### Firm Expectations and News: Micro v Macro

Benjamin Born, Zeno Enders,

#### Manuel Menkhoff, Gernot Müller, and Knut Niemann

EEA 2022

# The Question: How do expectations adjust to news?

Full information rational expectations (FIRE) benchmark

- suggests immediate and correct updates
- forecast errors should not be predictable based on time-t information

# The Question: How do expectations adjust to news?

Full information rational expectations (FIRE) benchmark

- suggests immediate and correct updates
- forecast errors should not be predictable based on time-t information

Recent evidence based on professional forecasts of macro variables

- No FI: consensus forecast underreact to news (Coibion and Gorodnichenko 2015)
- No RE: individual forecasts overreact to news (Bordalo et al. 2020)

The Question: How do expectations adjust to news?

Full information rational expectations (FIRE) benchmark

- suggests immediate and correct updates
- forecast errors should not be predictable based on time-t information

Recent evidence based on professional forecasts of macro variables

- No FI: consensus forecast underreact to news (Coibion and Gorodnichenko 2015)
- No RE: individual forecasts overreact to news (Bordalo et al. 2020)

Literature is currently exploring explanations that can account for both observations jointly (Broer and Kohlhas 2022; Kohlhas and Walther 2021)

# Our paper

New perspective

- Firm expectations about their production ( $\neq$  professional forecasts about aggregates)
- Distinguish effect of micro (that is, firm-specific) and macro news

# Our paper

New perspective

- Firm expectations about their production ( $\neq$  professional forecasts about aggregates)
- Distinguish effect of micro (that is, firm-specific) and macro news
- 1. Establish evidence based on ifo survey that firm expectations
  - overreact to micro news (trigger negative forecast errors)
  - underreact to macro news (trigger positive forecast errors)

# Our paper

New perspective

- Firm expectations about their production ( $\neq$  professional forecasts about aggregates)
- Distinguish effect of micro (that is, firm-specific) and macro news
- 1. Establish evidence based on ifo survey that firm expectations
  - overreact to micro news (trigger negative forecast errors)
  - underreact to macro news (trigger positive forecast errors)
- 2. General equilibrium model with dispersed information and island illusion
  - Rationalize key patterns in the data
  - Derive model-based predictions and test them empirically

# ifo Business Climate Survey

- Monthly, mostly qualitative firm survey
- final sample includes roughly 1,600 firm-observations per month
- used to construct expectation errors and micro news



4. General Equilibrium Model

# Firm expectations and expectation errors

#### Production expectations for next three months:

Our production is expected to be [1] increasing, [0] not changing or [-1] decreasing.

#### Production realization in last month:

Compared to (month before previous month) our production increased [1], stayed about the same [0] or decreased [-1].

Production forecast error (Bachmann et al. 2013):

$$\operatorname{Error}_{i,t} = \begin{cases} 0 & \text{if sgn}\left(x_{t+3}^{i}\right) = x_{t+3|t}^{i} \\ \frac{1}{3}\left(x_{t+3}^{i} - x_{t+3|t}^{i}\right) & \text{else,} \end{cases}$$

where

• 
$$x_{t+3|t}^i \in \{-1, 0, +1\}$$
 is the 3-months-ahead expectation at  $t$   
•  $x_{t+3}^i \in [-3, +3]$  is the sum of subsequent 3 (monthly) realizations

### Micro news

Micro (firm-specific) news based on forecast revisions of firms

 $\rightarrow$  use sign of first difference of qualitative expectation about own production

$$FR_{i,t} = sgn\left(x_{t+3|t}^{i} - x_{(t-1)+3|t-1}^{i}\right)$$

and remove potential macro component via time-fixed effect

Micro News<sub>*i*,*t*</sub> = 
$$FR_{i,t} - \mu_t$$

Potential issue: fixed forecast horizon but varying forecast period

 $\rightarrow$  assume overlap in forecasting period sufficiently large to reflect actual micro news

### Forecast revisions





Notes: S.a. 6-months rolling mean of avg. forecast revisions (green) and yoy prod. growth in manuf. (black).

