y′t =
[
gdpt pit fft cit trt nrt

]
(11)

where gdpt and pit are the log of real GDP and of the GDP deflator, constructed using

interpolation of the quarterly series as in Bernanke and Mihov (1998); fft is the federal

funds rate; cit is the log of the commodity price index from Global Financial Data; trt

6



and nrt are the log of total and nonborrowed reserves.

The identification of monetary policy shocks is achieved by retaining a large num-

ber of structural impact matrices SQ such that the resulting shock ε̂mt (SQ) satisfies

Restriction SR.

Restriction SR. A monetary policy shock εmt leads to a negative response of pit, cit

and nrt, and to a positive response of fft at horizons h = 0, . . . , 5.

3 Enhancing Sign Restrictions With External Variable Constraints

The soundness of the shocks recovered through Restriction SR has been recently called

into question. Specifically, Wolf (2020) shows that sign restrictions are likely to mistake

positive demand and supply shocks for ‘masquerading’ contractionary monetary policy

shocks. Structural models may thus be misidentified if only Restriction SR is imposed.

To address this issue, I enhance sign restrictions with external variable constraints

on high-frequency monetary surprises and Greenbook forecasts. The latter proxies the

Fed’s information set about the current and future state of the economy and monetary

policy shocks should thus be not correlated with them. If not, the effects of changes in

monetary policy might be confused with those induced by the disclosure of central bank

private information and by the realization of the expected conditions to which the Fed is

reacting. Monetary surprises measure instead the movements in the three-month-ahead

federal funds rate futures over a 30-minute window around each FOMC announcement

and capture therefore the unpredictable component of monetary policy. Hence, I retain

only the candidate shocks that show a strong positive correlation with them, since they

are likely to be ‘true’ monetary policy shocks and not just demand or supply shocks

‘masquerading’ as such.

My sample starts in January 1965 and ends in November 2007. This allows to extend

the time frame originally considered by Uhlig (2005) while excluding the unconventional

7



monetary policy undertaken after the global financial crisis.1 The reduced-form VAR

specification includes 12 lags of the variables in (11) and, consistently with Uhlig (2005),

does not include any deterministic term. The estimation is performed by using Bayesian

methods with Jeffrey (non-informative or flat) priors for Σe and A.

3.1 The Identification Strategy

In the first step, I impose Restriction SR by implementing the algorithm proposed by

Rubio-Ramı̀rez et al. (2010), described in Appendix B.

Restriction SR. A monetary policy shock εmt leads to a negative response of pit, cit

and nrt, and to a positive response of fft at horizons h = 0, . . . , 5.

I generate 100000 draws of SQ satisfying the above restriction and I store them into the

set P. For i = 1, . . . , 100000, let ε̂m,i
t (SQ) be the i-th monetary policy shock associated

with the i-th structural impact matrix SQ ∈ P. The set P is then sharpened by only

retaining the matrices SQ ∈ P such that ε̂m,i
t (SQ) meet Restriction ER.

Restriction ER. Over the period 1990:M1-2007:M11, a monetary policy shock εmt

satisfies the following external variable constraints:

corr(εmt , FF4t) > g (ER1)

corr(εmt , FIt) = 0 (ER2)

where FF4t is the change in the three-month-ahead federal funds rate futures in the 30-

minute window around the FOMC announcement and FIt is the information set of the

Fed, in month t, about current and future economic conditions. The latter is proxied by

the Greenbook forecasts for output growth and inflation rate for the previous quarter

and up to three quarters ahead and by the Greenbook nowcast for the quarterly unemp-

1The findings discussed in the next few sections are still valid over Uhlig’s (2005) original sample.
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ment rate.2 The parameter g in (ER1) determines how strong the correlation between

monetary surprises FF4t and ε̂
m
t (SQ) must be for the latter to be accepted as a solution.

Restriction ER ensures therefore the identification of monetary policy shocks that are

substantially correlated with monetary surprises and exogenous to the information set

of the policymaker.3 Specifically, I enforce constraint (ER2) by running the following

regression at the monthly frequency and requiring the coefficients ϕgdpp , ψπ
p and ϑu0 to

be jointly not significant at the 5% level:

ε̂m,i
t = αi

m +
3∑

p=−1

ϕipG
gdp
t,p +

3∑
p=−1

ψi
pG

π
t,p + ϑu0G

u
t,0 + uim,t (12)

where ε̂m,i
t , with i = 1, . . . , 100000, is the i-th candidate shock satisfying Restriction

SR; Gi
t,p, with p = −1, . . . , 3 and i = {gdp, π}, denotes the p-quarters ahead Greenbook

projection for output growth and inflation rate in month t and Gu
t,0 is the Greenbook

nowcast for the quarterly unemployment rate. I consider three alternative calibrations

for g in (ER1), fixed at the 75th, 90th or 99th percentile of the set of correlation coeffi-

cients between the 100000 shocks ε̂mt (SQ) formed from SQ ∈ P and FF4t. The struc-

tural impact matrices SQ that generate shocks ε̂mt (SQ) satisfying Restriction SR and

ER are then stored into the sets of solutions P∗
75th, P∗

90th and P∗
99th. It is worth noting

that the frequency of the dependent variable in (12) is originally different from the one

of the regressors: shocks ε̂m,i
t are monthly series while Greenbook forecasts are available

eight times a year. The latter are in fact prepared by the Federal Reserve Board staff

prior to each FOMC meeting, typically in the first and third month of each quarter.

2In this I follow Romer and Romer (2004). The inclusion of backcast, nowcast and all the forecasts
of the unemployment rate would not bring any additional information, while creating collinearity issues
with the output growth series in regression (12).

3Restriction ER can only be imposed over the period 1990:M1-2007:M11, since the FF4t series is
available from January 1990. This limitation is common to the entire literature on high-frequency
identification of monetary policy shocks, as Gertler and Karadi (2015) and Miranda-Agrippino and
Ricco (2021). The latter, for instance, estimate the reduced-form over the period 1979:M1-2014:M12
but only run the 2SLS regression that delivers the structural parameters from January 1990 onward.
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As in Barth and Ramey (2002), I convert Greenbook series to monthly frequency by

using the initial forecasts of the quarter to proxy the Fed’s information set in the first

two months, while the projections produced for the second meeting are used to update

the series in the third month. This amounts to saying that the information set of the

Fed does not change in months without FOMC meetings and probably assumes slightly

less information than the Fed actually has.4

Finally, note that identification by external variable constraints significantly differs

from that achieved in proxy-SVARs. The latter point-identify the structural model by

assuming exogeneity and relevance of the external instrument. Conversely, the method

I propose only delivers set-identification and, most importantly, does not assume any of

the external variables to be a valid instrument. This is an advantage since it is hard to

build convincingly exogenous instruments for monetary policy shocks. Several popular

instruments in the empirical literature on monetary policy have been in fact found to be

correlated with the Fed’s information set (as Gertler and Karadi’s monetary surprises)

or predictable by past information (as Romer and Romer’s narrative series).

