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Abstract

In this paper, we remove the influence of estimating a constant term on the
bias of the conditional maximum likelihood or conditional sum-of-squares esti-
mator of the fractional parameter, d, in a stationary/invertible or nonstationary
or non-invertible time series model. We consider a “type II” ARFIMA(0,d,0)
process including a constant term and derive an expression for the second-order
bias of d̂. We show that we can remove the second-order bias in d̂ that occurs due
to the presence of a constant term by a simple modification on the conditional
(profiled) likelihood. Consequently, in finite samples the estimated d̂ behaves, on
average, the same as if we have known the true value of the constant term. We
call this estimator the modified conditional sum of squares estimator (MCSS).

1 Introduction

Fractional integrated time series models are applied widely in a wide range of fields,
for example in finance, economics, political science and many more; see for illustra-
tions Hassler (2019) and Hualde and Nielsen (2021a). In a parametric setting, one
popular choice of estimating such models is the quasi-maximum likelihood estimator
(QML), also called the conditional sum-of-squares estimator (CSS) or the truncated
sum-of-squares estimator. This estimator has been widely applied in the empirical liter-
ature modeling fractional integrated time series, see for example Hualde and Robinson
(2011) for aggregate income and consumption data and Johansen and Nielsen (2016)—
henceforth JN (2016)—for opinion polls. The main appealing feature of this estimator
is that the so-called memory parameter can be estimated consistently, as long as it lies
in a compact large interval, on the real line allowing for nonstationary and noninvertible
processes. Li and McLeod (1986) introduced this estimator for stationary ARFIMA
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models. Beran (1995) allowed for nonstationarity and gave a consistency proof, al-
though Velasco and Robinson (2000) noticed that the argument for consistency was
circular. Robinson (2006) fixed the consistency proof, albeit for the stationary region.
Tanaka (1999) and Nielsen (2004) gave local consistency proofs. Finally, Hualde and
Robinson (2011) and Nielsen (2015) provided global consistency proofs and derived the
asymptotic behaviour of the estimators under quite general assumptions of the error
component. The consistency proof is non-trivial because the objective function con-
vergence non-uniformly when the range of the memory parameter is arbitrarily large.
A drawback of the previously mentioned papers is that the asymptotic justification
for the CSS estimator is only given for time series without deterministic components.
Only recently, Hualde and Nielsen (2020, 2021b) introduced unknown deterministic
components (such as a constant term and also additive generalized polynomial trend)
and establish consistency and asymptotic normality of the estimator for the memory
parameter.

In the presence of deterministic components, however, the CSS estimators might
be severely deteriorated. This was already early noticed by Chung and Baillie (1993).
Chung and Baillie (1993) showed, through a simulation study, that the estimation of the
mean can make considerable difference to the small sample bias of memory parameter
and other parameters in the error component. They evaluate three different estimators
of the mean, and find that in some cases the sample median may perform better
than the more usual sample mean or the QML of the mean. This bias issue was also
documented by Nielsen and Frederiksen (2005), for example, for the ARFIMA(1,d,0)
model with a positive autoregressive parameter.

We propose a simple way of handling the finite-sample bias issue that occurs due to
estimating the deterministic component by directly modifying the (conditional) like-
lihood, based on the idea of Cox and Reid (1987). In an unpublished paper An and
Bloomfield (1993)1 applied this idea to remove the second-order bias from the maxi-
mum likelihood estimator due to the presence of unknown nuisance parameters in a
stationary “type I” ARFIMA model. Ooms and Doornik (1999) and Doornik and Ooms
(2004) showed the effectiveness of the bias correction for the estimation of the memory
parameter. The literature does not yet contain, however, a theoretical justification of
the modified likelihood approach in the context of fractionally integrated models. We
fill this gap in the literature for a “type II” ARFIMA(0,d,0) model. We find almost
the same modification term as in An and Bloomfield (1993). Despite the similarity of
the modification term, in our setting we do not assume that the data is stationary nor
invertible. Furthermore, our modification term is easy to calculate without the need
for inverting the variance-covariance matrix. Finally, we do not impose that the data
generation process is Gaussian such that any non-Gaussian processes with finite fourth
moments is allowed.

This paper contributes to the literature in three ways. Firstly, we show analytically
that the modified conditional sum-of-squares estimator (MCSS) removes the bias in
the estimated memory parameter due to the presence of the unknown constant term.
Secondly, we show that the asymptotically properties of the MCSS estimator are not
affected by the correction term and therefore are asymptotically negligible and hence

1We thank Shu An and Peter Bloomfield for providing us with their paper.
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behave the same as the CSS estimator. Thirdly, we find an analytical expression for
the bias of the memory parameter that occurs due to the presence of the constant
term. For non-stationary fractional time series Johansen and Nielsen (2016) derived
an expression of the second-order bias using higher-order expansions. We extend their
result by covering also the stationary domain. The remainder of the paper is organized
as follows. In Section 2, we present the MCSS estimator and in Section 3 we present
the main result. Section 4 present a simulation study. Section 5 concludes. Proofs of
the main result are given in the appendix.

2 The Modified Conditional Sum of Squares Esti-

mator

We consider the following simple fractional process with an unknown constant term
given by

xt = µ0I(t ≥ 1) + ∆−d0
0 ϵt, ϵt ∼ i.i.d.(0, σ2

0), t = 0,±1,±2, . . . , (1)

where ∆ = 1 - L and L are the difference and lag operators, respectively, and where
d0 can take any value in R. For any series ut, real number ζ and t ≥ 1, the operator
∆ζ

0 is defined by

∆ζ
0ut = ∆ζ{utI(t ≥ 1)} =

t−1∑
i=0

πi(−ζ)ut−i, (2)

with I(·) denoting the indicator function, πi(a) = 0 for i < 0, π0(a) = 1, and

πi(a) =
Γ(a+ i)

Γ(a)Γ(1 + i)
=
a(a+ 1) . . . (a+ i− 1)

i!
, i ≥ 1, (3)

denoting the coefficients in the usual binomial expansion of (1− z)−a =
∑∞

i=0 πi(a)z
i,

where Γ(·) is the gamma function with the convention Γ(i) = 0 for i =,−1,−2, . . . and
Γ(0)
Γ(0)

= 1. Model (1) is known as a “type II”(or truncated) fractional model, since the

operator in (2) implies that xt = 0 for t ≤ 0, see Marinucci and Robinson (1999).

We would like to consider the Gaussian log-likelihood, conditional2 on xt = 0 for
t ≤ 0, which is given by

−T
2
log
(
σ2
)
− 1

2σ2

T∑
t=1

(
∆d(xt − µ)

)2
= −T

2
log
(
σ2
)
− 1

2σ2

T∑
t=1

(
∆d

0(xt − µ)
)2
. (4)

It is clear from (4) that we can profile out σ2 and find the maximum likelihood esti-
mators of d and µ by minimizing

L(d, µ) =
1

2

T∑
t=1

(
∆d

0(xt − µ)
)2
, (5)

2Notice that actually the conditioning has been done implicitly in (1) by assuming a “type II”
fractional process. Therefore, Hualde and Robinson (2011) and Hualde and Nielsen (2020) prefer
to call the estimators that maximizes (4) the truncated sum-of-squares estimators instead of the
conditional sum-of-squares estimators.
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with respect to d and µ. Furthermore, we can profile out µ by rewriting the term

∆d
0(xt − µ) = ∆d

0xt −
t−1∑
n=0

πn(−d)µ,

= ∆d
0xt − πt−1(1− d)µ = ∆d

0xt − κ0t(d)µ,

where κ0t(d) =
∑t−1

n=0 πn(−d) = πt−1(1 − d) by JN (2016, Lemma A.4). We find that
the estimator of µ for fixed d is given by

µ̂(d) =

∑T
t=1(∆

d
0xt)κ0t(d)∑T

t=1 κ0t(d)
2

. (6)

Then the maximum likelihood estimator of d can be found by minimizing the pro-
filed likelihood function

L∗(d) =
1

2

T∑
t=1

(
∆d

0xt − κ0t(d)µ̂(d))
)2

(7)

with respect to d. Thus,

d̂ = argmin
d∈D

L∗(d), (8)

for a parameter space D to be defined below. Formally (7) is a monotonic transforma-
tion of the likelihood function, but we prefer to call it the likelihood function and to
make a distinction we place an asterisk.

Hualde and Nielsen (2020, Theorem 1 and Theorem 2)3 showed that if xt is gener-
ated by (1) and under Assumptions 3.1-3.2 (defined below), then, as T → ∞, it holds
that d̂ is consistent and that

√
T (d̂− d0)

d−→ N(0, ζ−1
2 ), (9)

where ζ−1
2 = 6/π2.

