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Abstract

The proxy VAR framework requires additional restrictions to disentangle the

structural shocks when multiple shocks are identified using multiple instru-

ments. I propose to employ restrictions on the forecast error variance (FEV).

Less restrictive assumptions that bound the contributions to the FEV can

replace or accompany inequality restrictions on e.g. the impulse responses.

This enables or sharpens the set identification of the structural parameters.

Furthermore, with the correct economic intuition the Max-Share framework

can be used to point identify the structural parameters without the need for

strict equality restrictions in the case when two shocks are identified with two

proxy variables.
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1 Introduction

In the last decade, proxy variables were highly prevalent in the structural vector

autoregression (SVAR) literature. The proxy VAR framework was developed by

Stock and Watson (2012) and Mertens and Ravn (2013). So far, it was applied to

identify the effects of various structural shocks. For example, Mertens and Ravn

(2013) estimate the effects of taxation shocks, Gertler and Karadi (2015) the effects

of monetary policy shocks and Piffer and Podstawski (2018) the impacts of uncer-

tainty shocks. As in the standard IV identification the proxy variables (also called

instruments in this context) need to satisfy two key conditions. Reminiscent of the

relevance and exogeneity assumption, the external series have to be related to the

target shocks of interest while being unrelated to the remaining structural shocks

that are not identified.

When multiple shocks are identified with multiple instruments, Mertens and

Ravn (2013) show that additional identifying restrictions are needed in order to dis-

entangle the structural shocks. For instance, Piffer and Podstawski (2018) have an

instrument related to an uncertainty shock and one instrument for a news shock.

If the two instruments are not related to structural shocks other than the uncer-

tainty and news shock, the proxy VAR successfully rules out the other shocks as

confounders. Yet, in order to disentangle the two identified shocks additional re-

strictions are needed. Different solution were proposed in the literature. Mertens

and Ravn (2013) assume a recursive structure, meaning that one of their two iden-

tified shocks has no contemporaneous impact on a specified variable. Piffer and

Podstawski (2018) distinguish between uncertainty and news shocks by enforcing

that each shock is correlated more strongly to the instrument targeting it.

For the latter strategy, the inequality restriction results in the set identification of

the structural parameters. Yet, the set identification strategies inherit the potential

to lead to rather large and uninformative sets if the identification restrictions are

not sharp enough. On the contrary hard equality restrictions which sharply identify

the structural parameters, as e.g. in Mertens and Ravn (2013), are typically hard to

defend. The difficulties in both cases highlight the importance of economic intuition

in the identification of SVARs. I propose to use restrictions on the contribution of

a specific shock to the forecast error variance (FEV) of a target variable in order

to disentangle the identified shocks in the proxy VAR. Depending on the available

economic intuition the FEV restrictions allows both point and set identification.

Set identification of shocks based on restrictions on the contributions to the FEV

were introduced by Volpicella (2021). The main idea is to bound the contributions of

the target shock to the FEV of a specified variable. These bounds induce inequality

restrictions on the structural model, similar to e.g. sign restrictions, and the identi-
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fied set consists of all the structural representations that satisfy them. The bounds

on the FEV can either replace or accompany existing inequality restrictions. Hence,

the bounds offer a possibility to identify the impulse responses, which are often

the key element of interest in the SVAR environment, without the need to impose

restrictions on exactly the parameters of interest. Yet, if the bounds on the FEV

accompany existing inequality restrictions they help to sharpen the identification

and alleviate the problem of large uninformative identified sets.

Point identification of shocks via restrictions on the FEV dates back to Faust

(1998) and Uhlig (2004a) and was originally an alternative to the bias prone long-run

restrictions. The shock is identified to be the shock that maximizes the contribution

to the FEV of a specific variable. Francis et al. (2014) coined the term ’Max-

Share’ for this identification strategy and in the following I use this expression to

refer to it. However, Dieppe et al. (2019) point out the as soon as more than one

shock contributes to the FEV of the chosen variable, the maximization of the share

identifies a combination of the contributing shocks. Due to this drawback the Max-

Share approach is only in specific situations applicable. In the literature it has, for

instance, been used by Barsky and Sims (2011) to identify technology news shocks

and by Ben Zeev and Pappa (2017) to identify defence spending news shocks.