3.2 Impulse Response Functions

This subsection compares the IRFs derived by imposing standard sign restrictions with

those obtained using the sets of solutions recovered through my identification strategy.

In Appendix A, I show instead the IRFs obtained using only Restriction ER and in the

case in which constraints (ER1) and (ER2) are alternatively released.

Figure 1 displays the IRFs under Restriction SR and those formed from SQ ∈ P∗
75th.

This set contains 5171 structural impact matrices SQ (out of the 100000 matrices stored

in P) delivering monetary policy shocks uncorrelated with the Greenbook and that show

4In Appendix A, I drop this assumption by imposing (ER2) at the FOMC meeting frequency. This
alternative approach delivers very similar results and has the advantage of not requiring any frequency
conversion. However, it largely reduces the number of observations used to estimate regression (12).
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a correlation with monetary surprises higher than 0.09 (the 75th percentile of the set

of correlation coefficients between FF4t and the 100000 shocks formed from SQ ∈ P).

Importantly, once I discard the candidate shocks correlated with the Fed’s information

Figure 1: Responses to contractionary monetary policy shocks formed from SQ ∈ P∗
75th (in

blue) and under Restriction SR (in red).
Notes: Monetary policy shocks normalized to induce a 0.25% rise in fft . The solid line is the point-wise posterior
median response and the shaded bands are the 68% equal-tailed point-wise posterior probability bands.

set or that weakly comove with FF4t, expansionary effects of monetary tightenings are

entirely ruled out. Figure 2 illustrates instead the IRFs formed from SQ ∈ P∗
90th. The

correlation between monetary policy shocks and FF4t is in such case constrained to be

Figure 2: Responses to contractionary monetary policy shocks formed from SQ ∈ P∗
90th (in

blue) and under Restriction SR (in red).
Notes: Monetary policy shocks normalized to induce a 0.25% rise in fft . The solid line is the point-wise posterior
median response and the shaded bands are the 68% equal-tailed point-wise posterior probability bands.
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greater than 0.13 and the number of solutions drops to 2166. In contrast with the res-

ults induced by traditional sign restrictions, monetary contractions are found to trigger

significantly negative effects on output in the short and medium-term.

Figure 3: Responses to contractionary monetary policy shocks formed from SQ ∈ P∗
99th (in

blue) and under Restriction SR (in red).
Notes: Monetary policy shocks normalized to induce a 0.25% rise in fft . The solid line is the point-wise posterior
median response and the shaded bands are the 68% equal-tailed point-wise posterior probability bands.

Finally, Figure 3 shows the IRFs formed from SQ ∈ P∗
99th. The set P

∗
99th, because of

the stricter restrictions, consists of only 227 elements. The associated monetary policy

shocks are uncorrelated with Greenbook projections and exhibit a correlation with FF4t

larger than 0.21. Compared to the previous cases, monetary tightenings lower output in

a shorter time and with a larger magnitude. External variable constraints appear thus

to greatly mitigate the ambiguity surrounding Uhlig’s (2005) findings: when Restriction

SR is combined with Restriction ER, monetary contractions are unequivocally found to

reduce output.5 Coherently with the point raised by Wolf (2020), the results obtained

by Uhlig (2005) seem instead to be driven by a misidentification of the monetary policy

shocks. As detailed in Section 4, 73% of the shocks recovered through Restriction SR

are in fact found to be correlated with the information set of the Fed, while about 28%

of them negatively comove with FF4t.

5As shown in Appendix A.2, this result is still valid under only Restriction ER.
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4 Relationship With Alternative Set-Identification Strategies

This section relates my approach to narrative sign restrictions (Antoĺın-Dı́az and Rubio-

Ramı́rez, 2018) and to restrictions on the monetary policy equation (Arias et al., 2019).

Similarly to my identification strategy, they are thought as refinements to standard sign

restrictions and are thus implemented on the model specification detailed in Section 3.

First, I show that the structural models recovered by Restriction SR and ER satisfy

their identifying assumptions. This is a crucial result, since it implies that my approach

ensures: (i) narrative consistency of monetary policy shocks; (ii) Taylor-rule consistency

of monetary policy equations. Second, I test whether the shocks identified through these

alternative methods meet Restriction ER. Uncorrelation with the Fed’s information set

and large correlation with monetary surprises should in fact characterize any plausible

measure of monetary policy shock, regardless of the approach used to recover it.6

4.1 Identification by Narrative Sign Restrictions

Narrative sign restrictions were introduced by Antoĺın-Dı́az and Rubio-Ramı́rez (2018),

who combine them with Restriction SR. In particular, on the occasion of key historical

episodes, they constrain the sign of the monetary policy shocks εmt and the magnitude

of their contribution to the historical decomposition of the federal funds rate fft .

More formally, at any t, I can approximate the infinite-order structural VMA rep-

resentation as follows,

yt =

t−1∑
h=0

Θhεt−h (13)

where Θh = ChP and et = Pεt. Let the federal funds rate fft and the monetary policy

shock εmt be, respectively, the third and first entry of yt and εt. The contribution of εmt

6A comparison between the IRFs obtained using my identification strategy and those derived using
these two alternative approaches is contained in Appendix A.4.
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to the observed unexpected change in fft at time t can then be expressed as

Hff
m,t = Θ0,11ε

m
t (14)

The anti-inflationary reform adopted by the Fed’s chairman Paul Volcker starting in

October 1979 is the main historical event exploited by Antoĺın-Dı́az and Rubio-Ramı́rez

(2018). On this episode, they impose the following restrictions.

Restriction NR1. The monetary policy shock εmt for the observation corresponding

to October 1979 must be of positive value.

Restriction NR2. In October 1979, the absolute value of Hff
m,t is larger than the sum

of the absolute value of the contributions of all other structural shocks.