1. Introduction

2. Data

3. Empirical Analysis

4. General Equilibrium Model

Timing and construction

Surprise component of a business cycle indicator (ifo index)

In month t-1

- during the first two weeks: firms complete ifo survey
- until release of ifo index: professional forecasters submit forecasts to Bloomberg
- during the last week: ifo index is published

In month t define macro news as

Macro news<sub>t</sub> = ifo index<sub>t-1</sub> – median (professional forecasts for ifo index<sub>t-1</sub>) Details

#### Macro news

Why construct macro news based on the ifo index? Three advantages in our setting:

- 1. ifo index has high predictive power for German business cycle (Lehmann 2020)
- 2. firms likely know about latest ifo index release value
  - $\rightarrow$  participating firms receive the results directly from the ifo Institute
  - ightarrow news outlets report both ifo index and professional forecasts  $\begin{tabular}{c} \label{eq:stamples} \end{tabular}$
- 3. clear information structure: release of ifo index is, by construction, between 2 survey waves

Final sample: April 2004 to December 2019 (restricted by Bloomberg forecast availability)

# Empirical model

Coibion and Gorodnichenko (2015)-type regression modified for firm-specific variables

$$\mathsf{Error}_{i,t} = \beta_0 + \beta_1^i \mathsf{Micro news}_{i,t} + \beta_2^i \mathsf{Macro news}_t + v_t^i$$

where (as defined before)

- Error<sub>*i*,*t*</sub>: production-expectation error (realization expectation)
- Micro news<sub>i,t</sub>: production-expectation revision net of time-fixed effect
- Macro news<sub>t</sub>: surprise component in ifo index

# Empirical model

Coibion and Gorodnichenko (2015)-type regression modified for firm-specific variables

$$\mathsf{Error}_{i,t} = \beta_0 + \beta_1^i \mathsf{Micro news}_{i,t} + \beta_2^i \mathsf{Macro news}_t + v_t^i$$

where (as defined before)

- Error<sub>*i*,*t*</sub>: production-expectation error (realization expectation)
- Micro news<sub>i,t</sub>: production-expectation revision net of time-fixed effect
- Macro news<sub>t</sub>: surprise component in ifo index

Rational expectations benchmark:  $\beta_1^i = \beta_2^i = 0$ 

Coibion and Gorodnichenko (2015):  $\beta^i > 0$  for underreaction,  $\beta^i < 0$  for overreaction Intuition

# Over- and underreaction to news

Pooled estimation - baseline

|                       | Forecast Error       |                      |                      |                      |  |
|-----------------------|----------------------|----------------------|----------------------|----------------------|--|
|                       | (1)                  | (2)                  | (3)                  | (4)                  |  |
| Micro News            | -0.194***<br>(0.001) | -0.194***<br>(0.001) |                      |                      |  |
| Macro News            | 0.021***<br>(0.0007) | ~ /                  | 0.021***<br>(0.0007) | 0.022***<br>(0.0007) |  |
| Forecast Revision     | , , ,                |                      | 、 <i>,</i>           | -0.191***<br>(0.001) |  |
| Observations          | 302,737              | 302,737              | 302,737              | 302,737              |  |
| R <sup>2</sup>        | 0.16471              | 0.16015              | 0.08967              | 0.16260              |  |
| Within R <sup>2</sup> | 0.08701              | 0.08202              | 0.00498              | 0.08471              |  |
| Firm FE               | $\checkmark$         | $\checkmark$         | $\checkmark$         | $\checkmark$         |  |

Notes: Full, pooled sample. Standard errors clustered on firm level. \*\*\* p < 0.01, \*\* p < 0.05, \* p < 0.1.

# Over- and underreaction to news

Individual firm-level regressions

Overreaction to micro news (forecast revision)

Underreaction to macro news (ifo index shock)