A few remarks about the estimator µ̂(d) in (6). For d = d0 we have that

µ̂(d0)− µ0 =

∑T
t=1 ϵtκ0t(d0)∑T
t=1 κ0t(d0)

2
,

which has mean zero and variance σ2
0

(∑T
t=1 κ0t(d)

2
)−1

. For the stationary region, e.g

d0 < 1/2, this variance goes to zero because then
∑T

t=1 κ0t(d)
2 converges in T , see

Lemma A.7. While for the non-stationary region, e.g. d0 > 1/2, this variance does not
go to zero because then

∑T
t=1 κ0t(d)

2 is bounded in T , see Lemma A.2. This is exactly

the reason that µ̂(d̂) is consistent only when d0 < 1/2, for the proof see Hualde and
Nielsen (2020, Corollary 1).

3Hualde and Nielsen (2020) allow for short memory components in the DGP and an additive
generalized polynomial trend with unknown exponent parameter. Therefore, our DGP is a special
case of theirs.
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The purpose of this paper is to remove the second-order bias that occurs due to
estimating µ0 and to find the analytic expression of this second-order bias. For this
purpose, we analyze also the situation where µ0 is known. In practice, this is not a
feasible estimators since µ0 is often not known. This CSS estimator can be formulated
in (5) where µ = µ0 and we get

d̂µ0 = argmin
d∈D

L∗
µ0
(d) (10)

L∗
µ0
(d) =

1

2

T∑
t=1

(
∆d

0(xt − µ0)
)2
. (11)

This estimator is considered by Hualde and Robinson (2011) and it is shown that d̂µ0

is consistent with the same limiting distribution as in (9).

The difference between the likelihood in (11) compared to the likelihood in (7) is
that µ0 is replaced by the maximum likelihood estimator of µ keeping d fixed. Apart
from the uncertainty of the replacement of σ2 with the estimated, it is important to
realize that L∗(d) is not a genuine likelihood function, that is, it is not based on the
density function of the random variables in (1), see for example Severini (2000). In
large samples, this replacement has a relatively minor effect. In small samples, however,
this replacement may have a large impact. This was already early noticed by Chung
and Baillie (1993). As a consequence, the bias of d̂ due to the presence of an unknown
constant term is reflected in the expectation of the score function evaluated at d0. It
turns out that

E (DL∗(d0)) = O(1),

where D stands for the first derivative, see JN (2016, Lemma B.4) and Lemma A.11.
Hence, the poor performance of the profile likelihood is reflected in the expected score
function evaluated at the true value of d. Whereas, if the µ0 were known we would
have that

E
(
DL∗

µ0
(d0)

)
= 0,

by JN (2016, Lemma B.4) and Lemma A.12. The reason is that in this case the
likelihood L∗

µ0
(d) is genuine, in the sense that it is based on the density function of the

random variables in (1).

Higher-order asymptotic theory can provide corrections for the bias in the esti-
mation of d caused by estimating the constant. We remove the second-order bias by
modifying the the likelihood function as follows

L∗
MCSS(d) = m(d)L∗(d), (12)

m(d) =

(
T∑
t=1

κ0t(d)
2

) 1
T−1

, (13)

such that

E (DL∗
MCSS(d0)) = o(1)
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from Lemma A.6 and A.12. We call this estimator the modified conditional sum-of-
squares (MCSS) estimator and denote the estimated d by d̂MCSS, i.e,

d̂MCSS = argmin
d∈D

L∗
MCSS(d). (14)

The asymptotic properties of the MCSS estimator are not affected by the correction
term and therefore asymptotically negligible and hence the asymptotic distribution is
given in (9). This follows from noticing that

L∗
MCSS(d0) = L∗(d0) +OP (1) for d0 > 1/2,

L∗
MCSS(d0) = L∗(d0) +OP (log(T )) for d0 < 1/2,

where the first term is OP (T ), the next is OP (1) or OP (log(T )), so the second term
has no influence on the asymptotic distribution of d̂MCSS, see Lemma A.3 and A.2.
However, for the bias we need to analyze the second term further. Note that the
MCSS is simple to implement and does not require a priori knowledge about d0. The
modification term m(d) that we have is almost the same as the modification term
derived by An and Bloomfield (1993). Who apply the idea in Cox and Reid (1987) to
remove the bias of the maximum likelihood estimator due to nuisance parameters of
the regression. The modification term that they find is

ι′R−1ι (15)

where ι is a T×1 vector of ones and R variance-covariance matrix of x ∼ N(µ,Rσ).
We might want to write R−1 = (R−1/2)′R−1/2 and then the expression in (15) becomes
(R−1/2ι)′ (R−1/2ι), where R−1/2 basically is filtering out the correlation structure in
the error term. In our setting we have a truncated “type II” process such that R−1/2

is replaced by ∆d
0 and we get (∆d

0ι)
′(∆d

0ι) =
∑T

t=1 κ0t(d)
2. Although the similarities

between the two modifications, our setting does not require stationarity of xt and
neither we do not need to calculate the inverse of the variance-covariance matrix also we
do not impose Gaussianity of xt. The simplicity and the feasibility of the CSS estimator
is also encountered in the modified CSS estimator. Doornik and Ooms (2004) showed
the effectiveness of the bias correction for the estimation of d in ARFIMA models and
we shall see that this effectiveness is carried out for the MCSS estimator as well.

Before we end this Section, we want to build some intuition of the modification
term in (12). Therefore, Figure 1 plots m(d) against different values of d, namely d
between -1 and 2, and for T = 64, 128, 256.
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Figure 1: Plot of the modification term m(d) in (12) for d between -1 and 2, and T =
64, 128, 256.

A few remarks focusing only on the region −1 ≤ d ≤ 2. First, the modification term
punishes the likelihood more severe for stationary time series, that is when d < 1/2,
than for non-stationary time series, when d > 1/2. Therefore, one would except that
the bias of d̂ in the stationary region is more severe than the non stationary region
and indeed that follows from Theorem 3.2. Second, around d = 1 the curve seems flat,
implying that the bias caused by estimating the constant term is the lowest at that
point. Third, even for a moderate sample of T = 256 the stationary part seems to have
still a considerable punishment term.

3 Stochastic Expansions

Before we analyze the bias terms of the different estimators that we considered in
Section 2 we first introduce two assumptions and then a theorem about the consistency
and asymptotic normality of the MCCS estimator in (14).

Assumption 3.1. The errors ϵt are i.i.d.(0,σ2
0) with finite fourth moment.

Assumption 3.2. The parameter set for (d, µ, σ2) is D × R × R+, where D = [d, d̄],
0 < d < d̄ <∞. The true value is d0 in the interior of D.

Assumption 3.1 requires that the errors are i.i.d. with finite four moments. This
assumption is stricter than in Hualde and Robinson (2011) and Hualde and Nielsen
(2020) were they assume martingale difference errors. The literature for modified pro-
filed likelihood, however, often assumes that the error term is known, and often assumed
to be Gaussian, see An and Bloomfield (1993),Cox and Reid (1987) and Doornik and
Ooms (2004). Therefore, compared to this branch of literature our Assumption 3.1 is
mild. Assumption 3.2 allows d0 to take any value inside a compact set D. This assump-
tion is the same as in Hualde and Robinson (2011) and Hualde and Nielsen (2020).
The modified profiled likelihood of An and Bloomfield (1993), however, requires that
−1/2 < d0 < 1/2. In our case, we do not have any restrictions of d0, therefore, we
allow for non-invertible and non-stationary processes.
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Before we move to our main result, we first show that our MCSS estimator is
consistent and asymptotically normal in the follow theorem.

Theorem 3.1. Let xt, t = 1,. . .,T , be given by (1) and let Assumption 3.1 and 3.2 be
satisfied. Then, as T → ∞,

d̂MCSS
p→ d0, (16)

and

√
T (d̂MCSS − d0)

d−→ N(0, ζ−1
2 ), (17)

where ζ−1
2 = 6/π2.

Theorem 3.1 shows that the MCSS estimator is consistent and asymptotically nor-
mal following the same distribution as the CSS estimator. We consider next the effects
of the modification term in the likelihood function for the asymptotic bias of the MCSS
estimator.