Alternatively, they impose Restriction NR3 and NR4 on a wider set of events for which

there is a reasonable agreement that an important monetary policy shock occurred.

Restriction NR3. The monetary policy shock εmt must be positive for the observa-

tions corresponding to April 1974, October 1979, December 1988, and February 1994,

and negative for December 1990, October 1998, April 2001, and November 2002.

Restriction NR4. For the periods specified in Restriction NR3, the absolute value of

Hff
m,t is larger than the absolute value of the contribution of any other structural shock.

4.2 Narrative Consistency of Monetary Policy Shocks

Below, I compute the percentages of monetary policy shocks formed from SQ ∈ P∗
99th

that satisfy Restriction NR1, NR2, NR3 and NR4. By doing so, I can evaluate whether

they are consistent or not with the historical reading of the times performed by Antoĺın-

Dı́az and Rubio-Ramı́rez (2018).

As shown in Table 1, all the monetary policy shocks recovered through my approach

are positive on the Volcker episode. On the same date, as required by Restriction NR2,

90% of them is also the overwhelming driver of unexpected changes in the federal funds

14



rate. This is a key result, since Antoĺın-Dı́az and Rubio-Ramı́rez (2018) consider the

Volcker disinflation as the clearest example of an exogenous shock in the postwar period.

Overall, the monetary policy shocks formed from SQ ∈ P∗
99th are also consistent with

the broader set of events in Restriction NR3 and NR4. However, the December 1988

and February 1994 episodes are two exceptions that is worth exploring in greater detail.

Restriction 1974:4 1979:10 1988:12 1990:12 1994:2 1998:10 2001:4 2002:11

NR1 - 100.0% - - - - - -

NR2 - 90.3% - - - - - -

NR3 99.6% 100.0% 40.0% 94.3% 68.8% 100.0% 100.0% 100.0%

NR4 96.5% 97.4% 32.6% 71.8% 45.0% 99.1% 95.1% 88.6%

Table 1: % of εmt formed from SQ ∈ P∗
99th satisfying Restriction NR1, NR2, NR3 and NR4

A close scrutiny of Greenbook forecasts and FOMC meetings minutes suggests that,

rather than being exogenous shocks, the federal funds rate hikes occurred in December

1988 and February 1994 may indeed constitute the endogenous response of the Fed to

good news about future economic conditions.7 The rise in the policy rate in December

1988 is in fact paired with upward revisions in the nowcast and one-quarter ahead fore-

cast for output growth that cast more than a doubt on the exogeneity of the monetary

tightening. In a similar way, the minutes of the FOMC meeting held in February 1994

state that the policy tightening was undertaken based on the confidential access to ‘op-

timistic’ employment data that were not available when the Greenbook was prepared.

4.3 Identification by Restrictions on the Monetary Policy Equation

The use of restrictions on the coefficients of the monetary policy equation was proposed

by Arias et al. (2019). Denoting the (i, j)-element of A = (SQ)−1 by aij , the structural

7This argument is also outlined in Antoĺın-Dı́az and Rubio-Ramı́rez’s (2018) Appendix C. However,
given the magnitude of the federal funds rate increase, they nevertheless consider these two episodes
as monetary policy shocks.
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monetary policy equation can be expressed as follows:

fft = ϕgdpgdpt + ϕpipit + ϕcicit + ϕtrtrt + ϕnrnrt + σεmt (15)

where ϕgdp = −a11
a13

, ϕpi = −a12
a13

, ϕci = −a14
a13

, ϕtr = −a15
a13

, ϕnr = −a16
a13

and σ = a13.

Supported by a large literature on Taylor-type rules, they achieve identification by

imposing the following zero and sign restrictions on the coefficients in (15).

Restriction TR1. The federal funds rate is the monetary policy instrument and only

reacts contemporaneously to output, prices and commodity prices. Thus, ϕtr, ϕnr = 0.

Restriction TR2. The contemporaneous reaction of the federal funds rate to output

and prices is positive, that is ϕgdp, ϕpi > 0.

4.4 Taylor-Rule Consistency of Monetary Policy Equations

In this subsection, I compute the monetary policy equations associated with SQ ∈ P∗
99th

and check if they satisfy Restriction TR1 and TR2. This allows to assess whether they

are reconcilable or not with Taylor-type monetary policy rules.

As a benchmark, I first compute the posterior median estimates and the 68% proba-

bility interval for the coefficients in equation (15) when only Restriction SR is enforced.

As shown in Table 2, the results are in this case rather puzzling. At odds with Restric-

tion TR2, the median estimate for ϕgdp is negative. Moreover, the posterior estimates

Coefficient ϕgdp ϕpi ϕci ϕtr ϕnr

Median -0.38 1.90 0.11 0.09 0.04

68% Prob. Interval [-2.42;0.82] [-0.03;6.00] [0.00;0.35] [-0.44;0.64] [-0.40;0.65]

Table 2: Coefficients in the monetary policy equations formed from SQ ∈ P.

Notes: The entries are the posterior median estimates of the coefficients in the monetary policy equations (15)
formed from SQ ∈ P. The 68% equal-tailed posterior probability interval is reported in brackets.
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for ϕtr and ϕnr do not exclude large values. Even though the median is close to zero,

the 68% interval is in fact quite large and ranges up to about 0.65. The median for ϕpi

is instead positive and thus consistent with Restriction TR2: however, the estimates

are quite imprecise and negative values cannot be completely ruled out.

Table 3 displays the coefficients of the monetary policy equation that I derive when

Restriction SR is combined with Restriction ER. In this case, they are fully reconcilable

with Taylor-type rules. As required by Restriction TR2, the median estimates for ϕgdp

Coefficient ϕgdp ϕpi ϕci ϕtr ϕnr

Median 0.30 1.04 0.03 0.03 -0.03

68% Prob. Interval [0.11;0.55] [0.61;1.57] [0.00;0.06] [-0.07;0.11] [-0.10;0.07]

Table 3: Coefficients in the monetary policy equations formed from SQ ∈ P∗
99th.

Notes: The entries are the posterior median estimates of the coefficients in the monetary policy equations (15)
formed from SQ ∈ P. The 68% equal-tailed posterior probability interval is reported in brackets.

and ϕpi are positive and the 68% probability interval entirely excludes negative values.

This result is coherent with the conduct of an inflation-targeting central bank that rises

the interest rate to prevent an overheating economy or dampen inflationary pressures.