*Note*: grey=not significant, bright green=10%, dark green=5%

1. Introduction

2. Data

3. Empirical Analysis

4. General Equilibrium Model

# Over- and underreaction to news: robustness

Main result holds in several robustness checks

| Aspect         | Baseline                                             | Variation                                         |         |
|----------------|------------------------------------------------------|---------------------------------------------------|---------|
| Estimation     | OLS pooled across firms                              | ordered logit pooled across firms                 | Results |
| Forecast Error | Bachmann et al. (2013)                               | set small errors $(\pm 1/3)$ to zero              | Results |
| Macro News     | surprise component in<br>ifo index                   | surprise component in manufacturing orders        | Results |
|                |                                                      | $\Delta$ ifo index                                | Results |
|                |                                                      | avg. forecast revision (by sector)                | Results |
| Fixed effect   | Time FE absorbed                                     | time $\times$ sector FE absorbed                  | Results |
| Data Type      | qualitative data $(+1,0,-1)$ on production (expect.) | quantitative data $(0-100)$ on business situation | Results |
|                |                                                      |                                                   |         |

# Over- and underreaction to news: Heterogeneity

When are deviations from RE benchmark largest?

Micro bias is homogenous

- symmetric reaction to positive and negative news
- robust across firm size, sectors, age and time in survey

#### Macro bias is heterogeneous

- larger for negative news than positive news
- increases with firm size and varies across sectors
- similar bias across firm age
- larger for firms that recently joined the survey

Both biases are stronger during recessions



Results

### Should we care?

#### Firms with larger biases display larger production volatility

Measurement: firm-level standard deviation of production (Bachmann et al. 2013)

|                     | dependent variable: sd <sub>i</sub> (production <sub>it</sub> ) |              |              |  |  |
|---------------------|-----------------------------------------------------------------|--------------|--------------|--|--|
|                     | Sign of Bias (1) (2)                                            |              |              |  |  |
| Constant            |                                                                 | 0.406***     |              |  |  |
| Micro News Bias     | $eta_{	extsf{1}} < 	extsf{0}$                                   | -0.250***    | -0.248***    |  |  |
| Macro News Bias     | $eta_2 > 0$                                                     | $1.66^{***}$ | $1.64^{***}$ |  |  |
| Observations        |                                                                 | 2,204        | 2,204        |  |  |
| Sector- and Size-FE |                                                                 |              | $\checkmark$ |  |  |

# Should we care? cont'd

#### Firms with larger biases make lower profits

Measurement: biannual, quantitative survey question on expected surplus less tax or loss in percent of net sales

|                                     | dependent variable: mean <sub>i</sub> (profits <sub>it</sub> ) |        |            |  |
|-------------------------------------|----------------------------------------------------------------|--------|------------|--|
|                                     | Sign of bias                                                   | (1)    | (2)        |  |
| Constant                            |                                                                | 0.199  |            |  |
| Micro News Bias                     | $eta_{	extsf{1}} < 	extsf{0}$                                  | 1.76** | 2.36***    |  |
| Macro News Bias                     | $eta_2 > 0$                                                    | -0.069 | -0.363     |  |
| Observations<br>Sector- and Size-FE |                                                                | 1,665  | 1,665<br>√ |  |

# Over- and underreaction of decision-makers in general equilibrium

Different theoretical approaches to model over-/underreaction (of *prof. forecasters*) with respect to *macro variables* in the literature:

- underreaction: sticky/noisy information (e.g., Coibion and Gorodnichenko 2012)
- overreaction: diagnostic expectations (Bordalo et al. 2020)
- **both:** absolute + relative overconfidence (Broer and Kohlhas 2022)

# Over- and underreaction of decision-makers in general equilibrium

Different theoretical approaches to model over-/underreaction (of *prof. forecasters*) with respect to *macro variables* in the literature:

- underreaction: sticky/noisy information (e.g., Coibion and Gorodnichenko 2012)
- overreaction: diagnostic expectations (Bordalo et al. 2020)
- **both:** absolute + relative overconfidence (Broer and Kohlhas 2022)

Our model explains why expectations about *firm-specific* developments respond differently to different type of news:

- joint effect of firm-specific and aggregate variables on firm output requires GE model
- combines noisy information (Lorenzoni 2009) + island illusion

# GE Model: Setup

Continuum of islands indexed by  $I \in [0, 1]$ , each populated by

• unit mass of producers indexed by  $j \in [0, 1]$  with production function  $Y_{j,l,t} = A_{j,l,t} L_{i,l,t}^{\alpha}$ 

• representative household with utility function  $U_{l,t} = E_{l,t} \left( \sum_{k=t}^{\infty} \beta^{k-t} \ln \hat{C}_{l,k} - \frac{L_{l,k}^{1+\psi}}{1+\psi} \right)$ 