To analyze the asymptotic bias of the CSS estimators and MCSS estimator for d,
we need to examine higher-order terms in a stochastic expansion of the estimators.
JN (2016) use this technique to find the second-order bias of the CSS estimators in
the nonstationary domain. We follow their approach closely. First, we apply a Taylor
series expansion of DL∗(d̂) = 0 around d0 which gives

0 = DL∗(d̂) = DL∗(d0) + (d̂− d0)D
2L∗(d0) +

1

2
(d̂− d0)

2D3L∗(d∗) (18)

where d∗ is an intermediate value satisfying |d∗−d0| ≤ |d̂−d0|
p→ 0. Applying Johansen

and Nielsen (2010, Lemma A.3) allows us to replace D3L∗(d∗) by D3L∗(d0). We then
insert d̂− d0 = T−1/2G̃1T + T−1G̃2T +OP (T

−3/2) into (18) and find

G̃1T = −T 1/2 DL
∗(d0)

D2L∗(d0)
,

G̃2T = −1

2
T
(DL∗(d0))

2D3L∗(d0)

(D2L∗(d0))
3 .

Then the expansion of the bias becomes

T 1/2
(
d̂− d0

)
= −T 1/2 DL

∗(d0)

D2L∗(d0)
− 1

2
T−1/2 (DL

∗(d0))
2D3L∗(d0)

(D2L∗(d0))
3 +OP (T

−1) (19)

which depends on the asymptotic behavior of the derivatives DmL∗(d0), see Lemma
A.6 for the nonstationary region and Lemmas A.11, A.12 and A.13 for the stationary
region.

The main result of this paper is summarized in the follow theorem. Results (20)
and (21) are derived in JN (2016, Theorem 4) and mentioned here for completeness.
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Theorem 3.2. Let xt, t = 1,. . .,T , be given by (1) and let Assumption 3.1 and 3.2 be
satisfied. For the nonstationary region, d0 > 1/2, the biases of d̂, d̂µ0 and d̂MCSS are

bias(d̂) = −(Tζ2)
−1
[
3ζ3ζ

−1
2 + (Ψ(d0)−Ψ(2d0 − 1))

]
+ o(T−1), (20)

bias(d̂µ0) = −(Tζ2)
−1
[
3ζ3ζ

−1
2

]
+ o(T−1), (21)

bias(d̂MCSS) = −(Tζ2)
−1
[
3ζ3ζ

−1
2

]
+ o(T−1), (22)

and for the stationary region, d0 < 1/2, the biases of d̂, d̂µ0 and d̂MCSS are

bias(d̂) = −(Tζ2)
−1
[
3ζ3ζ

−1
2 − (Ψ(1− d0) + (1− 2d0)

−1) + log(T )
]

+ o(T−1 log(T )), (23)

bias(d̂µ0) = −(Tζ2)
−1
[
3ζ3ζ

−1
2

]
+ o(T−1), (24)

bias(d̂MCSS) = −(Tζ2)
−1
[
3ζ3ζ

−1
2

]
+ o(T−1 log(T )). (25)

where ζs is the Riemann’s zeta function, ζs =
∑∞

j=1 j
−s, s > 1, and specially ζ2 =

π2

6
≈

1.6449 and ζ3 ≈ 1.2021 and Ψ(d) denotes the Digamma function.

It follows from Theorem 3.2 that the MCSS estimator indeed removes the bias
that arises from estimating the constant parameter, irrespective whether the process
is stationary or nonstationary. The remaining (fixed) bias term (Tζ2)

−1(3ζ3ζ
−1
2 ) is due

to the correlations of the derivatives of the likelihood and is not eliminated by our
modification. The same bias term is derived by Lieberman and Phillips (2004) for
the estimated memory parameter, based on the maximum likelihood estimator in the
stationary case, 0 < d0 < 1/2, for a “type I” ARFIMA(0,d,0) process with µ known.

Some numerical comparison of the biases are of interest. Table 1 presents the
theoretical biases of the CSS estimator with unknown and known µ0 and the MCSS
estimator for selected values of d0 and T . We find that the bias(d̂) decreases in d and
T for the stationary and non-stationary region separately. In the stationary region the
bias of d̂ is often more severe than in the non-stationary region. This finding coincides
with the findings of Robinson and Velasco (2015). They consider a panel setting with
individual components and fractionally integrated errors and estimate their model with
the CSS estimator. However, the fixed effects causes a serious bias, and especially in the
stationary region, as we can also observe from Theorem 3.2 and Table 1. A possible
solution for their problem might be to use the MCSS estimator instead of the CSS
estimator.
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bias(d̂) bias(d̂µ0) bias(d̂MCSS) bias(d̂) bias(d̂µ0) bias(d̂MCSS) bias(d̂) bias(d̂µ0) bias(d̂MCSS)
d0\T 64 128 256
-0.2 -0.056 -0.021 -0.021 -0.031 -0.010 -0.010 -0.017 -0.005 -0.005
-0.1 -0.056 -0.021 -0.021 -0.031 -0.010 -0.010 -0.017 -0.005 -0.005
0.0 -0.056 -0.021 -0.021 -0.031 -0.010 -0.010 -0.017 -0.005 -0.005
0.1 -0.056 -0.021 -0.021 -0.031 -0.010 -0.010 -0.017 -0.005 -0.005
0.2 -0.054 -0.021 -0.021 -0.030 -0.010 -0.010 -0.017 -0.005 -0.005
0.3 -0.048 -0.021 -0.021 -0.027 -0.010 -0.010 -0.015 -0.005 -0.005
0.4 -0.028 -0.021 -0.021 -0.017 -0.010 -0.010 -0.010 -0.005 -0.005
0.5 - - - - - - - - -
0.6 -0.056 -0.021 -0.021 -0.028 -0.010 -0.010 -0.014 -0.005 -0.005
0.7 -0.034 -0.021 -0.021 -0.017 -0.010 -0.010 -0.008 -0.005 -0.005
0.8 -0.026 -0.021 -0.021 -0.013 -0.010 -0.010 -0.007 -0.005 -0.005
0.9 -0.023 -0.021 -0.021 -0.011 -0.010 -0.010 -0.006 -0.005 -0.005
1.0 -0.021 -0.021 -0.021 -0.010 -0.010 -0.010 -0.005 -0.005 -0.005
1.1 -0.020 -0.021 -0.021 -0.010 -0.010 -0.010 -0.005 -0.005 -0.005

Table 1: Theoretical bias of the estimated long memory parameter for ARFIMA(0,d0,0)
of CSS estimator with unknown and known µ0 and the MCSS estimator.

From the results of Theorem 3.2 we might also introduce another estimator which
we call the bias-corrected MCSS (BC-MCSS) estimator of d0

d̂BC−MCSS = d̂MCSS + T−13ζ3(ζ2)
−2. (26)

Note that the second-order bias of d̂BC−MCSS is completely eliminated and that the
correction term is pivotal.

4 Simulation Results

In this section we report the results of the simulation study of the small sample prop-
erties of the CSS estimator with known and unknown µ0, see (8) and (10), respectively,
and the modified version thereof (14) together with the bias-corrected version in (26).
We take as our DGP the model in (1) where ϵt is N(0, 1) distributed. We take without
loss of generality µ0 = 0, since the estimators are invariant against the value µ0. In all
settings covered by our experiment we generate the xt for T = 64, 128, 256. We let
the long memory parameter d0 vary. In particular, we set d0 = -0.2,-0.1,. . .,1.1. We
computed the estimates using the optimizing interval d ∈ [d0 − 5, d0 + 5] and for each
we report the Monte Carlo bias. All results are based on 100000 replications.

Table 2 shows the Monte Carlo bias (scaled by 100) of d̂, d̂µ0 and d̂MCCS and the

d̂BC−MCCS estimator. The modified CSS estimator perform well and the Monte Carlo
bias are in accordance with the theoretical counterparts in Theorem 3.2, see Table
1. As can be seen from the table, for the stationary region, d0 < 1/2, the bias in
the CSS estimator is more severe than for the nonstationary case, as expected from
Theorem 3.2. However, for the MCSS estimator the bias in both the stationary and
nonstationary are the same, namely −(Tζ2)