Finally, ϕtr and ϕnr are narrowly concentrated around zero and thus consistent with

Restriction TR1.

4.5 Alternative Set-Identification Strategies and the Fed’s Information Set

Any truly exogenous measure of monetary policy shock should be uncorrelated with the

Fed’s information set about current and future economic conditions. Below, I identify

1000 shocks εmt through narrative sign restrictions (Restriction SR, NR1 and NR2) and

restrictions on the monetary policy equation (Restriction TR1 and TR2) and I project

them on the Greenbook by running regression (12) over the period 1990:M1-2007:M11.

Then, I test the null of joint nonsignificance of the estimated coefficients the 5% level.8

8I could perform this test on a larger sample since Greenbook forecasts for CPI inflation are available
from 1980. I run it from 1990 to 2007 to ensure consistency with the period on which constraint (ER2)
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As a benchmark, I perform the same analysis on a set of 1000 shocks identified through

standard sign restrictions (Restriction SR).

Table 4 shows the percentages of acceptance and rejection. 73% of the monetary

policy shocks identified by Restriction SR are correlated with the Greenbook forecasts.

F-test result SR SR+NR1+NR2 TR1+TR2

Rejection 73.1% 64.0% 51.4%

Acceptance 26.9% 36.0% 48.6%

Table 4: % of acceptances and rejections of the null of joint nonsignificance of the coefficients
of equation (12), 1990:M1-2007:M11.

Hence, they embody the Fed’s response to the expected future state of the economy and

their exogeneity is therefore called into question. The additional use of Restriction NR1

and NR2 partially helps in mitigating this issue and, as a consequence, the rejection

rate falls to 64%. The imposition of Restriction TR1 and TR2 is found to overperform

these two methods but, also in this case, the results are far from being satisfactory.

About half of the shocks are in fact correlated with the Fed’s information set.

4.6 Alternative Set-Identification Strategies and Monetary Surprises

In this subsection, I verify whether monetary policy shocks identified by narrative sign

restrictions and restrictions on the monetary policy equation display a strong positive

comovement with monetary surprises. To this end, I derive the correlation coefficients

ρm between the 1000 shocks recovered by each identification scheme and FF4t. Then,

I check if they are higher than 0 and 0.2, that is the minimum correlation required for

SQ to be accepted in the set of solutions P∗
99th. By setting it as a threshold, I can thus

assess whether these methods deliver monetary policy shocks whose correlation with

FF4t is comparable to that ensured by the approach I implement.

is imposed. Increasing the sample size does not change the results displayed in Table 4.
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As displayed in Table 5, 24% of the shocks recovered by Restriction SR negatively

comoves with FF4t. Even when positive, the correlation is weak and larger than 0.2 in

only 1% of the cases. The additional imposition of Restriction NR1 and NR2 seems to

be quite effective in mitigating this issue and all the identified shocks positively comove

ρm SR SR+NR1+NR2 TR1+TR2

> 0 76.2% 100.0% 99.9%

> 0.2 1.1% 8.9% 10.3%

Table 5: % of monetary policy shocks such that ρm is larger than 0 and 0.2,
1990:M1-2007M11

with FF4t. However, the correlation is overall low and only 8.9% of the shocks would

meet the threshold implied by constraint (ER1). Similar findings hold for the monetary

policy shocks retrieved through Restriction TR1 and TR2.

5 Am I Controlling for the Central Bank Information Channel?

In this section, I evaluate whether the use of Restriction SR and ER succeeds in con-

trolling for the central bank information channel. The logic behind the tests I perform

is that ‘true’ contractionary monetary policy shocks should be associated with a drop in

the stock market (e.g. Jarociński and Karadi, 2020). The comovement should instead

be positive if the increase in the federal funds rate is related to the disclosure of good

news from the Fed about future economic conditions.

ρs SR SR+NR1+NR2 TR1+TR2 SR+ER

< 0 45.7% 81.2% 85.6% 100.0%

> 0 54.3% 18.8% 14.4% 0%

Table 6: Percentages of shocks whose correlation with S&P 500 surprises is < 0 and > 0,
1990:M1-2007:M11.
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First, I derive the correlation coefficients ρs between the monetary policy shocks εmt

formed from SQ ∈ P∗
99th and stock market surprises SPIhft , measured as the changes in

the S&P 500 over a 30-minute window around each FOMC announcement. The results

in Table 6 appear to support the use of external variable constraints. All the shocks

identified through Restriction SR and ER are in fact found to negatively comove with

SPIhft . On the other hand, non-negligible shares of shocks recovered through alternative

approaches exhibit a positive comovement with stock market surprises.

Second, I use local projections to derive the IRFs of US stock prices to contractiona-

ry monetary policy shocks. Denoting by ε̂m,i
t the i-th shock formed from SQ ∈ P∗

99th,

I estimate the following regression at the monthly frequency:

SPIt+h = γ
(h)
i +

2∑
l=1

α
(h)
l,i SPIt−l +

5∑
j=0

β
(h)
j,i ε̂

m,i
t−j + ut+h,i (16)

where h = 0, . . . , 48 and i = 1, . . . , 227. SPIt is the log of the US share price index pro-

duced by the OECD and computed as the average of daily closing data. The estimated

parameter β̂
(h)
0,i is the impulse response of SPIt at time t+h to the i-th identified shock.

For each horizon h, I then compute the median response and the 68% equal-tailed cred-

ibility interval by calculating the appropriate percentiles of the set of impulse responses

{β̂(h)0,1 , . . . , β̂
(h)
0,227}. As shown in Figure 4, US stock prices are found to significantly drop

Figure 4: Response of SPIt to contractionary monetary policy shocks formed from P∗
99th.

Notes: The solid line is the median response and the shaded bands are the 68% equal-tailed probability bands.
For each horizon h, they are computed point-wise by using the set of impulse responses estimated from (16).
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after a monetary contraction. The response is negative on impact and reaches its mini-

mum after a few months. These findings seem to be consistent with the propagation of

‘true’ contractionary monetary policy shocks, rather than with the disclosure of Fed’s

private information about future economic conditions.

6 Robust Bayesian Inference

So far, in line with Antoĺın-Dı́az and Rubio-Ramı́rez (2018) and Arias et al. (2019), I

have imposed Restriction SR and ER through Rubio-Ramı̀rez et al.’s (2010) algorithm.