**Productivity is island specific:**  $A_{j,l,t} = A_{l,t}$ 

 $\rightarrow$  log-productivity  $a_{l,t}$  is sum of aggregate component  $x_t$  and island-specific component  $\eta_{l,t}$ :

$$a_{I,t} = x_t + \eta_{I,t}$$

 $U_{l,t}$  includes demand shifters:  $\hat{C}_{l,t} = \int_0^1 Q_{l,j,t} C_{l,j,t}$  $\rightarrow$  Household-specific demand shocks with aggregate component:

$$q_{l,t} = q_t + \hat{q}_{l,t}$$

2. Data

### Island illusion I

Firms forecast aggregate productivity conditional on own productivity:

 $a_{l,t} - x_{t-1} = \varepsilon_t + \eta_{l,t} \rightarrow private signal$  for each island

#### Firms consider technological innovations to be mostly idiosyncratic, hence

- $\rightarrow$  assess own productivity to be overly idiosyncratic:  $\hat{\sigma}_{\eta}^2/\hat{\sigma}_{\varepsilon}^2 > \sigma_{\eta}^2/\sigma_{\varepsilon}^2$
- $\rightarrow\,$  expect, on average, other prices to fall little after observing positive private signal
- $\rightarrow\,$  overestimate own output, since competitors' prices turn out to be lower.

**Result 1**: Island illusion leads to overreaction to micro news.

# Island illusion II

Firms forecast own and aggregate demand based on public signal:

$$s_t = q_t + e_t$$
 with  $e_t \sim \mathcal{N}(0, \sigma_e^2) \rightarrow public signal$   
for  $q_{l,j,t} = q_t + \hat{q}_{l,j,t}$ 

#### Firms consider demand changes to be mostly idiosyncratic, hence

- $\rightarrow$  underestimate importance of aggregate developments:  $\hat{\sigma}_{\hat{a}}^2/\hat{\sigma}_{a}^2 > \sigma_{\hat{a}}^2/\sigma_{a}^2$
- $\rightarrow$  implies underestimation of public signal-to-noise ratio:  $\hat{\sigma}_e^2/\hat{\sigma}_q^2 > \sigma_e^2/\sigma_q^2$
- $\rightarrow\,$  underestimate own and aggregate demand after observing positive public signal
- $\rightarrow\,$  underestimate own output, also because competitors' prices turn out to be higher

Result 2: Island illusion leads to underreaction to macro news.

# Mapping the model to the empirics

Consider the regression

$$extsf{FE}_{j,l.t} = eta extsf{FR}_{j,l,t} + \delta extsf{s}_t + \omega_{j,l,t}$$

- $FE_{i,l,t}$ : production forecast error of firm j on island l
- $FR_{j,l,t}$ : production forecast revision of firm j on island l
  - st: public signal about aggregate demand

In case of island illusion, we obtain

$$eta < 0$$
 and  $\delta > 0$  .

Correlation of micro and macro bias I Importance of the macroeconomy

## Conclusion

How do firms adjust their expectations as new information arrives?

Using a large panel of German firms we find

- overreaction to micro news as measured by qualitative forecast revisions
- underreaction to macro news as measured by surprise component of ifo index

## Conclusion

How do firms adjust their expectations as new information arrives?

Using a large panel of German firms we find

- overreaction to micro news as measured by qualitative forecast revisions
- underreaction to macro news as measured by surprise component of ifo index

How can these patterns be explained?

- Study heterogeneity in the cross-section and time-series dimension
- Propose general equilibrium model featuring firms with island illusion, who consider their own technology and demand as overly idiosyncratic

# Appendix

# Media coverage of ifo index and professional forecasts 🔤

| Date             | Outlet                 | Quote                                                                                              |
|------------------|------------------------|----------------------------------------------------------------------------------------------------|
| 24 April 2022    | Der Spiegel            | [ifo index] stieg [] auf 91,8 Zähler.<br>Analysten hatten mit [] 89,0 Punkten gerechnet.           |
| 22 February 2022 | Handelsblatt           | [ifo index] stieg im Februar [] auf 98.9 Punkte.<br>Ökonomen hatten mit [] 96,5 Punkten gerechnet. |
| 24 November 2021 | Der Spiegel            | Geschäftsklimaindex sank auf 96,5 Punkte.<br>Experten hatten [] 96,6 Punkte erwartet               |
| 27 July 2020     | Süddeutsche<br>Zeitung | [ifo index] für Juli legte auf 90,5 Zähler [] zu.<br>Ökonomen hatten mit 89,3 Punkten gerechnet.   |