−1(3ζ3ζ
−1
2 ). Our simulation results shows

that we can remove the bias that occurs due to the estimation of the constant term by
using the MCSS estimator and therefore the MCSS estimator outperforms the usual
CSS estimator. Furthermore, notice that the BC-MCCS estimator in (26) performs
the best since the second-order bias of d̂BC−MCSS is completely eliminated
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bias(d̂) bias(d̂µ0) bias(d̂MCSS) bias(d̂BC−MCSS) bias(d̂) bias(d̂µ0) bias(d̂MCSS) bias(d̂BC−MCSS) bias(d̂) bias(d̂µ0) bias(d̂MCSS) bias(d̂BC−MCSS)
d0\T 64 128 256
-0.2 −6.98 −1.70 −1.66 0.42 −3.60 −0.93 −0.89 0.15 −1.88 −0.48 −0.46 0.06
-0.1 −7.02 −1.77 −1.69 0.40 −3.64 −0.95 −0.92 0.12 −1.88 −0.48 −0.45 0.07
0.0 −7.09 −1.76 −1.75 0.33 −3.56 −0.88 −0.85 0.19 −1.86 −0.46 −0.44 0.08
0.1 −6.95 −1.71 −1.69 0.39 −3.59 −0.96 −0.91 0.13 −1.87 −0.49 −0.46 0.06
0.2 −6.81 −1.72 −1.74 0.34 −3.41 −0.86 −0.83 0.21 −1.79 −0.46 −0.43 0.09
0.3 −6.36 −1.65 −1.67 0.41 −3.26 −0.89 −0.88 0.17 −1.71 −0.46 −0.45 0.07
0.4 −5.92 −1.74 −1.81 0.27 −2.97 −0.89 −0.90 0.14 −1.55 −0.48 −0.47 0.05
0.5 −5.16 −1.73 −1.85 0.23 −2.54 −0.93 −0.93 0.11 −1.30 −0.48 −0.47 0.05
0.6 −4.30 −1.72 −1.89 0.19 −2.04 −0.90 −0.93 0.11 −1.02 −0.48 −0.48 0.04
0.7 −3.47 −1.77 −1.92 0.16 −1.56 −0.87 −0.90 0.14 −0.78 −0.46 −0.47 0.05
0.8 −2.69 −1.73 −1.83 0.25 −1.30 −0.94 −0.96 0.08 −0.66 −0.50 −0.50 0.02
0.9 −2.21 −1.73 −1.81 0.27 −1.08 −0.92 −0.94 0.11 −0.53 −0.47 −0.47 0.05
1.0 −1.85 −1.70 −1.75 0.33 −0.95 −0.92 −0.93 0.11 −0.51 −0.50 −0.51 0.01
1.1 −1.65 −1.71 −1.74 0.34 −0.86 −0.91 −0.92 0.12 −0.43 −0.46 −0.46 0.06

Table 2: 100 × Monte Carlo bias of the estimated long memory parameter for
ARFIMA(0,d0,0) of CSS estimator with unknown and known µ0 and the MCSS es-
timator together with the BC-MCSS estimator.

Table 3 reports empirical coverage of 95 % confidence intervals for d0 based on
the asymptotic distribution of the estimators. The d̂µ0 estimator achieves the most
accurate coverage, although the results are somewhat less accurate when d0 is in the
stationary region. The d̂MCSS estimator also generally perform reasonably well, and
improves for larger d0, especially compared with intervals based on d̂. Furthermore, we
notice that the coverage rates of d̂MCSS and d̂BF−MCSS are close to each other.

d̂ d̂µ0 d̂MCSS d̂BF−MCSS d̂ d̂µ0 d̂MCSS d̂BF−MCSS d̂ d̂µ0 d̂MCSS d̂BC−MCSS

d0\T 64 128 256
-0.2 82.96 92.40 87.70 87.88 87.88 93.28 90.30 90.14 91.06 94.32 92.74 92.74
-0.1 82.60 92.46 87.68 87.86 87.40 93.08 90.28 90.00 90.76 94.18 92.28 92.46
0.0 82.44 91.74 86.76 86.96 87.48 93.20 90.44 90.52 89.60 93.30 92.00 92.26
0.1 82.66 92.38 87.80 87.64 87.44 93.40 90.48 90.80 90.90 93.88 92.34 92.30
0.2 81.94 91.86 87.90 88.22 86.84 92.78 90.04 90.08 91.02 94.40 92.68 92.92
0.3 82.10 91.74 87.08 87.46 88.02 93.70 91.22 91.60 90.66 93.86 92.28 92.54
0.4 82.98 91.62 88.38 88.54 87.28 92.64 90.20 90.60 91.66 94.16 93.22 93.30
0.5 84.24 91.98 89.58 90.16 89.06 93.24 92.08 92.20 91.86 94.58 93.52 93.40
0.6 86.26 92.52 90.66 91.10 89.80 93.30 92.18 92.24 92.08 93.86 93.42 93.64
0.7 87.30 92.04 90.48 90.86 90.78 92.90 92.04 92.44 93.12 93.94 93.92 93.94
0.8 89.18 92.18 91.12 91.80 92.50 93.74 93.28 93.64 93.28 93.80 93.58 93.62
0.9 90.52 91.94 91.72 91.62 91.68 92.70 92.20 92.74 93.58 93.84 93.84 93.60
1.0 91.06 91.82 91.80 92.18 92.32 93.02 92.56 92.92 94.12 94.30 94.26 94.50
1.1 91.58 92.00 91.84 92.42 92.74 92.92 92.82 93.08 94.26 94.12 94.30 94.58

Table 3: Empirical coverage of 95 % CI for the CSS estimator with unknown and
known µ0 and the MCSS estimator together with the BC-MCSS estimator.

5 Final Comments

The CSS estimator is a popular choice among practitioners for estimating stationary
and nonstationary ARFIMA models due to its simplicity and effectiveness. More re-
cently, the asymptotic justification of the CSS estimator for regression model including
deterministic components is given by Hualde and Nielsen (2020, 2021b). However,
introducing deterministic components might cause the CSS estimators, d̂, of the frac-
tional parameter and also other parameters in the error component to be (severely)
biased. We show, analytically and through simulations, for a simple fractional model
that we can remove the bias that occurs due to the estimation of the constant term
by using the MCSS estimator. This modified CSS estimator is easy to compute and
implement and, therefore, can be used by practitioners for computing more precise
estimators. It seems possible to generalize our framework by including short memory
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complements as well as additional deterministic components, such as polynomials of
higher orders. A formal justification will be the object of future research.
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A Appendix

We use the same notation as in JN (2016). For the sake of completeness some of the
lemmas in JN (2016) are also reported in this appendix. We first analyze ∆d

0(xt − µ)
and introduce some notations. Clearly, inserting (1) to ∆d

0(xt − µ) gives us

∆d
0(xt − µ) = ∆d−d0

0 ϵt − κ0t(d) (µ− µ0) .

Taking derivatives of ∆d
0(xt − µ) with respect to d and evaluated at d = d0 are given

by

Dm∆d
0(xt − µ) = S+

mt − κmt(d0) (µ− µ0) ,

where

κmt(d) = (−1)mDmπt−1(1− d),

S+
mt = (−1)m

t−1∑
k=0

Dmπk(0)ϵt−k.

In Section A.1 we investigate the order of magnitude of functions involving the de-
terministic term κmt(d) and the stochastic term S+

mt and product moments containing
these. This is divided into two part. In Section A.1.1 we investigate the nonstationary
region (d > 1/2) and in Section A.1.2 the stationary region (d < 1/2). The need for a
separate analysis is because the order of magnitude differs depending on the region.

A.1 Lemmas

The next lemma is taken from JN (2016) and gives the asymptotic behavior of the cen-
tered product moments of the stochastic term. It is stated here because the asymptotic
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behavior is not depend on d0.

Define the centered product moments of the stochastic terms

M+
mnT = σ−2

0 T−1/2

T∑
t=1

(
S+
mtS

+
nt − E

(
S+
mtS

+
nt

))
(27)

Notice the asymptotic properties are invariant against d0 and E
(
S+
0tS

+
mt

)
= 0 form ≥ 1.

Lemma A.1. Suppose Assumption 3.1 holds and let ζ2 =
∑∞

j=1 j
−2 = π2/6 ≈ 1.6449

and ζ3 =
∑∞

j=1 j
−3 = π/6 ≈ 1.2021 Then, for T → ∞, it holds that {M+

mnT} are
asymptotically normal, for 0 ≤ m,n ≤ 3, with mean zero and some variances covari-
ances given below

E
((
M+

01T

)2)
= ζ2,

E
(
M+

01TM
+
02T

)
= −2ζ3,

E
(
M+

01TM
+
11T

)
= −4ζ3,

Proof of Lemma A.1. See JN (2016, Lemma B.2 and Lemma B.3).

In Section A.1.1 we apply the Lemmas A.1-A.5 and find asymptotic results for the
derivatives of L∗

MCSS(d0). Similarly, in Section A.1.2 we apply Lemmas A.1, A.2-A.10
and find asymptotic results for the derivatives of L∗(d0), L

∗
µ0

and L∗
MCSS.