As detailed in Appendix B, it is based on the QR decomposition and assumes a uniform

distribution of Q (the so-called Haar prior) on the space of orthonormal matrices O(k).

However, since the likelihood is not dependent on Q, this does not imply that structural

parameters are uniformly distributed over the identified set (Baumeister and Hamilton,

2015). In other words, the prior for Q is not updated by the data and, even if uniform,

it is informative for objects of interest as IRFs.

In this section, I address this issue by combining numerical methods for constrained

optimization with standard sampling from the posterior to compute the infimum and

supremum of the IRFs over all admissible rotation matrices Q. Specifically, I build on

the algorithm proposed by Volpicella (2022), by adapting it to the case in which identi-

fication is achieved by: (i) traditional sign restrictions and external variable constraints

(Restriction SR and ER); (ii) traditional sign restrictions and narrative restrictions on

monetary policy shocks and historical decomposition (Restriction SR, NR1 and NR2);

(iii) restrictions on the monetary policy equation (Restriction TR1 and TR2).

When inference is performed through the Haar prior, these three methodologies lead

to similar conclusions about the transmission of contractionary monetary policy shocks.

Examining the results under the prior-robust inference algorithm, I can therefore assess

whether these findings are still valid when the IRFs do not depend on a specific prior
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for Q. For the rest of this section, let the monetary policy shock εmt be the first entry

of the k× 1 vector εt and let d′ih(ϕ) denote the i-th row of the k× k matrix Dh = ChS,

where Ch denotes the reduced-form impulse responses at horizon h and S is the unique

lower-triangular Cholesky factor.

6.1 Algorithm 1: Sign Restrictions and External Variable Constraints

Algorithm 1 describes the procedure to obtain the prior-robust set of impulse responses

of variable i to contractionary monetary policy shocks εmt when Restriction SR is com-

bined with Restriction ER.9

Algorithm 1

1. Draw ω = (Σe, A) from the posterior distribution of the reduced-form VAR and

a k× (k− 1) matrix W , whose columns are derived from a standard multivariate

normal distribution N (0k×1, Ik−1).

2. Check if the following optimization problems have solutions q∗1 at any horizon h:

min
q1

and max
q1

d′ih(ϕ)q1 subject to:

(i) S1(ϕ)q1 ≥ 0

(ii) corr(ε̂mt (SQ), FF4t) > k

(iii) corr(ε̂mt (SQ), FIt) = 0

(iv) ||q1|| = 1

where, by abuse of notation, S1(ϕ)q1 denotes the sign restrictions in Restriction

SR and Q is an orthonormal matrix. At each horizon h, the latter is derived by

applying the QR decomposition to the k×k matrix W̄ , which is the concatenation

of the candidate solutions q1 and the matrix W .

9Computational details are provided in Appendix B.
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3. If Step 2 is satisfied, store the impulse response functions derived using the solu-

tions q∗1 in the sets Θ̂min
i,h and Θ̂max

i,h . Otherwise, go back to Step 1.

4. Repeat Steps 1-3 M times.

In Step 2, I compute the QR decomposition of W̄ , obtained as the concatenation of the

candidate solution q1 and matrix W . This delivers an orthonormal matrix Q that pre-

serves q1 as first column and that instead draws, as argued by Baumeister and Hamilton

(2015), the elements of qj , for j = 2, . . . , k, from a nonuniform distribution. This prior,

importantly, is however not informative about the response of variable i to εmt , that is

my unique object of interest. The latter, in fact, only depends on the elements of q1,

that Algorithm 1 selects as solutions to the optimization problems.

Below, I implement Algorithm 1 by drawing from the posterior of the reduced-form

VAR described in Section 3. To ensure comparability, the parameter g is calibrated at

the 99th percentile of the set of correlation coefficients between FF4t and the monetary

policy shocks formed from SQ ∈ P. Since external variable constraints considerably

truncate the admissible support of Q, this algorithm is computationally quite demand-

ing. Hence, I narrow my focus on the output response and set M = 1000. In Figure 5,

I compare the 68% equal-tailed credibility region obtained under a uniform prior for Q

Figure 5: 68% equal-tailed credibility interval for output response using Restriction SR and
ER (in blue) and using Restriction SR (in red).
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(on the left) and robust Bayesian inference (on the right). Unlike in Section 3, mone-

tary policy shocks are not normalized to induce a 0.25% increase in fft . The resulting

intervals may in fact be unbounded when the structural parameter Θ̂0,31 = d′30q
∗
1 is not

bounded away from zero for all ω and q∗1. Importantly, the findings achieved by running

standard inference are equally valid when inference is performed through Algorithm 1:

although the bands in the right panel are wider than those in the left one, contractionary

monetary policy shocks are still found to induce a significant decrease in output. Under

robust Bayesian inference, standard sign restrictions deliver instead impulse responses

with even more contradictory economic implications and are thus totally uninformative

about the transmission of US monetary policy.

6.2 Algorithm 2: Sign Restrictions and Narrative Sign Restrictions

Algorithm 2 describes the procedure to obtain the prior-robust set of impulse responses

of variable i to contractionary monetary policy shocks εmt when Restriction SR is com-

bined with Restriction NR1 and NR2.

Algorithm 2

In Algorithm 1, replace Step 2 with the following.

2. Check if the following optimization problems have solutions q∗1 at any horizon h:

min
q1

and max
q1

d′ih(ϕ)q1 subject to:

(i) S1(ϕ)q1 ≥ 0

(ii) εmt (SQ) > 0 for t=1979:10

(iii) Hff
1,t(SQ) >

∑k
j=2H

ff
j,t(SQ) for t=1979:10

(iv) ||q1|| = 1

where S1(ϕ)q1 denotes the sign restrictions described in Restriction SR; Q is an

orthonormal matrix derived by computing the QR decomposition of an auxiliary
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matrix W̄ with the candidate solution q1 as first column and the remaining k− 1

columns drawn from a N (0k×1, Ik−1); H
ff
i,t, for i = 1, . . . , k, denotes the contri-

bution of shock i in explaining the historical decomposition of fft for observation t.