The merit of fusing proxy VARs and the Max-Share approach is that sharp

point identification of the structural parameters is achieved without the need for

strict equality restrictions. Certainly, the drawback of the pure Max-Share frame-

work carries over to the application in the proxy VARs. Hence, the Max-Share

approach only correctly disentangles the underlying shocks if one of them exclu-

sively contributes to a variable in the system. Shocks that contribute to the FEV

but are not related to the proxies are cancelled out by the proxy VAR. Yet, if the

condition of exclusive contribution is not fulfilled the results will be biased. Thus, I

propose to augment the Max-Share framework with an inequality restriction to dis-

entangle the shocks while removing or reducing the bias. This strategy is limited to

the case when two shocks are identified with two instruments. However, in practice

this highly relevant as finding two suitable proxy variables is difficult enough. The

inequality restriction is of the form that the contemporaneous impact of shock one

on a specified variable is larger than the impact of shock two on the same variable. If

known, one can also incorporate the margin by which the response to the one shock

exceeds the response of the other shock into the inequality constraint to reduce the

bias further.

The simulation study shows that the Max-Share approach successfully disentan-

gles the shocks in the proxy VAR. In the case of exclusive contributions the basic

Max-Share identification is sufficient to disentangle the structural shocks. If the ba-

sic Max-Share framework is biased the augmentation with the mentioned inequality
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constraint reduces or removes the bias depending on the specification of the addi-

tional constraint. The closer the inequality constraint to the actual margin of the

restricted contemporaneous responses the closer the estimate to the true underlying

structural parameters.

Compared to the Max-Share framework the bounds offer a more flexible ap-

proach with less restrictive assumptions and it can be easily combined with other

types of restrictions. Yet, the benefits come with the cost of loosing the sharp point

identification. Nevertheless, bounding the FEV is a useful identification strategy

whose assumptions can be backed with economic theory and intuition. I present

an empirical illustration which highlights one useful application of the bound con-

straints. I weaken the strict identification assumption by Mertens and Ravn (2013)

and show that their results are, although qualitatively not considerably different,

statistically less convincing.

Section two commences with the introduction of the baseline SVAR framework

and the introduction of the proxy VAR. Section three describes the usage of re-

strictions on the FEV for the identification of the structural VAR. It starts with

the more general set identification approach via the bounds on the FEV and ends

with the more strict point identification via the Max-Share framework. Section four

and five present the results of the simulation study and of the empirical illustration,

respectively.

2 Econometric Framework

2.1 The Structural VAR

The starting point is the k dimensional stationary structural VAR(p) model:

yt =

p∑
m=0

Amyt−l +Bwt, t = 1, ...T, (1)

where the k × 1 vector wt depicts the economically meaningful structural shocks

(e.g. Kilian & Lütkepohl, 2017). The k×k impact matrix B maps the reduced form

innovations into the structural shock, ut = Bwt. The elements of the k × 1 white

noise vector ut are the reduced form innovations. To shorten the notation one can

rewrite the SVAR in (1) as:

yt = Axt +Bwt, t = 1, ...T, (2)

with xt = (y′t−1, ..., y
′
t−p)

′ and A = (A1, ..., Ap). A constant is omitted for the brevity

of the notation but it can be included in a straightforward way.
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Common to most identification strategies is the normalization E(wtw
′
t) ≡ Σw =

IK , which yields the set of covariance restriction E(utu
′
t) ≡ Σ = BB′. Without

further assumptions these restrictions do not suffice to pin down the structural

parameters as the resulting system of equation has many possible solutions. The

Cholesky decomposition of Σ, denoted by Σc, satisfies these covariance restrictions.

Yet, they will also hold for every rotation with an k × k orthonormal matrix Q,

Σ = ΣcΣ
′
c = ΣcQQ′Σ′

c. Giacomini, Kitagawa, and Read (2021) refer to this repre-

sentation of the SVAR as the ’orthogonal reduced form’.