A.1.1 Nonstationary region

In Lemmas A.2, A.4 and A.5 we investigate the order of magnitude of functions involv-
ing the deterministic term κmt(d) and the stochastic term S+

mt and product moments
containing these. In Lemma A.3 we investigate the order of magnitude involving the
modification term m(d) and derivatives of these. These lemmas are then used together
with Lemmas A.1 to find asymptotic results for the derivatives L∗

MCSS.

Lemma A.2. Let d > 1/2 and m,n ≥ 0, then we have that:

T∑
t=1

κ0t(d)
2 →

(
2d− 2

d− 1

)
(28)

T∑
t=1

κ0t(d)κ1t(d) → −
(
2d− 2

d− 1

)
(Ψ(2d− 1)−Ψ(d)) (29)

T∑
t=1

κmt(d)κnt(d) = O(1) (30)

Proof of Lemma A.2. Proof of (28) and (29): See JN (2016, Lemma B.1 line (B.9)).
Proof of (30): Using JN (2016, Lemma A.3 line (A.7)) we have that

|κmt(d)| ≤ c(1 + log(t− 1))m(t− 1)−d1(t−1≤1)
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where c is a genetic constant. Take a small δ > 0 then log term is bounded by (t− 1)δ.
Hence, it follows that ∣∣∣∣∣

T∑
t=1

κmt(d)κnt(d)

∣∣∣∣∣ ≤ c

T∑
t=1

t2(δ−d).

For T → ∞ this term is bounded if 2(δ−d) < −1 or similarly by taking δ < d−1/2.

Lemma A.3. Let d > 1/2, then we have that:

m(d) =

(
T∑
t=1

κ0t(d)
2

) 1
T−1

= 1 +O(T−1) (31)

md(d) =
2

T − 1

(
T∑
t=1

κ0t(d)
2

)−T−2
T−1 T∑

t=1

κ0t(d)κ1t(d) = O(T−1) (32)

mdd(d) =
2

T − 1

(
T∑
t=1

κ0t(d)
2

)−T−2
T−1 T∑

t=1

(κ0t(d)κ2t(d) + κ1t(d)
2)

− 4
T − 2

(T − 1)2

(
T∑
t=1

κ0t(d)
2

)− 2T−3
T−1

(
T∑
t=1

κ0t(d)κ1t(d)

)2

= O(T−1) (33)

Proof of Lemma A.3. Proof of (31): Let a ∈ R then

a
1

T−1 = 1 +
log(a)

T
+O(T−2) (34)

Proof follows from the Taylor expension in (34) and (30).
Proof of (32) and (33): Follows from (30) .

Lemma A.4. Suppose Assumption 3.1 holds. Then

E

(
T∑

s=1

κ0s(d)S
+
0s(d)

T∑
t=1

κ0t(d)S
+
1t(d)

)
= σ2

0

T∑
t=1

κ0t(d)κ1t(d)

Proof of Lemma A.4. Note that S+
0s = ϵs, S

+
1t = −

∑t−1
k=1 k

−1ϵt−k, and κ0t(d) = πt−1(1−
d). It can be easily shown that

T∑
t=1

κ0t(d)S
+
1t(d) = −

T−1∑
t=1

ϵt

T∑
k=t+1

κ0k(d)
1

(k − t)

= −
T−1∑
t=1

ϵt

T∑
k=1

κ0k(d)
1

(k − t)
1{k−t≥1}

= −
T−1∑
t=1

ϵt

T∑
k=1

κ0k(d)Dπk−t(u)|u=0

15



using Dπk−t(u)|u=0 =
1

(k−t)
1{k−t≥1}, see JN (2016, Lemma A.4 line (A.13)). Then we

find that

E

(
T∑

s=1

κ0s(d)S
+
0s(d)

T∑
t=1

κ0t(d)S
+
1t(d)

)
= −σ2

0

T−1∑
t=1

κ0t(d)
T∑

k=1

κ0k(d)Dπk−t(u)|u=0

= −σ2
0

T∑
k=1

κ0k(d)
T−1∑
t=1

κ0t(d)Dπk−t(u)|u=0

= −σ2
0

T−1∑
k=1

κ0k(d)
k−1∑
t=0

πt(1− d)Dπ(k−1)−t(u)|u=0

= −σ2
0

T∑
k=1

κ0k(d)Dπk−1(1− d+ u)|u=0

where the last equality holds by JN (2016, Lemma A.4 line (A.17)). The proof follows
since

Dπt−1(1− d+ u)|u=0 = −κ1t(1− d)

by definition.

Lemma A.5. Suppose Assumption 3.1 holds and let d > 1/2. Then

ζT,1(d) = −σ−2
0

E
(∑T

t=1 S
+
0tκ0t

∑T
s=1 S

+
1sκ0t

)
∑T

t=1 κ0tκ0t
→ − (Ψ(2d− 1)−Ψ(d)) (35)

ζT,2(d) =

∑T
t=1 κ0tκ1t(∑T

t=1 κ0tκ0t

)T−2
T−1

→ (Ψ(2d− 1)−Ψ(d)) (36)

Proof of Lemma A.5. Proof of (35): Follows from Lemma A.4, (28) and (29) .
Proof of (36): Proof follows from (28) and (29).

We now apply the previous Lemmas A.1-A.5 and find asymptotic results for the
derivatives L∗

MCSS(d0).

Lemma A.6. Let the model for the data xt, t = 1,. . .,T, be given by (1) and let
Assumptions 3.1 and 3.2 be satisfied with d0 > 1/2. Then the normalized derivatives
of the modified likelihood function L∗

MCSS, see (12), satisfy

σ−2
0 T−1/2DL∗

MCSS(d0) = A0 + T−1/2A1 +OP (T
−1), (37)

σ−2
0 T−1D2L∗

MCSS(d0) = B0 + T−1/2B1 +OP (T
−1 log(T )), (38)

σ−2
0 T−1D3L∗

MCSS(d0) = C0 +OP (T
−1/2), (39)

where

A0 =M+
01T , E(A1) = ζT,1(d0) + ζT,2(d0),

B0 = ζ2, B1 =M+
11T +M+

02T ,

C0 = −6ζ3.

Here, ζT,1(d0), ζT,2(d0) and M
+
mnT , are given in (35), (36), and (27), respectively, and

ζ2 = π2/6 and ζ3 ≈ 1.2021.
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Proof of Lemma A.6. Note that the derivatives of the modified likelihood function
L∗
MCSS(d) = m(d)L∗(d), see (12), with respect to d are equal to

DL∗
MCSS(d) = m(d)DL∗(d) +md(d)L

∗(d),

D2L∗
MCSS(d) = m(d)D2L∗(d) +mdd(d)L

∗(d) + 2md(d)DL
∗(d),

D3L∗
MCSS(d) = m(d)D3L∗(d) + 3md(d)D

2L∗(d) + 3mdd(d)DL
∗(d) +mddd(d)L

∗(d).

In the following we find an expression for the derivatives with respect to d evaluated
for d = d0 and suppress the dependence on d0.

Proof of (37): JN (2016, Lemma B.4 line (B.26)) states that

σ−2
0 T−1/2DL∗ = A0 + T−1/2Ã1 +OP (T

−1),

where A0 = M+
01T and E(Ã1) = ζT,1(d0). We find from Lemma A.3 and JN (2016,

Lemma B.4 line (B.26)) that

σ−2
0 T−1/2DL∗

MCSS = mσ−2
0 T−1/2DL∗ + σ−2

0 T−1/2mdL
∗,

= σ−2
0 T−1/2DL∗ + σ−2

0 T−1/2mdL
∗ +OP (T

−1),

= A0 + T−1/2
(
Ã1 + σ−2

0 mdL
∗
)
+OP (T

−1),

= A0 + T−1/2A1 +OP (T
−1),

where mdL
∗ = OP (1), see Hualde and Nielsen (2020, Lemma S.1). The expectation of

A1 = Ã1 + σ−2
0 mdL

∗ is equal to ζT,1 + ζT,2 since

E(σ−2
0 mdL

∗) = σ−2
0 md

1

2

T∑
t=1

E
(
∆d0

0 xt − κ0tµ̂
)2

= σ−2
0 md

1

2

T∑
t=1

E

(
ϵt − κ0t

∑T
t=1 κ0tϵt∑T
t=1 κ

2
0t

)2

= σ−2
0 md

1

2
σ2
0(T − 1)

=

(
T∑
t=1

κ0t(d)
2

)−T−2
T−1 T∑

t=1

κ0t(d)κ1t(d)

= ζT,2

where ζT,1 and ζT,2 are defined in Lemma A.5.