Below, I use Algorithm 2 by drawing from the posterior distribution of the reduced-

form VAR described in Section 3. In particular, Figure 6 compares the 68% prior-robust

equal-tailed credibility region for output response with the counterpart derived under

a uniform prior for Q. In the latter case, the effects of contractionary monetary policy

shocks on output are significantly negative. If compared to those obtained by using my

Figure 6: 68% equal-tailed credibility interval for output response using Restriction SR, NR1
and NR2 (in blue) and using Restriction SR (in red).

identification scheme, these effects are smaller and statistically significant with a greater

delay. Furthermore, they vanish when the uniform prior on Q is replaced by Algorithm

2: the robust credibility interval includes in fact zero at all horizons.

6.3 Algorithm 3: Restrictions on the Monetary Policy Equations

Algorithm 3 describes the procedure to obtain the prior-robust set of impulse responses

of variable i to contractionary monetary policy shocks when identification is achieved

through Restriction TR1 and TR2.

Algorithm 3

In Algorithm 1, replace Step 2 with the following.
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2. Check if the following optimization problems have solutions q∗1 at any horizon h:

min
q1

and max
q1

d′ih(ϕ)q1 subject to:

(i) d′31q1 ≥ 0

(ii) ϕgdp(SQ) > 0, ϕπ(SQ) < 0, ϕtr(SQ) = ϕnr(SQ) = 0

(iii) ||q1|| = 1

where Q is an orthonormal matrix derived by computing the QR decomposition

to an auxiliary matrix W̄ having the candidate solution q1 as first column and

the remaining k − 1 columns drawn from a N (0k×1, Ik−1).

In order to ensure that those estimated are indeed responses to contractionary monetary

policy shocks, the constraint in (i) requires the solutions q∗1 to induce a contemporane-

ous increase in the federal funds rate, that is the third variable in the system.

After sampling from the posterior distribution of the reduced-form VAR introduced

in Section 3, I derive the 68% equal-tailed credibility region for output response through

Algorithm 3 and I compare it with the one obtained under a uniform prior for Q. Under

Figure 7: 68% equal-tailed credibility interval for output response using Restriction TR1 and
TR2 (in blue) and using Restriction SR (in red).

standard inference, contractionary monetary policy shocks are found to have significant

negative effects on output. Differently from the findings discussed in the previous two

subsections, these effects are quite short-lived, with the peak that occurs about eight
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months after the shock. However, when inference is performed by using Algorithm 3,

the impact of monetary tightenings is found to be far more ambiguous and not fully

consistent with negative effects on output.

7 Conclusion

This paper identifies monetary policy shocks through a combination of sign restrictions

on the impulse responses (Uhlig, 2005) and external variable constraints on Greenbook

projections and high-frequency monetary surprises.

I employ this approach to evaluate the transmission of US monetary policy over the

period 1965:M1-2007:M11. The imposition of external variable constraints considerably

mitigates the ambiguity surrounding Uhlig’s (2005) findings and monetary contractions

are unequivocally found to reduce output. Importantly, these results are still valid when

the uniform prior on the rotation matrix Q is replaced by the robust Bayesian inference

procedure detailed in Section 6. These effects are larger and more persistent than those

derived by imposing narrative sign restrictions (Antoĺın-Dı́az and Rubio-Ramı́rez, 2018)

and restrictions on the monetary policy equation (Arias et al., 2019). Furthermore, the

shocks recovered through these alternative methods turn out to be correlated with the

Fed’s information set about current and future economic conditions and poorly correla-

ted with monetary surprises. On the other hand, the use of external variable constraints

delivers monetary policy shocks and monetary policy equations that are reconcilable,

respectively, with an historical reading of the times and Taylor-type rules.
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Braun, R. and Brüggerman, R. (2022). Identification of SVAR Models by Combining

Sign Restrictions With External Instruments. Bank of England Staff Working Paper

No. 961.

Christiano, L. J., Eichenbaum, M., and Evans, C. (1996). The Effects of Monetary

Policy Shocks: Evidence from the Flow of Funds. The Review of Economics and

Statistics, 78(1):16–34.

Gertler, M. and Karadi, P. (2015). Monetary Policy Surprises, Credit Costs, and

Economic Activity. American Economic Journal: Macroeconomics, 7:44–76.
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A Robustness Checks

A.1 Imposing the Greenbook Constraint at the FOMC Meeting Frequency

As discussed in Section 3, enforcing constraint (ER2) at the monthly frequency requires

inevitable assumptions about the timing with which the Fed updates its information set.

In this section, I show the results obtained when constraint (ER2) is instead imposed at

the FOMCmeeting frequency. This approach does not involve any frequency conversion

but considerably reduces the number of observations used to estimate regression (12).

Figure A.1: Response to contractionary monetary policy shocks formed from SQ ∈ P∗,mf
99th (in

blue) and under Restriction SR (in red)

Notes: Monetary policy shocks normalized to induce a 0.25% rise in fft . The solid line is the point-wise posterior
median response and the shaded bands are the 68% equal-tailed point-wise posterior probability bands.

Figure A.1 compares the IRFs derived under Restriction SR and those formed from

the set of solutions P ∗,mf
99th . The latter collects the 429 matrices SQ meeting Restriction

SR and ER when constraint (ER2) is imposed at the FOMC meeting frequency. Impor-

tantly, the output response is basically unchanged compared to the one plot in Figure 3.

Table A.1 shows instead the percentages of shocks formed from SQ ∈ P ∗,mf
99th that satisfy

the restrictions imposed by Antoĺın-Dı́az and Rubio-Ramı́rez (2018). Again, the results

are very similar to those in Section 3, thus showing that the narrative consistency of the

monetary policy shocks is robust to the time frequency with which constraint (ER2) is
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enforced. A similar conclusion holds true for the Taylor-rule consistency of the structu-

Restriction 1974:4 1979:10 1988:12 1990:12 1994:2 1998:10 2001:4 2002:11

NR1 - 100.0% - - - - - -

NR2 - 90.0% - - - - - -

NR3 99.5% 100.0% 47.5% 96.5% 57.3% 100.0% 99.8% 99.3%

NR4 94.6% 96.7% 37.7% 78.5% 44.8% 94.6% 89.7% 87.7%

Table A.1: % of εmt formed from SQ ∈ P∗,mf
99th satisfying Restriction NR1, NR2, NR3 and NR4

ral monetary policy equations. As displayed in Table A.2, the coefficients formed from

SQ ∈ P∗,mf
99th are in fact overall consistent with Restriction TR1 and TR2.