4. General Equilibrium Model

# Over- and underreaction to news Back

Pooled estimation - robustness: ordered logit

| term       | estimate | std.error | statistic | type        | exp(estim.) |
|------------|----------|-----------|-----------|-------------|-------------|
| Micro News | -1.16    | 0.01      | -166.83   | coefficient | 0.31        |
| Macro News | 0.10     | 0.00      | 35.70     | coefficient | 1.11        |
| -4/3 -1    | -6.06    | 0.03      | -174.40   | scale       | 0.00        |
| -1 -2/3    | -3.58    | 0.01      | -338.23   | scale       | 0.03        |
| -2/3 -1/3  | -2.47    | 0.01      | -371.38   | scale       | 0.08        |
| -1/3 0     | -1.28    | 0.00      | -282.15   | scale       | 0.28        |
| 0 1/3      | 1.53     | 0.00      | 315.29    | scale       | 4.61        |
| 1/3 2/3    | 2.73     | 0.01      | 374.83    | scale       | 15.31       |
| 2/3 1      | 3.92     | 0.01      | 322.56    | scale       | 50.63       |
| 1 4/3      | 6.68     | 0.05      | 144.49    | scale       | 794.46      |

# Intuition for Coibion and Gorodnichenko (2015) regressions 🚥

Coibion and Gorodnichenko (2015)-type regression with more detail

 $\text{Error}_{i,t} = \text{Realization}_{i,t} - \text{Expectation}_{i,t} = \beta_0 + \beta_1^i \text{Micro news}_{i,t} + \beta_2^i \text{Macro news}_t + v_t^i$ What do the signs of  $\beta_1^i$  and  $\beta_2^i$  tell us?

- $\beta_1^i = \beta_2^i = 0$  is RE benchmark, forecast errors are not predictable from news
- $\beta^i > 0$  when positive news predict positive errors, exp. revision too small, underreaction
- $\beta^i < 0$  when positive news predict negative errors, exp. revision too large, overreaction

# Firm expectations and expectation errors **Gall**



- distributions of expectations / errors symmetric and centered around zero
- majority of average firm expectation errors insignificantly different from zero (dark green)

# Over- and underreaction to news Back

Pooled estimation - robustness: set small forecast errors to zero

|                       | Forecast Error       |                      |                      |                           |
|-----------------------|----------------------|----------------------|----------------------|---------------------------|
|                       | (1)                  | (2)                  | (3)                  | (4)                       |
| Micro News            | -0.117***<br>(0.001) | -0.117***<br>(0.001) |                      |                           |
| Macro News            | 0.018***<br>(0.0006) |                      | 0.018***<br>(0.0006) | $0.018^{***}$<br>(0.0006) |
| Forecast Revision     | · · ·                |                      | ( )                  | -0.115***<br>(0.001)      |
| Observations          | 302,737              | 302,737              | 302,737              | 302,737                   |
| R <sup>2</sup>        | 0.11483              | 0.11068              | 0.07974              | 0.11352                   |
| Within R <sup>2</sup> | 0.04244              | 0.03795              | 0.00449              | 0.04103                   |
| Firm FE               | $\checkmark$         | $\checkmark$         | $\checkmark$         | $\checkmark$              |

1. Introduction

### Over- and underreaction to news Back

Pooled estimation - robustness: set small forecast errors to zero when zero expectations

|                       | Forecast Error       |                      |                      |                      |
|-----------------------|----------------------|----------------------|----------------------|----------------------|
|                       | (1)                  | (2)                  | (3)                  | (4)                  |
| Micro News            | -0.180***<br>(0.001) | -0.180***<br>(0.001) |                      |                      |
| Macro News            | 0.017***<br>(0.0006) |                      | 0.017***<br>(0.0006) | 0.018***<br>(0.0006) |
| Forecast Revision     |                      |                      | 、 <i>,</i>           | -0.176***<br>(0.001) |
| Observations          | 302,737              | 302,737              | 302,737              | 302,737              |
| R <sup>2</sup>        | 0.14873              | 0.14530              | 0.07495              | 0.14684              |
| Within R <sup>2</sup> | 0.08316              | 0.07946              | 0.00369              | 0.08113              |
| Firm FE               | $\checkmark$         | $\checkmark$         | $\checkmark$         | $\checkmark$         |