The moving average representation of the SVAR is then given by:

yt =
∞∑

m=0

CmΣcQwt−m, t = 1, ...T, (3)

where the k× k matrices Cm contain the moving average coefficients which give the

response of the system to the reduced form innovations m periods ago. The impulse

response of variable i to shock j at horizon h is given by:

ηi,j,h = e′iCmΣcqj, (4)

where ei and ej are the ith and jth column of Ik, respectively, and qj is the jth

column of Q.

Apart from the impulse response functions the FEV decomposition is are an ele-

ment of interest in the SVARs. In this paper the FEV decomposition is particularly

of importance as identifying restrictions are placed on it. To formalize the FEV

decomposition let the h-step-ahead forecast of yt be:

yt+h|t =
∞∑

m=0

Ch−mut−m. (5)

The h-step ahead forecast error is then given by:

yt+h − yt+h|t =
h−1∑
m=0

CmΣcQwt+h−m, (6)

and the h-step ahead forecast error covariance matrix is represented by:

Ω(h) =
h−1∑
m=0

CmΣcQQ′Σ′
cC

′
m =

h−1∑
m=0

CmΣC
′
m. (7)

The contribution from shock j to the total forecast variance of variable i at horizon
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h is then:

Ωi,j(h) =
e′i(
∑h−1

m=0CmΣcqjq
′
jΣ

′
cC

′
m)ei

e′i(
∑h−1

m=0CmΣC ′
m)ei

, (8)

where ei is the ith column of the identity matrix Ik and qj is the jth column of Q.

In order to identify the structural parameters of interest restrictions have to be

placed on the model. As mentioned before two different identification schemes ex-

ist. Set identification amounts to finding all the rotation matrices Q that satisfy the

identification restrictions. In turn, they define the identified set for e.g. the impulse

response functions or the FEV decomposition. Common set identification restric-

tions are, for instance, inequality restriction on the structural impulse responses.

The stricter the identifying restrictions, the smaller the identified set. In point iden-

tification schemes the restrictions are such that only one admissible rotation matrix

Q exists. The typical point identification restrictions are equality restrictions on the

elements of the impact matrix B. For example, k(k − 1)/2 independent equality

restrictions on B are sufficient to point identify the structural parameters.

The proxy VAR framework that is introduced in the next subsection allows both

for point and set identification. If one shock is identified using one proxy variable

the parameters are point identified up to scale. With multiple shocks and multiple

proxies additional restrictions are needed in order to disentangle the shocks. In the

latter case the just mentioned sign or equality restrictions are one possibility and

depending on the type of imposed restrictions the structural parameters are either

point or set identified.

2.2 Proxy VAR

For the the proxy VAR framework I loosely follow the framework by Giacomini et

al. (2021) as the inference for the set identification part will be based on their work.

As in the standard instrumental variable (IV) framework, the proxy variables - also

called instruments interchangeably - have to satisfy two key assumptions. Without

loss of generality, let zt be a l× 1 vector of instruments that are related to the first

l structural shocks in wt. The two following two conditions have to be satisfied:

E(ztw(1:l),t) = Ψ and E(ztw(k−l+1:k),t) = 0, (9)

where Ψ is an l× l matrix of full rank. These two conditions resemble the relevance

and exogeneity conditions of the standard IV approach. The instruments have to

be related to the target shocks and unrelated to the remaining structural shocks.
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Assume that the proxies follow:

Γ0zt = Λwt +

pm∑
l=0

Γmzt−l + νt, t = 1, ..., T. (10)

The process in (10) indicates that the proxies are related to the structural shocks.

Giacomini et al. (2021) assume that (w′
t, νt)

′|Ft−1 ∼ N(0(k+l)×l, Ik+l), where Ft−1 is

the information set at time t− 1.