Proof of (38): JN (2016, Lemma B.4 line (B.27)) states that

σ−2
0 T−1/2D2L∗ = B0 + T−1/2B1 +OP (T

−1 log(T )),

where B0 = ζ2 and B1 = M+
11T + M+

02T . We find from Lemma A.3 and JN (2016,
Lemma B.4 line (B.27)) that

σ−2
0 T−1D2L∗

MCSS = mσ−2
0 T−1D2L∗ +mddσ

−2
0 T−1L∗ + 2mdσ

−2
0 T−1DL∗,

= σ−2
0 T−1D2L∗ +mddσ

−2
0 T−1L∗ + 2mdDL

∗ +OP (T
−1)

= B0 + T−1/2B1 +mddσ
−2
0 T−1L∗ + σ−2

0 T−12mdDL
∗

+OP (T
−1 log(T )).
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Furthermore the terms

mddσ
−2
0 T−1L∗ = OP (T

−1)

σ−2
0 T−12mdDL

∗ = OP (T
−3/2)

and thus can be ignored so that we have

σ−2
0 T−1D2L∗

MCSS = B0 + T−1/2B1 +OP (T
−1 log(T )).

Proof of (39): JN (2016, Lemma B.4 line (B.28)) states that

σ−2
0 T−1/2D3L∗ = C0 +OP (T

−1/2),

where C0 = −6ζ3. We find from Lemma A.3 and JN (2016, Lemma B.4 line (B.28))
that

σ−2
0 T−1D3L∗

MCSS = σ−2
0 T−1mD3L∗

+ σ−2
0 T−1(3mdD

2L∗ + 3mddDL
∗ +mdddL

∗)

= C0 + σ−2
0 T−1(3mdD

2L∗ + 3mddDL
∗ +mdddL

∗) +OP (T
−1/2).

Notice that mddd = O(T−1), proof follows in a similar way as the proof of (33), and
together with Lemma A.3 we get

σ−2
0 T−1(3mdD

2L∗ + 3mddDL
∗ +mdddL

∗) = OP (T
−1)

and hence can be ignored so we have that

σ−2
0 T−1D3L∗

MCSS = C0 +OP (T
−1/2).

A.1.2 Stationary region

In Lemmas A.7, A.4, A.9 and A.10 we investigate the order of magnitude of functions
involving the deterministic term κmt(d) and the stochastic term S+

mt and product mo-
ments containing these. In Lemma A.8 we investigate the order of magnitude involving
the modification term m(d) and derivatives of these. These lemmas are then used to-
gether with Lemmas A.1 to find asymptotic results for the derivatives L∗(d0), L

∗
µ0

and
L∗
MCSS.

Lemma A.7. Let d < 1/2 and m,n ≥ 0, then we have that:

1

T 1−2d

T∑
t=1

k0t(d)
2 → 1

Γ(1− d)2(1− 2d)
(40)

1

T 1−2d log(T )

T∑
t=1

k0t(d)k1t(d) = − 1

Γ(1− d)2(1− 2d)

+
1

log(T )

(1− 2d)Ψ(1− d) + 1

(1− 2d)2Γ(1− d)2

+ o(log(T )−1) (41)

1

T 1−2d logm+n(T )

T∑
t=1

kmt(d)knt(d) = O(1) (42)
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Proof of Lemma A.7. Proof of (40): Proof follows from Hualde and Nielsen (2020,
Lemmas S.10 and S.11).
Proof of (41): First we take the derivative of (40) with respect to d on both sides:

2 log(T )

T 1−2d

T∑
t=1

κ0t(d)
2 +

2

T 1−2d

T∑
t=1

κ0t(d)κ1t(d) =
(2− 4d)Ψ(1− d) + 2

(1− 2d)2Γ(1− d)2
+ o(1)

Dividing the left-hand side with 2 log(T ) gives

1

T 1−2d

T∑
t=1

κ0t(d)
2 +

1

T 1−2d log(T )

T∑
t=1

κ0t(d)κ1t(d) =
1

log(T )

(1− 2d)Ψ(1− d) + 1

(1− 2d)2Γ(1− d)2

+ o(log(T )−1)

The proof follows directly by using (40).
Proof of (42): Using JN (2016, Lemma B.4 line (A.7)) we have that

1

T 1−2d logm+n(T )

∣∣∣∣∣
T∑
t=1

κmtκnt

∣∣∣∣∣ ≤ c
1

T 1−2d logm+n(T )

T∑
t=1

logm+n(t)t−2d

where c is a generic positive constant. Note that

1

T 1−2d logm+n(T )

T∑
t=1

logm+n(t)t−2d =
1

T 1−2d

T∑
t=1

t−2d + o(1) → 1

1− 2d
(43)

by applying summation by parts and Hualde and Nielsen (2020, Lemma S.10) for
d < 1/2.

Lemma A.8. Let d < 1/2, then we have that:

m(d) =

(
T∑
t=1

κ0t(d)
2

) 1
T−1

= 1 +O(T−1 log(T )) (44)

md(d) =
2

T − 1

(
T∑
t=1

κ0t(d)
2

)−T−2
T−1 T∑

t=1

κ0t(d)κ1t(d) = O(T−1 log(T )) (45)

mdd(d) =
2

T − 1

(
T∑
t=1

κ0t(d)
2

)−T−2
T−1 T∑

t=1

(κ0t(d)κ2t(d) + κ1t(d)
2)

− 4
T − 2

(T − 1)2

(
T∑
t=1

κ0t(d)
2

)− 2T−3
T−1

(
T∑
t=1

κ0t(d)κ1t(d)

)2

= O(T−1 log2(T ))

(46)

Proof of Lemma A.8. Proof of (44): The proof follows from writing (44) into

m(d) =

(
1

T 1−2d

T∑
t=1

κ0t(d)
2

) 1
T−1 (

T 1−2d
) 1

T−1
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and using Taylor’s expansion in (34) twice together with (40) to conclude that:

(1 +O(T−1))(1 +O(T−1 log(T ))) = 1 +O(T−1 log(T ))

Proof of (45): The proof follows directly from (40) and (41).
Proof of (46): By (42) we have that

∑T
t=1 κ0t(d)κ2t(d) = O(T 1−2d log2(T )). Then the

proof follows from (40) and (41).

Lemma A.9. Suppose Assumption 3.1 holds and let d < 1
2
. Then

1

T 1/2−d logm+n(T )

T∑
t=1

Smt(d)knt(d) = OP (1).

Proof of Lemma A.9. We note that for m ≥ 1

T∑
t=1

Smt(d)κnt(d) =
T−1∑
t=1

ϵt

T∑
k=1

κnk(d)(−1)mDmπk−t(0)

=
T−1∑
t=1

ϵt

T∑
k=1

(−1)nDnπk−1(1− d)(−1)mDmπk−t(0)

Then

V ar

(
T∑
t=1

Smt(d)κnt(d)

)
= σ2

0

T−1∑
t=1

(
T∑

k=1

(−1)nDnπk−1(1− d)(−1)mDmπk−t(0)

)2

(47)

For m ≥ 1 we have∣∣∣∣∣
T∑

k=1

(−1)nDnπk−1(1− d)(−1)mDmπk−t(0)

∣∣∣∣∣ ≤ c
T∑

k=1

|Dnπk−1(1− d)| |Dmπk−t(0)|

≤ c

T∑
k=1

(1 + log(k − 1))n(k − 1)−d1{k−1≥1}

(k − t)−1(1 + log(k − t))m−11{k−t≥1}

≤ c
T∑

k=t+1

logn+m−1(k − 1)(k − 1)−d(k − t)−1

It can be readily shown that

c
T∑

k=t+1

logn+m−1(k − 1)(k − 1)−d(k − t)−1 = O(logn+m−1(t)t−d log(T )) (48)

using summation by parts. Then the proof follows by (47) and (48) together with (43).
The proof for m = 0 follows from (42).
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Lemma A.10. Suppose Assumption 3.1 holds and let d < 1/2. Then

ζ∗T,1(d) = − log−1(T )σ−2
0

E
(∑T

t=1 S
+
0tκ0t

∑T
s=1 S

+
1sκ0t

)
∑T

t=1 κ0tκ0t

= − log−1(T )

∑T
t=1 κ0tκ1t∑T
t=1 κ0tκ0t

= 1− log−1(T )
(
ψ(1− d) + (1− 2d)−1

)
+ o(log−1(T )) (49)

ζ∗T,2(d) = log−1(T )

∑T
t=1 κ0tκ1t(∑T

t=1 κ0tκ0t

)T−2
T−1

= −1 + log−1(T )
(
ψ(1− d) + (1− 2d)−1

)
+ o(log−1(T )). (50)

Proof of Lemma A.10. Proof of (49): Follows from Lemma A.4 and A.2.
Proof of (50): Follows from Lemma A.2.