# Over- and underreaction to news - Robustness 🚥

Pooled estimation, macro news from manufacturing orders

|                       | Forecast Error       |                      |                      |                                  |
|-----------------------|----------------------|----------------------|----------------------|----------------------------------|
|                       | (1)                  | (2)                  | (3)                  | (4)                              |
| Micro News            | -0.194***<br>(0.001) | -0.194***<br>(0.001) |                      |                                  |
| Macro News            | 0.005***<br>(0.0003) |                      | 0.005***<br>(0.0003) | 0.005 <sup>***</sup><br>(0.0003) |
| Forecast Revision     |                      |                      | 、 <i>,</i>           | -0.190***<br>(0.001)             |
| Observations          | 298,586              | 298,586              | 298,586              | 298,586                          |
| R <sup>2</sup>        | 0.16100              | 0.16006              | 0.08580              | 0.15828                          |
| Within R <sup>2</sup> | 0.08321              | 0.08217              | 0.00103              | 0.08023                          |
| Firm FE               | $\checkmark$         | $\checkmark$         | $\checkmark$         | $\checkmark$                     |

# Over- and underreaction to news - Robustness Back

#### Alternative fixed effects and macro news

|                                        | (1)          | (2)                   | (3)          | (4)          | (5)                 |
|----------------------------------------|--------------|-----------------------|--------------|--------------|---------------------|
| Micro News                             | -0.194***    |                       | -0.194***    | -0.194***    |                     |
| Macro News                             | 0.021***     | 0.021***              | (0.001)      | (0.001)      |                     |
| Micro News (Time X Sector FE absorbed) | (0.0007)     | (0.0007)<br>-0.196*** |              |              | -0.196***           |
| $\Delta$ ifo Index                     |              | (0.001)               | 0.001***     |              | (0.001)             |
| Average Forecast Revision              |              |                       | (0.0002)     | 0.308***     |                     |
| Average Forecast Revision by Sector    |              |                       |              | (0.019)      | 0.129***<br>(0.013) |
| Observations                           | 302,737      | 302,737               | 301,185      | 302,737      | 302,737             |
| R <sup>2</sup>                         | 0.16471      | 0.16555               | 0.16017      | 0.16186      | 0.16169             |
| Within R <sup>2</sup>                  | 0.08701      | 0.08793               | 0.08214      | 0.08389      | 0.08371             |
| Firm FE                                | $\checkmark$ | $\checkmark$          | $\checkmark$ | $\checkmark$ | $\checkmark$        |
| duction 2. Data 3. Empirical Analysis  | 5            | 4. General Equilibri  | um Model     | 6. Conclu    | sion 31/21          |

# Over- and underreaction to news - Robustness (Back

Quantitative data for business expectations - wording of questions

#### Expectations for the next six months:

 In cyclical regards our state of business will be 0 [rather less favorable] to 100 [rather favorable]

#### Current situation:

- We consider our state of business to be 0 [bad] to 100 [good]
- A priori not clear if expectations measure levels or changes
  - Link (2020) concludes that responses measure expected levels of revenue
  - our results hold for both interpretations

### Over- and underreaction to news - Robustness 🚥

Quantitative data for business expectations - forecast errors centered around zero

Interpret expectations as levels  $Error_{it} = Busi_{i,t+6} - Busi_{i,t+6|t}$  Interpret expectations as changes  $Error_{it} = (Busi_{i,t+6} - Busi_{i,t}) - Busi_{i,t+6|t}$ 