The assumptions in (9) together with process (10) yield:

E(ztw′
t) = Γ−1

0 Λ = [Ψ, 0l×(k−l)]. (11)

Plugging model (2) into the process in (10) and left-multiplying by Γ−1
0 yields:

zt = Dyt +Gxt +

pz∑
m=0

Hmzt−m + vt, t = 1, ..., T, (12)

where D = Γ−1
0 ΛB−1, G = −Γ−1

0 ΛA and Hm = Γ−1
0 Γl for each m = 1, ..., pz.

Giacomini et al. (2021) show that (11) can also be represented by:

E(ztw′
t) = DΣcQ = [Ψ, 0l×(k−l)], (13)

implying that the relevance assumption rank(Ψ) = l is fulfilled if and only if

rank(D) = l. The exogeneity and relevance assumption regarding the proxies re-

stricts the rotation matrices Q such that they follow the structure in (13). In this

fashion the proxy VAR shrinks the identified set.

In the following I deviate from the notation of Giacomini et al. (2021) and use the

proxy VAR framework by Piffer and Podstawski (2018). This allows me to handle

both the bounds on the FEVD and the combination with Max-Share approach in the

same proxy VAR framework. The next section describes how the robust bayesian

inference algorithm of Giacomini et al. (2021) is adapted to the representation of

the proxy SVAR below.

Following Piffer and Podstawski (2018), I decompose the reduced form errors

into two components:

ut = Bzw(1:l),t +B−zw(k−l+1:k),t, t = 1, ..., T, (14)

where Bz is the k×l block of the impact matrix B that contains the first l colums and

B−z is the according remaining part of B. Bz contains the structural parameters of

the shocks related to the proxies whose identification is the goal of the proxy VAR.

I refer to this matrix as the ’proxy impact matrix’. Considering (14) together with
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the assumption regarding the proxies in (9) yields E(utz
′
t) = BzΨ

′ = Z. Equation

(13) lets me rewrite this expected value:

E(utz
′
t) = BE(wtz

′
t) = BE(ztw′

t)
′ = ΣD′, (15)

with B = ΣcQ and E(ztw′
t) = DΣcQ. Hence, ΣD′ = Z = BzΨ

′. Partitioning the

matrix ΣD′ and Bz yields:

ΣD′ = Z =

(
Z1

Z2

)
and Bz =

(
B11

B21

)
(16)

and thus

B21 = Z2Z
−1
1 B11 = ZlB11, (17)

where Z1 is the upper l × l block of the matrix Z and B11 is the upper l × l block

of Bz. Hence,

Bz =

(
B11

ZlB11

)
, (18)

and if the upper l× l block B11 is identified the remaining block of the proxy impact

matrix is identified as well. In order to identify the upper block of Bz decompose

the matrices of the standard covariance restrictions E(utu
′
t) ≡ Σ = BB′ such that:(

Σ11 Σ12

Σ21 Σ22

)
=

(
B11 B12

B21 B22

)(
B11 B21

B12 B22

)
, (19)

where Σ11 is the upper left l× l block of Σ. B11 is again the upper l× l block of Bz

and therefore the upper left block of B. The remaining blocks of the two matrices

have the according dimensions. It can be shown that B11B
′
11 = Σ11 − B12B

′
12 (see

Piffer & Podstawski, 2018) with:

B12B
′
12 = (Σ21 − ZΣ11)

′Π−1(Σ21 − ZΣ11), (20)

Π = Σ22 + Z ′Σ11Z
′ − Σ21Z

′ − ZΣ′
21. (21)

Similar to the covariance restrictions E(utu
′
t) ≡ Σ = BB′, the equation B11 =

Σ11 − B12B
′
12 does not pin down the parameters of B11 uniquely. Let Bc

11 be the

Cholesky decomposition of Σ11 − B12B
′
12, then every rotation of Bc

11 with an l × l

orthonormal matrix Q will also satisfy B11 = Bc
11B

c′
11 = Bc

11QQ′Bc′
11 = Σ11−B12B

′
12.