We now apply the previous Lemmas A.1, A.2-A.10 and find asymptotic results for
the derivatives L∗(d0), L

∗
µ0

and L∗
MCSS.

Lemma A.11. Let the model for the data xt, t = 1,. . .,T, be given by (1) and let
Assumptions 3.1 and 3.2 be satisfied with d0 < 1/2. Then the normalized derivatives
of the likelihood function L∗, see (7), satisfy

σ−2
0 T−1/2DL∗(d0) = A0 + T−1/2 log(T )A1, (51)

σ−2
0 T−1D2L∗(d0) = B0 + T−1/2B1 +OP (T

−1 log2(T )), (52)

σ−2
0 T−1D3L∗(d0) = C0 +OP (T

−1/2), (53)

where

A0 =M+
01T , E(A1) = ζ∗T,1(d0),

B0 = ζ2, B1 =M+
11T +M+

02T ,

C0 = −6ζ3.

Here, ζ∗T,1(d0) and M+
mnT are given in (49) and (27), respectively, and ζ2 = π2/6 and

ζ3 ≈ 1.2021.

Proof of Lemma A.11. Recall that L∗(d) = L(d, µ(d)), where from L(d, µ(d)) is given
in (5). We denote the partial derivatives with respect to d and µ of L(d, µ(d)) by a
subscript. Then the derivatives of the likelihood of L∗(d), denoted by DmL∗(d) are
equal to

DL∗(d) = Ld(d, µ(d)) + Lµ(d, µ(d))µd(d),

D2L∗(d) = Ldd(d, µ(d)) + 2Ldµ(d, µ(d))µd(d) + Lµµ(d, µ(d))µd(d)
2 + Lµ(d, µ(d))µdd(d).
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We simply the expressions by noticing that µ̂ is determined from Lµ(d, µ(d)) = 0.
Taking on both sides the derivative of with respect to d of Lµ(d, µ(d)) = 0 implies
Ldµ(d, µ(d)) + Lµµ(d, µ(d))µd(d) = 0 so that

DL∗(d) = Ld(d, µ(d)),

D2L∗(d) = Ldd(d, µ(d))−
Ldµ(d, µ(d))

2

Lµµ(d, µ(d))
. (54)

We evaluate the derivatives for d = d0 and to make it easily readable we suppress the
dependence.

Proof of (51): We find that

σ−2
0 T−1/2DL∗ = σ−2

0 T−1/2

T∑
t=1

(S+
0t − (µ̂− µ0)κ0t)(S

+
1t − (µ̂− µ0)κ1t)

= σ−2
0 T−1/2

T∑
t=1

S+
0tS

+
1t − σ−2

0 T−1/2 log(T )T
1
2
−d(µ̂− µ0)

∑T
t=1 S

+
0tκ1t

T 1/2−d log(T )

− σ−2
0 T−1/2 log(T )T

1
2
−d(µ̂− µ0)

1

T 1/2−d log(T )

T∑
t=1

S+
1tκ0t

+ σ−2
0 T−1/2 log(T )T 1−2d(µ̂− µ0)

2 1

T 1−2d log(T )

T∑
t=1

κ0tκ1t

The first term is OP (1) and the rest terms are all of the order of T−1/2 log(T ). Taking
the expectation of the rest terms we get T−1/2 log(T ) times

− σ−2
0

1
T 1−2d0 log(T )

E
(∑T

t=1 S
+
0tk0t

∑T
t=1 S

+
0tk1t

)
1

T 1−2d0

∑T
t=1 k

2
0t

− σ−2
0

1
T 1−2d0 log(T )

E
(∑T

t=1 S
+
0tk0t

∑T
s=1 S

+
1sk0s

)
1

T 1−2d0

∑T
t=1 k

2
0t

+ σ−2
0

1
T 2−4d0 log(T )

E

((∑T
t=1 S

+
0tk0t

)2∑T
t=1 S

+
0tk1t

)
(

1
T 1−2d0

∑T
t=1 k

2
0t

)2
= −σ−2

0

1
T 1−2d0 log(T )

∑T
t=1 k0tk1t

1
T 1−2d

∑T
t=1 k

2
0t

− σ−2
0

1
T 1−2d0 log(T )

E
(∑T

t=1 S
+
0tκ0t

∑T
s=1 S

+
1sκ0t

)
1

T 1−2d0

∑T
t=1 κ

2
0t

+ σ−2
0

1
T 1−2d0 log(T )

∑T
t=1 k0tk1t

1
T 1−2d

∑T
t=1 k

2
0t

= −σ−2
0

1
T 1−2d0 log(T )

E
(∑T

t=1 S
+
0tκ0t

∑T
s=1 S

+
1sκ0t

)
1

T 1−2d0

∑T
t=1 κ

2
0t

= −
1

T 1−2d0 log(T )

∑T
t=1 κ0tκ1t

1
T 1−2d0

∑T
t=1 κ

2
0t

= ζ∗T,1
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where the second-to-last equality follows from Lemma A.4 and ζ∗T,1 is defined in Lemma
A.10.

Proof of (52): We find for the second term of D2L∗ given in (54) that Lµµ(d0, µ(d0))

= σ2
0

∑T
t=1 κ

2
0t = O(T 1−2d0) and

Ldµ(d0, µ(d0)) = −
T∑
t=1

(
S+
0t − (µ̂− µ0)κ0t

)
κ1t

−
T∑
t=1

(
S+
1t − (µ̂− µ0)κ1t

)
κ0t

= OP (T
1
2
−d0 log(T ))

such that T−1Ldµ(d0,µ(d0))
2

Lµµ(d0,µ(d0))
= OP (T

−1 log2(T )) and hence can be ignored. Thus, we get

σ−2
0 T−1D2L∗ = σ−2

0 T−1

T∑
t=1

(
S+
1t − (µ̂− µ0)κ1t

)2
+ σ−2

0 T−1

T∑
t=1

(
S+
0t − (µ̂− µ0)κ0t

) (
S+
2t − (µ̂− µ0)κ0t

)
+OP (T

−1 log2(T ))

ignoring terms that are of order T−1 log2(T ) we get

σ−2
0 T−1D2L∗ = σ−2

0 T−1

T∑
t=1

E
(
S+
1t

)2
+ T−1/2

(
M+

11T +M+
02T

)
+OP (T

−1 log2(T ))

= ζ2 + T−1/2
(
M+

11T +M+
02T

)
+OP (T

−1 log2(T ))

Proof of (53): For the third derivative it can be shown that the extra terms involving
the derivatives µd(d0) and µdd(d0) can be ignored and we find

σ−2
0 T−1D3L∗ = σ−2

0 3T−1

T∑
t=1

(
S+
1t − (µ̂− µ0)κ1t

) (
S+
2t − (µ̂− µ0)κ2t

)
+ σ−2

0 T−1

T∑
t=1

(
S+
0t − (µ̂− µ0)κ1t

) (
S+
3t − (µ̂− µ0)κ2t

)
+OP (T

−1 log3(T ))

= 3σ−2
0 T−1

T∑
t=1

E
(
S+
1tS

+
2t

)
+ 3T−1/2M+

12T + T−1/2M+
03T

= −6ζ3 +OP (T
−1/2)

where last equality uses Lemma A.1.

Lemma A.12. Let the model for the data xt, t = 1,. . .,T, be given by (1) and let
Assumptions 3.1 and 3.2 be satisfied with d0 < 1/2. Then the normalized derivatives
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of the likelihood function L∗
µ0
, see (11), satisfy

σ−2
0 T−1/2DL∗

µ0
(d0) = A0, (55)

σ−2
0 T−1D2L∗

µ0
(d0) = B0 + T−1/2B1 +O(T−1 log(T )), (56)

σ−2
0 T−1D3L∗

µ0
(d0) = C0 +OP (T

−1/2), (57)

where

A0 =M+
01T ,

B0 = ζ2, B1 =M+
11T +M+

02T ,

C0 = −6ζ3.

Here M+
mnT is given in (27) and ζ2 = π2/6 and ζ3 ≈ 1.2021.

Proof of Lemma A.12. Note that derivatives of ∆d
0(xt−µ0) with respect to d, evaluated

at d = d0, are of the from

Dm∆d0
0 (xt − µ0) = S+

mt.

So the derivatives only depend on the asymptotic properties of S+
mt which is given in

Lemma A.1.
Proof of (55): Note that

σ−2
0 T−1/2DL∗

µ0
= σ−2

0 T−1/2

T∑
t=1

S+
0tS

+
1t

=M+
01T

by noticing that E
(
S+
0tS

+
1t

)
= 0, see Lemma A.1.