## Over- and underreaction to news Back

Quantitative data for business expectations - interpret expectations as levels

|                       | Forecast Error       |                      |                     |                      |
|-----------------------|----------------------|----------------------|---------------------|----------------------|
|                       | (1)                  | (2)                  | (3)                 | (4)                  |
| Micro News            | -0.450***<br>(0.003) | -0.450***<br>(0.003) |                     |                      |
| Macro News            | 0.687***<br>(0.043)  |                      | 0.683***<br>(0.042) | 0.843***<br>(0.043)  |
| Forecast Revision     | ~ /                  |                      | · · ·               | -0.442***<br>(0.003) |
| Observations          | 161,578              | 161,578              | 164,675             | 161,578              |
| R <sup>2</sup>        | 0.32430              | 0.32210              | 0.25535             | 0.32261              |
| Within R <sup>2</sup> | 0.09227              | 0.08931              | 0.00290             | 0.09000              |
| Firm FE               | $\checkmark$         | $\checkmark$         | $\checkmark$        | $\checkmark$         |

## Over- and underreaction to news Back

Quantitative data for business expectations - interpret expectations as changes

|                       | Forecast Error                  |                      |                     |                      |
|-----------------------|---------------------------------|----------------------|---------------------|----------------------|
|                       | (1)                             | (2)                  | (3)                 | (4)                  |
| Micro News            | -0.448***<br>(0.003)            | -0.448***<br>(0.003) |                     |                      |
| Macro News            | 0.697* <sup>**</sup><br>(0.043) |                      | 0.693***<br>(0.042) | 0.853***<br>(0.043)  |
| Forecast Revision     | ~ /                             |                      | · · ·               | -0.440***<br>(0.003) |
| Observations          | 161,399                         | 161,399              | 164,492             | 161,399              |
| R <sup>2</sup>        | 0.33211                         | 0.32989              | 0.26488             | 0.33054              |
| Within R <sup>2</sup> | 0.09112                         | 0.08809              | 0.00298             | 0.08898              |
| Firm FE               | $\checkmark$                    | $\checkmark$         | $\checkmark$        | $\checkmark$         |

# Over- and underreaction to news: Heterogeneity Back

#### Heterogeneity in underreaction to macro news

|                                            | Micro News      |                     | Macro News      |                     |
|--------------------------------------------|-----------------|---------------------|-----------------|---------------------|
| Interaction                                | $\widehat{eta}$ | $SE(\widehat{eta})$ | $\widehat{eta}$ | $SE(\widehat{eta})$ |
| News                                       |                 |                     |                 |                     |
| Overall                                    | $-0.194^{***}$  | 0.001               | 0.021***        | 0.001               |
| News                                       |                 |                     |                 |                     |
| imes Positive sign of news                 | $-0.199^{***}$  | 0.002               | $0.011^{***}$   | 0.001               |
| imes Negative sign of news                 | $-0.189^{***}$  | 0.002               | 0.034***        | 0.001               |
| News                                       |                 |                     |                 |                     |
| imes 1. Quartile by employees              | $-0.199^{***}$  | 0.003               | 0.012***        | 0.003               |
| imes 2. Quartile by employees              | $-0.193^{***}$  | 0.003               | $0.019^{***}$   | 0.002               |
| imes 3. Quartile by employees              | $-0.192^{***}$  | 0.003               | 0.021***        | 0.001               |
| imes 4. Quartile by employees              | $-0.195^{***}$  | 0.002               | 0.026***        | 0.001               |
| News                                       |                 |                     |                 |                     |
| imes Time in survey $<$ half a year        | $-0.195^{***}$  | 0.008               | 0.032***        | 0.006               |
| $\times$ Time in survey $\geq$ half a year | $-0.194^{***}$  | 0.001               | 0.021***        | 0.001               |

#### Over- and underreaction to news: Heterogeneity over time (Back) Stronger biases during financial crisis



Note: Regressions over Rolling Window (5 Periods)

3. Empirical Analysis

4. General Equilibrium Model

#### Overreaction to micro news: size and sectors 📖



Note: 95% confidence bands. Firm size approximated by quartiles of number of employees (Q1 to Q4)

3. Empirical Analysis

4. General Equilibrium Model

6. Conclusion 38/21

#### Underreaction to macro news: size and sectors Imm



Note: 95% confidence bands. Firm size approximated by quartiles of number of employees (Q1 to Q4)