The exogeneity and relevance restriction regarding the proxies is satisfied for

Bz by construction. Hence, the identification boils down to finding the set of l ×
l orthonormal matrices Q that satisfy the additional identifying restrictions, e.g.

inequality restriction on structural parameters. In the next section I describe how
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inequality restrictions on the FEV like in Volpicella (2021) fit into this framework.

It is also possible to point identify the structural parameters, what again comes

down to finding the one rotation matrix for which the restrictions are satisfied. If the

resulting recursive structure of Bc
11 for the contemporaneous impacts of the identified

shocks is economically justifiable, the Cholesky decomposition immediately point

identifies the structural shocks. This is, for instance, the identification assumption

used in Mertens and Ravn (2013) and the corresponding rotation matrix is just

Q = Il.

A special case arises when l = 2, meaning that two shocks are identified with two

instrument. In the proxy VAR the rotation matrix will be of dimension 2 × 2. In

this case, knowing one column of the rotation matrix also gives the second column

of the rotation matrix Q up to a sign normalization. If the first column of a 2 × 2

orthogonal matrix is known the second column is pinned down up to sign through

following equations:

Q =

(
q11 q12

q21 q22

)
, 1 = q221 + q222 and 1 = q211 + q212.

Hence, restrictions on one of the two shocks are sufficient to identify both shocks

of interest. The second shock is pinned down due to the properties of orthogonal

matrices. I make use of this special case in combination of the proxy VAR with the

Max-Share framework where I point identify two shocks with restrictions on only

one of the two shocks.

To avoid confusion, in the following sections every rotation matrix is of dimension

l × l. For the parts describing identification of the proxy VAR with the Max-Share

approach l = 2.

3 Proxy VAR with Restrictions on the FEV

3.1 Proxy VARs with Bounds on the FEV

The bounds on the contributions to the FEV where introduced by Volpicella (2021)

and this section applies them to the proxy SVAR framework. In doing so, I loosely

follow the notation of Volpicella (2021). Such bounds on the FEV are inequality

restrictions in the spirit of the well known sign restrictions on impulse response

parameter, an thus the structural parameters are set identified. Naturally, the chal-

lenges the set identification literature deals with also apply to this identification

scheme.
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3.1.1 Bounding the contribution to the FEV

In the proxy VAR framework the contribution of shock j to the FEV of variable i

at horizon h is:

Ωij(h) =
e′i(
∑h−1

m=0CmBzqjq
′
jB

′
zC

′
m)ei

e′i(
∑h−1

m=0CmΣC ′
m)ei

. (22)

Uhlig (2004b) shows that equation (22) can also be written as:

Ωi,j(h) = q′jRi,hqj, (23)

where

Ri,h =

∑h−1
m=0 c

′
i,mci,m

e′i(
∑h−1

m=0 CmΣC ′
m)ei

, (24)

with ci,m = eiCmBz is the ith row vector of CmBz. Ri,h is a positive semidefinite

and symmetric l × l real matrix.

Given equation (23) the bounds on the contribution to the FEV of variable i by

shock j at horizon h can be represented by:

τ i,j,h ≤ q′jRi,hqj ≤ τ i,j,h,

where τ i,j,h and τ i,j,h depict the lower and upper bound, respectively, and 0 ≤
τ i,j,h ≤ τ i,j,h ≤ 1. Let Ij be a set of indices that depict whether the FEV of variable

i is bounded and Hij collects the horizons h = 0, 1, ... for which these bounds are

imposed. The whole set of bound constraints is then characterized by

τ i,j,h ≤ q′jRi,hqj ≤ τ i,j,h, for i ∈ Ij and h ∈ Hij.

These bounds on the contributions to the FEV can also be applied together with

already existing set identifying inequality restrictions, like e.g. sign restrictions.

Furthermore, restrictions on the correlations of the proxies with the identified shocks

are possible. These type of restrictions constrain the elements of Ψ. They can be

checked employing the routine used by Piffer and Podstawski (2018). The identified

set is then characterized by all the rotation matrices Q for which these FEV bounds

and other potential restrictions are satisfied. As pointed out by Volpicella (2021)

such bounds on the FEV contributions can be derived either through economic

theory or simply by strong beliefs due to economic intuition.
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3.1.2 Nonemptiness of the Set

The bound restrictions, together with potential additional restrictions, are subject

to set-identification specific considerations. On the one hand, if the bounds are not

restrictive enough one gets potentially large identified sets which yield a fuzzy iden-

tification of the underlying structural effects. If, on the other hand, the bounds are

to restrictive the identified set might be empty because no structural representation

of the model satisfies them.