Coefficient ϕgdp ϕpi ϕci ϕtr ϕnr

Median 0.21 1.06 0.03 0.03 -0.02

68% Prob. Interval [-0.02;0.46] [0.65;1.59] [0.01;0.06] [-0.07;0.12] [-0.10;0.06]

Table A.2: Coefficients in the monetary policy equations formed from SQ ∈ P∗,mf
99th .

Notes: The entries in the table are the posterior median estimates of the coefficients in the monetary equations

(15) formed from SQ ∈ P∗,mf
99th . The 68% equal-tailed posterior probability interval is reported in brackets.
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A.2 IRFs Using Only Restriction ER

This section presents the IRFs obtained when Restriction SR is dropped and identifi-

cation is achieved through only Restriction ER.

Figure A.2: Response to contractionary monetary policy shocks formed from P̄∗
99th (in blue)

and under Restriction SR (in red).

Notes: Monetary policy shocks normalized to induce a 0.25% rise in fft . The solid line is the point-wise posterior
median response and the shaded bands are the 68% equal-tailed point-wise posterior probability bands.

As in Section 3, I first generate 100000 candidate structural impact matrices SQ that

are then stored into the set of solutions P̄. In this case, they are not required to satisfy

Restriction SR but only to ensure that the resulting monetary policy shock ε̂mt (SQ) has

a positive impact effect on fft. In the second step, I only retain the matrices SQ ∈ P̄

such that ε̂mt (SQ) meet Restriction ER.

Restriction ER. Over the period 1990:M1-2007:M11, a monetary policy shock εmt

satisfies the following external variable constraints:

corr(εmt , FF4t) > g (ER1)

corr(εmt , FIt) = 0 (ER2)

For the sake of comparability, I set the parameter g equal to the 99th percentile value

of the set of correlation coefficients between FF4t and the shocks ε̂mt (SQ) formed from
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SQ ∈ P̄ (this implies k = 0.23). The matrices SQ that deliver monetary policy shocks

ε̂mt (SQ) satisfying Restriction ER are finally stored into the set of solutions P̄∗
99th. The

resulting IRFs are displayed in Figure A.2, where I compare them with those obtained

under Restriction SR. Consistently with the results in Section 3, output is found to

negatively react in response to contractionary monetary policy shocks.
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A.3 IRFs Using Minimal External Variable Constraints

In this section, I display the IRFs obtained by keeping Restriction SR binding and by

alternatively imposing constraints (ER1) and (ER2).

Figure A.3: Responses to contractionary monetary policy shocks formed from SQ ∈ P∗
f (in

bliue) and under Restriction SR (in red).

Notes: Monetary policy shocks normalized to induce a 0.25% rise in fft . The solid line is the point-wise posterior
median response and the shaded bands are the 68% equal-tailed point-wise posterior probability bands.

Figure A.3 plots the IRFs derived if only constraint (ER2) is added to Restriction SR.

The resulting set of solutions is denoted by P∗
f and counts 27508 elements. Despite it

Figure A.4: Responses to contractionary monetary policy shocks formed from SQ ∈ P∗
m (in

blue) and under Restriction SR (in red).

Notes: Monetary policy shocks normalized to induce a 0.25% rise in fft . The solid line is the point-wise posterior
median response and the shaded bands are the 68% equal-tailed point-wise posterior probability bands.

34



shifts towards negative values, the set of output responses is similar to that obtained

under only Restriction SR. Figure A.4 plots instead the IRFs if only constraint (ER1)

(with g set at the 99th percentile) is added to Restriction SR. The contractionary shocks

formed from the resulting set of solutions P∗
m have quite ambiguous effects on output in

the very short-run: although not statistically significant, the median response is positive

on impact. This finding may lend itself to the following interpretation. When constraint

(ER2) is not binding, the identified set also includes shocks that are correlated with the

Fed’s information set. The output increase is thus consistent with a scenario in which

the Fed discloses good news about future economic conditions and, given its reaction

function, tightens monetary policy to partly offset the expansionary effects of the news

and prevent an overheating economy.

Figure A.5: Responses to contractionary monetary policy shocks formed from P∗,info
m (in blue)

and under Restriction SR (in red).

Notes: Monetary policy shocks normalized to induce a 0.25% rise in fft . The solid line is the point-wise posterior
median response and the shaded bands are the 68% equal-tailed point-wise posterior probability bands.

This argument is even clearer by looking at the IRFs, plotted in Figure A.5, formed

from the set of solutions P∗,info
m . The latter contains the 773 matrices SQ generating

monetary policy shocks that meet constraint (ER1) (with g set at the 99th percentile)

but correlated with the Greenbook. The output response is in fact positive and, even if

only weakly, statistically significant in the first few months after the shock. Summing
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up, constraints (ER1) and (ER2) are both necessary to obtain conventional effects of

contractionary monetary policy shocks. Specifically, the exclusion of shocks correlated

with the Fed’s information set is crucial to rule out structural models whose short-run

implications are compatible with the information channel of monetary policy.
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A.4 Imposing Restriction SR and ER on a Different Model Specification

As already mentioned, I rely on the same external information as Miranda-Agrippino

and Ricco (2021), who combine Greenbook projections and monetary surprises to derive

an informationally robust instrument. When it is employed in a proxy-SVAR, monetary

contractions are found to have unequivocally contractionary effects.

In this section, I check whether Restriction SR and ER induces analogous results

when imposed on their model. The latter spans the period 1979:1-2014:12 and includes

a constant as well as 12 lags of the following vector of US monthly series:

y′t =
[
ipt pit fft cit ut ebpt

]
(A.1)

where ipt is the log of industrial production, pit is the log of the consumer price index,

fft is the federal funds rate, cit is the log of a commodity price index, ut is the un-

employment rate and ebpt is Gilchrist and Zakraǰsek’s (2012) excess bond premium. I

impose the following restrictions and apply the same procedure described in Section 3.

Restriction SR. A monetary policy shock εmt leads to a negative response of pit and

cit and to a positive response of fft at horizons h = 0, . . . , 5.

Restriction ER. Over the period 1990:M1-2007:M11, a monetary policy shock εmt

satisfies the following external variable constraints:

corr(εmt , FF4t) > g (ER1)

corr(εmt , FIt) = 0 (ER2)

In particular, I focus on the case in which g is set equal to the 99th percentile value

of the set of correlation coefficients between FF4t and the shocks ε̂mt (SQ) formed from

SQ ∈ P. Out of the 100000 matrices stored in P, the set of solutions P∗
99th retains

566 matrices SQ which deliver monetary policy shocks that are uncorrelated with the
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Greenbook and that display a correlation with monetary surprises larger than 0.20 (the

value of the 99th percentile). As shown in Figure A.4, coherently with the results found

by Miranda-Agrippino and Ricco (2021), contractionary monetary policy shocks turn

out to reduce industrial production and increase the unemployment rate.