3. Empirical Analysis

4. General Equilibrium Model

6. Conclusion 39/21

### Macro news and planned price changes



3. Empirical Analysis

4. General Equilibrium Model

# Intraperiod timing at t Back

#### First stage

- $\bullet$  information about all variables in t-1 is released, nominal wages are determined
- generic ("monetary policy") shock  $v_t$  is publicly observed
- central bank sets interest rate based on expected inflation  $r_t = \psi E_{cb,t}(\pi_t) + \nu_t$

#### Second stage

- $a_{l,t} x_{t-1} = \varepsilon_t + \eta_{l,t}$  constitutes *private signal* for each island  $\rightarrow$  micro news
- $s_t = q_t + e_t$  with  $e_t \sim \mathcal{N}(0, \sigma_e^2)$  is public signal  $\rightarrow$  macro news
- Firms forecast own demand and competitors' prices conditional on both signals

#### Third stage

- firms on each island produce
- $\bullet$  households shop on  $n<\infty$  islands and observe prices there

### Theoretical results (Back)

Island illusion leads to (output) overreaction to micro and underreaction to macro news.

Consider the regression

$$\Delta y_{j,l,t} - E_{j,l,t} \Delta y_{j,l,t} = \bar{\alpha} + \beta F R_{j,l,t} + \delta s_t + \omega_{j,l,t}$$
 ,

where

- $\Delta y_{j,l,t}$ : realized change in firm *j*-specific output
- $FR_{j,l,t} = E_{j,l,t}x_t E_{j,l,t-1}x_t$ : forecast revision of firm j

In case of island illusion, we obtain

$$eta < 0$$
 and  $\delta > 0$ 

### External validation: Model prediction I 🚥

#### Firms with a stronger micro bias should also display a stronger macro bias

Intuition: island illusion drives both biases

Measurement: firm-level macro and micro biases



3. Empirical Analysis

# External validation: Model prediction II (Back)

# Firms with larger attachment to the business cycle have larger potential for underreaction to macro news

Intuition: for those firms, aggregate developments are more important

Measurement: one-time question in ifo survey:

How important is the general economic development in Germany for your business situation? very important [1] to unimportant [5]

|                                     | $1(macro importance_i = very important)$ |        |  |  |
|-------------------------------------|------------------------------------------|--------|--|--|
|                                     | (1)                                      | (2)    |  |  |
| Constant                            | 0.209***                                 |        |  |  |
| Micro News Bias                     | 0.062                                    | 0.081  |  |  |
| Macro News Bias                     | $1.61^{**}$                              | 1.37** |  |  |
| Observations<br>Sector- and Size-FE | 720<br>√                                 | 720    |  |  |

# Macro importance and macro bias

Sectors with lower attachment to business cycle display larger macro bias



Note: Sector shares of firms for which the business cycle is very important

1. Introduction

2. Data

3. Empirical Analysis

4. General Equilibrium Model

# Firm-level subjective uncertainty

|                       | (1)     | (2)     | (3)     | (4)          | (5)          | (6)          |
|-----------------------|---------|---------|---------|--------------|--------------|--------------|
| (Intercept)           | 51.9*** | 52.4*** | 50.4*** |              |              |              |
|                       | (1.71)  | (0.828) | (1.74)  |              |              |              |
| Micro News Bias       | -13.2   |         | -10.4   | -12.0        |              | -9.75        |
|                       | (8.71)  |         | (8.69)  | (8.65)       |              | (8.58)       |
| Macro News Bias       |         | 57.6*** | 55.3*** |              | 56.7***      | 55.0***      |
|                       |         | (17.4)  | (17.5)  |              | (17.9)       | (18.0)       |
| Observations          | 718     | 718     | 718     | 718          | 718          | 718          |
| $R^2$                 | 0.00321 | 0.01408 | 0.01605 | 0.03624      | 0.04702      | 0.04865      |
| Within R <sup>2</sup> |         |         |         | 0.00258      | 0.01374      | 0.01542      |
| Sector FE             |         |         |         | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Size FE               |         |         |         | $\checkmark$ | $\checkmark$ | $\checkmark$ |

 $\rightarrow$  Macro bias is associated with higher subjective uncertainty

1. Introduction