Unfortunately, no formal guidance helps to assess the restrictions in this regard,

what in turn highlights the importance of the economic theory or intuition behind

them. Yet, if the identified set is empty, this might be a sign that the imposed

restrictions are not reasonable.

Furthermore, it is important to know whether the set is empty for the estimation

procedure. Volpicella (2021) provides sufficient conditions for the nonemptiness of

the identified set when only one shock is restricted. These sufficient conditions also

apply in the same fashion to the proxy VAR framework. Recall that the contribution

of the target shock j to the FEV of variable i is:

Ωij(h) = q′jRi,hqj, (25)

Let λih
m the real eigenvalues of Ri,j with i ∈ Ij, h ∈ Hij and m = 1, ..., l. Uhlig

(2004b) shows that finding the maximum (minimum) of (25) with respect to qj

amounts to finding the largest (smallest) eigenvalue λih
m of Ri,j and the maximum

(minimum) is achieved by using the corresponding eigenvector qm as a rotation

vector qj. Hence, the eigenvalues λ
ih
m correspond to the contributions to the FEV of

variable i at horizon h.

Proposition 3.1 follows from Proposition 3.1 of Volpicella (2021) and gives suffi-

cient conditions for the nonemptiness of the identified set when a single target shock

j is restricted.

Proposition 3.1. (Nonemptiness) If the following conditions hold:

(a) ∃i ∈ Ij,∃h ∈ Hij | τ i,j,h ≤ λih
m ≤ τ i,j,h, Rqm = λih

mqm for some m = 1, ..., l,

(b) given qm from (a), τ i,j,h ≤ q′mRi,hqm ≤ τ i,j,h∀i ∈ Ij and ∀h ∈ Hij, and all

other additional restrictions are satisfied,

then the identified set is non-empty and bounded.

If the contribution to the FEV of a single variable i is bounded the condition

reduces to a simple check whether one of the eigenvalues λih
m lies within the bounds.

When additional restrictions, like sign restrictions, are imposed one also has to check

whether they are satisfied for qj = qm.
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Apart from Volpicella (2021) Proposition 3.1 not only applies when only one

shock is constrained. In the special case of l = 2, Proposition 3.1 also helps to

detect nonemptiness also when both shocks are subject to identification restrictions.

Knowing qm amounts to knowing the whole 2 × 2 rotation matrix Qm due to the

properties of orthonormal matrices. Hence, in step (b) of Proposition 3.1 also the

restrictions on the second shock can be checked.

Another difference to Volpicella (2021) is the number of eigenvalues that are

available for assessment of the nonemptiness. In the proxy VAR only l eigenvalues

are at hand compared to the k eigenvalues in Volpicella (2021). In practice the

sufficient conditions will be met more frequently compared to the case with only l

eigenvalues. On top of that, the largest and smallest eigenvalue in the proxy VAR

case represents the maximum and minimum contribution to the FEV at the specific

horizon. Hence, if l = 2 only the maximum and minimum contribution can be used

to check the nonemptiness. If the bounds do not encompass the extreme values the

sufficient conditions are not satisfied. Yet, in practice it might be interesting to set

the bounds on the FEVD such that they are close to the maximum or minimum

and the empirical illustration highlights this case.

If the sufficient conditions of Proposition 3.1 are not fulfilled a different approach

helps to approximate the nonemptiness of the identified set. As often done in the

literature, one can draw a specified number of matrices Q from the orthonormal

space. If none of this draws satisfies the restrictions one can conclude that the set

is empty.