Proof of (56): Note that

σ−2
0 T−1D2L∗

µ0
= σ−2

0 T−1

T∑
t=1

(
S+
1t

)2
+ σ−2

0 T−1

T∑
t=1

S+
0tS

+
2t

= σ−2
0 T−1

T∑
t=1

E
(
S+
1t

)2
+ T−1/2

(
M+

11T +M+
02T

)
= ζ2 + T−1/2

(
M+

11T +M+
02T

)
+O(T−1 log(T ))

by using Lemma A.1 and noticing that

σ−2
0 T−1

T∑
t=1

E
(
S+
1t

)2
= ζ2 +O(T−1 log(T )).

Proof of (57): We note that

σ−2
0 T−1D3L∗

µ0
= 3σ−2

0 T−1

T∑
t=1

S+
1tS

+
2t + σ−2

0 T−1

T∑
t=1

S+
0tS

+
3t

= 3σ−2
0 T−1

T∑
t=1

E
(
S+
1tS

+
2t

)
+ 3T−1/2M+

12T + T−1/2M+
03T

= −6ζ3 +OP (T
−1/2)
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where last equality uses Lemma A.1.

Lemma A.13. Let the model for the data xt, t = 1,. . .,T, be given by (1) and let
Assumptions 3.1 and 3.2 be satisfied with d0 < 1/2. Then the normalized derivatives
of the modified likelihood function L∗

MCSS, see (12), satisfy

σ−2
0 T−1/2DL∗

MCSS(d0) = A0 + T−1/2 log(T )A1 +OP (T
−1 log(T )), (58)

σ−2
0 T−1D2L∗

MCSS(d0) = B0 + T−1/2B1 +OP (T
−1 log2(T )), (59)

σ−2
0 T−1D3L∗

MCSS(d0) = C0 +OP (T
−1/2), (60)

where

A0 =M+
01T , E(A1) = ζ∗T,1(d0) + ζ∗T,2(d0),

B0 = ζ2, B1 =M+
11T +M+

02T ,

C0 = −6ζ3.

Here, ζ∗T,1(d0), ζ
∗
T,2(d0) and M

+
mnT , are given in (49), (50), and (27), respectively, and

ζ2 = π2/6 and ζ3 ≈ 1.2021.

Proof of A.13. The proof is omitted as it follows from the same approach as in the
proof of Lemma A.6 and is therefore straightforward to proof.

A.2 Proof of Theorem 3.1

We note that the MCSS estimator is equal to

d̂MCSS = argmin
d∈D

L∗
MCSS(d),

= argmin
d∈D

log

(
m(d)

2

T
L∗(d)

)
so that the objective function equals L̃(d) = log

(
m(d) 2

T
L∗(d)

)
= log(m(d))+log

(
2
T
L∗(d)

)
.

We also note that R(d) = 2
T
L∗(d) is the same objective function as in Hualde and

Nielsen (2020). Fix ϵ > 0 and let Mϵ = {d ∈ D : |d − d0| < ϵ} and M̄ϵ = {d ∈ D :
|d− d0| ≥ ϵ}. Then

Pr
(
d̂MCSS ∈ M̄

)
= Pr

(
inf
d∈M̄ϵ

L̃(d) ≤ inf
d∈Mϵ

L̃(d)

)
,

≤ Pr

(
inf
d∈M̄ϵ

L̃(d) ≤ L̃(d0)

)
,

≤ Pr

(
inf
d∈M̄ϵ

log(R(d))− log(R(d0)) ≤ log(m(d0))− inf
d∈D

log(m(d))

)
,
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From Hualde and Nielsen (2020) we know that, as T → ∞, we have that

Pr

(
inf
d∈M̄ϵ

log(R(d))− log(R(d0)) ≤ 0

)
→ 0

So to proof consistency it remains to show that

log(m(d0))− inf
d∈D

log(m(d)) → 0.

and the proof follow directly from Lemma A.3 and Lemma A.8.

To show asymptotic normality of d̂MCSS we proceed with an usual Taylor expansion
of the score function,

0 = DL∗
MCSS(d̂MCSS) = DL∗

MCSS(d0) +
(
d̂MCSS − d0

)
D2L∗

MCSS(d
∗),

where d∗ is an intermediate value satisfying |d∗ − d0| ≤ |d̂MCSS − d0|
p→ 0. We note

that D2L∗
MCSS(d

∗) = m(d∗)D2L∗(d∗)+mdd(d
∗)L∗(d∗)+2md(d

∗)DL∗(d∗). Replacement
of D2L∗

MCSS(d
∗) by D2L∗

MCSS(d0) can then be argued in a similar way as in Hualde
and Nielsen (2020). From Lemma A.13 and A.6 we find that σ−2

0 T−1/2DL∗
MCSS(d0) =

M+
01 +OP (T

−1/2 log(T )) and σ−2
0 T−1D2L∗

MCSS(d0) = π2/6 +OP (T
−1/2) and the result

follow from Lemma A.1.

A.3 Proof of Theorem 3.2

The proof of (20) and (21) is given in JN (2016, Theorem 4). We proceed with the
proof of (22). First we need to show that D3L∗

MCSS(d
∗) = D3L∗

MCSS(d0) + oP (1).
Following the same steps as Hualde and Nielsen (2020, Theorem 1) we can show
that d̂MCSS is consistent. Then applying Johansen and Nielsen (2010, Lemma A.3) the
proof follows. We proceed by first insert the expressions of Lemma A.6 into (19) and
find

T 1/2(d̂MCSS − d0) = −A0 + T−1/2A1

B0 + T−1/2B1

− 1

2
T−1/2

(
A0 + T−1/2A1

B0 + T−1/2B1

)2
C0

B0 + T−1/2B1

+ oP (T
−1/2)

using the expansion

1

B0 + T−1/2B1

=
1

B0

− T−1/2B1

B2
0

+ T−1B
3
1

B3
0

+ · · · (61)

simplifies to

T 1/2(d̂MCSS − d0) = −A0

B0

− T−1/2

(
A1

B0

− A0B1

B2
0

+
1

2

A2
0C0

B3
0

)
+ oP (T

−1/2).

Notice that E(A0) = 0. Then the bias of T (d̂MCSS − d0) is

−
(
E(A1)

B0

− E(A0B1)

B2
0

+
1

2

E(A2
0)C0

B3
0

)
+ o(1) = −3ζ3ζ

−2
2 + o(1)
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since

−E(A0B1)

B2
0

+
1

2

E(A2
0)C0

B3
0

= 3ζ3ζ
−2
2

using Lemma A.1 and by noticing that

E(A1) = ζT,1(d0) + ζT,2(d0) = o(1)

by Lemma A.5.

Next we proof (24): The proofs follow similarly as above but by noticing that
A1 = 0, see Lemma A.12. Then the bias of T (d̂µ0 − d0) is equal to

−
(
−E(A0B1)

B2
0

+
1

2

E(A2
0)C0

B3
0

)
+ o(1) = −3ζ3ζ

−2
2 + o(1)

Finally we proof (23) and (25): We first work out the proof of (23). By similar
argument as in the proof of (22) we have that

T 1/2(d̂− d0) = −A0 + T−1/2 log(T )A1

B0 + T−1/2B1

− 1

2
T−1/2

(
A0 + T−1/2 log(T )A1

B0 + T−1/2B1

)2
C0

B0 + T−1/2B1

+ oP (T
−1/2 log(T ))

= −A0

B0

− T−1/2

(
log(T )A1

B0

− A0B1

B2
0

+
1

2

A2
0C0

B3
0

)
+ oP (T

−1/2 log(T )).

where the last equality follows from the expansion in (61). Notice that E(A0) = 0.
Then the bias of T (d̂− d0) is

−
(
log(T )E(A1)

B0

− E(A0B1)

B2
0

+
1

2

E(A2
0)C0

B3
0

)
+ o(1)

= −3ζ3ζ
−2
2 +

− log(T ) + (Ψ(1− d0) + (1− 2d0)
−1)

ζ2
+ o(1)

using Lemma A.1 and by noticing that

E(A1) = ζ∗T,1(d0) = 1− log−1(T )
(
Ψ(1− d0) + (1− 2d0)

−1
)
+ o(log−1(T ))

by Lemma A.10 and Lemma A.11. The proof of (25) is now trivial since E(A1) =
o(log−1(T )), see Lemma A.13, we have that the bias of T (d̂MCSS − d0) is

−
(
E(A1)

B0

− E(A0B1)

B2
0

+
1

2

E(A2
0)C0

B3
0

)
+ o(1) = −3ζ3ζ

−2
2 + o(1)
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