Figure A.6: Response to contractionary monetary policy shocks formed from SQ ∈ P∗
99th

using Miranda-Agrippino and Ricco’s (2021) model

Notes: Monetary policy shocks normalized to induce a 0.25% rise in fft . The solid line is the point-wise posterior
median response and the shaded bands are the 68% equal-tailed point-wise posterior probability bands.
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A.5 Comparison With IRFs From Alternative Set-Identification Strategies

In this section, I compare the IRFs formed from SQ ∈ P∗
99th with those obtained under

narrative sign restrictions and restrictions on the monetary policy equation.

Figure A.7: Response to contractionary monetary policy shocks formed from SQ ∈ P∗
99th (in

blue) and under Restriction SR, NR1 and NR2 (in red)

Notes: Monetary policy shocks normalized to induce a 0.25% rise in fft . The solid line is the point-wise posterior
median response and the shaded bands are the 68% equal-tailed point-wise posterior probability bands.

As shown in Figure A.7, the output response derived under Restriction SR, NR1

and NR2 is quite similar to that obtained under Restriction SR and ER. In both cases,

Figure A.8: Response to contractionary monetary policy shocks formed from SQ ∈ P∗
99th (in

blue) and under Restriction TR1 and TR2 (in red)

Notes: Monetary policy shocks normalized to induce a 0.25% rise in fft . The solid line is the point-wise posterior
median response and the shaded bands are the 68% equal-tailed point-wise posterior probability bands.
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consistently with theoretical predictions, output significantly declines in response to a

contractionary shock. Under Restriction SR and ER, these effects turn out to be larger

and statistically significant with a shorter delay. Figure A.8 compares instead the IRFs

formed from SQ ∈ P∗
99th with those derived through Restriction TR1 and TR2. First,

note that in the latter case the 68% confidence intervals are found to be much wider,

due to a larger identification uncertainty that makes inference less precise. Second, the

negative effects of monetary policy shocks are only significant in the very short-run,

with the peak occurring about 8 months after the shock.
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A.6 Computing IRFs With Local Projections

A VAR model is a linear global approximation to the data-generating process that is

optimally designed for one-period ahead forecasting. However, impulse responses are a

function of forecasts at progressively distant horizons and misspecification errors are

therefore compounded. Jordà (2005) tackles this issue by computing local projections

to each forecast horizon, that are then combined to derive the IRFs.

Figure A.9: Responses to contractionary monetary policy shocks formed from SQ ∈ P∗
99th in a

local projections framework

Notes: The solid line is the median response and the shaded bands are the 68% equal-tailed probability bands.
For each horizon h, they are computed point-wise by using the set of impulse responses estimated from (A.2).

In this section, I use local projections to evaluate the effects of the monetary policy

shocks obtained from P∗
99th on each of the variables in (12). Specifically, denoting by

ε̂m,i
t the i-th shock formed from SQ ∈ P∗

99th, I estimate the following regression at the

monthly frequency:

yt+h = γ
(h)
i +

2∑
l=1

α
(h)
l,i yt−i +

5∑
j=0

β
(h)
j,i ε̂

m,i
t−j + ut+h,i (A.2)

where h = 0, . . . , 48, i = 1, . . . , 227 and y′t = [gdpt pit fft cit trt nrt]. The estimated

coefficient β̂
(h)
0 is the impulse response of the variable of interest at time t+h to the i-th
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identified shock. For each horizon h, following the same procedure described in Section

4.6, I then compute the median response and the 68% equal-tailed credibility interval by

calculating the appropriate percentiles of the set of impulse responses {β̂(h)0,1 , . . . , β̂
(h)
0,227}.

As displayed in Figure A.9, the IRFs estimated with local projections, particularly

in the short-run, are very similar to those computed through the VMA representation

and discussed in Section 3. An alternative approach could consist in selecting a single

element from the set of identified monetary policy shocks (as for instance the median)

and estimating the regression in (A.2) only once. When I implement it (by computing

the bands with Newey-West robust standard errors), I find analogous results.
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B Technical Appendix

In this section, I describe Rubio-Ramı̀rez et al.’s (2010) algorithm and I provide comput-

ational details on the robust Bayesian inference algorithm introduced in Section 6.

B.1 Rubio-Ramı̀rez et al.’s (2010) Algorithm

In Section 3, I impose sign restrictions through Rubio-Ramı̀rez et al.’s (2010) algorithm,

based on the QR decomposition. For a certain draw of ω = (Σe, A) from the posterior

distribution of the reduced-form VAR, I iterate the following procedure.

1. Draw from a N (0k×1, Ik−1) and perform a QR decomposition of the matrix, that

delivers a k×k matrix R with positive diagonal elements and a k×k orthonormal

matrix Q.

2. Let S denote the lower-triangular Cholesky factor of Σe. I compute the candidate

impulse responses Θ̂h = ChSQ, where Ch are the reduced-form impulse responses,

for h = 0, . . . , h. If Θ̂h satisfy the sign restrictions, I store them. If not, I discard

them and go back to the first step.

3. I repeat step 1 and 2 until M = 100000 responses are obtained.

Once I obtain 100000 draws, I compute the point-wise posterior median and 68% equal-

tailed posterior probability bands at each horizon h.

B.2 Computational Details

The minimization and maximization problems in Section 6 are solved by using the Se-

quential Quadratic Programming (SQP) algorithm in MATLAB’s Optimization Tool-

box. Table B.1 provides details about the optimization options used in the implementa-

tion of the fmincon solver. They are calibrated so as to strike a balance between accura-
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cy and speed of the numerical solver. Note that I obtain very similar results under the

‘interior-point’ algorithm.

Option Description Calibration

OptimalityTolerance Termination tolerance on the first-order optimality measure 1e-6

ConstraintTolerance Tolerance on the constraint violation 1e-6

MaxFunctionEvaluations Maximum number of function evaluations allowed 3000

MaxIterations Maximum number of iterations allowed 1000

Table B.1: Computational details
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