Lastly, one can see that the set is empty if the upper bound τ i,j,h is smaller than

the minimum eigenvalue for one of the imposed bounds, or if the lower bound τ i,j,h is

larger than the maximum eigenvalue. In these cases the just mentioned alternative

is obsolete.

3.1.3 Estimation and Inference

This subsection introduces the robust bayesian inference framework by Giacomini

et al. (2021). The benefit of this approach is that it avoids specifying a prior over

the rotation matrices Q that is not updated by the data. Baumeister and Hamilton

(2015) show that when the prior for the rotation matrices Q is a uniform distribution

over that space of orthonormal matrices, the common approach in the literature, the

structural parameters are influenced by the prior distribution even asymptotically.

The remedy is to use a distribution-free approach. In the robust bayesian in-

ference the endpoints of the identified set are calculated numerically or analytically

if possible. The endpoints, or boundaries, of the identified set are the maximum

and minimum values of the structural parameters of interest given all admissible

rotation matrices Q. Giacomini et al. (2021) show that this procedure yields prior
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robust inference over the structural parameters.

As mentioned previously, I adapt the algorithm used in Giacomini et al. (2021) to

the specification of the proxy VAR framework in the previous section. I incorporate

the exogeneity and relevance restriction regarding the proxies via the proxy impact

matrix Bz and only rotate the upper block B11 with an orthonormal matrixQ. Apart

from the benefit that I can fit bounding the FEVD and the Max-Share approach

in the same proxy VAR framework, two additional advantages arise. One merit

is that I do not need to draw the rotation matrices Q subject to the exogeneity

restriction as depicted in (13). For large iteration counts of the inference algorithm

this potentially saves some computation time. Further, I avoid a specific ordering of

the variables in the VAR. The ordering convention defined in Giacomini et al. (2021)

might be difficult to incorporate in practice when it is not obvious which structural

shock is linked to which variable in the VAR system.

To describe the bayesian algorithm let ϕ ∈ Φ collect all the reduced form param-

eters in (2) and (12). For the following algorithm it is not important which prior

for ϕ is used as long as one is capable to draw from the posterior distribution of

the reduced form parameters. For the results derived in the next sections I follow

Giacomini et al. (2021) and use an (improper) Jeffrey’s prior.

Suppose that the impulse responses ηi,j,h = e′iCmBzqj are the structural parame-

ters of interest. The upper and lower boundary of the identified set with respect to

the imposed restrictions are depicted by ui,h(ϕ) and li,h(ϕ). Algorithm 1 describes

how to conduct robust bayesian inference for the identified set of ηi,j,h.

Algorithm 1.

Step 1: Obtain draws ϕ from its posterior distribution and compute Bc
11.

Step 2: Check whether the identified set is empty. If the set is empty go back

to Step 1. If the set is non-empty proceed with Step 3.

Step 3: Compute the boundaries of the identified set:

li,h(ϕ) = min
Q

e′iCmBzqj

s.t τ i,j,h ≤ q′jRi,h(ϕ)qj ≤ τ i,j,h, ∀i ∈ Ij and ∀h ∈ Hij,

QQ′ = Il,

potential sign restrictions and/or restrictions on Ψ.

The upper boundary ui,h(ϕ) is obtained analogously.

Step 4: Repeat Steps 2 and 3 N times.
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Step 5: Approximate the set of posterior means and the robust credible region

as described in Giacomini et al. (2021).

Especially, Step 2 differs from the algorithm of Giacomini et al. (2021) as Propo-

sition 3.1 helps to gauge whether the identified set is empty. If the sufficient con-

ditions of Proposition 3.1 are not fulfilled a specified number of rotation matrices

Q are drawn to approximate the set as being empty if none of the draws satisfies

the identification restrictions. In this case, Step 2 differs from Giacomini et al.

(2021) as the l × l rotation matrices Q do not need to be drawn considering the

exogeneity conditions for the proxies. These conditions are already incorporated in

the construction of Bz. Step 3 differs in the specification of the proxy VAR, and

thus the dimension of the rotation matrix Q. Second, the added constraint in the

maximization problem that represents the restrictions on the FEV are a distinction

to the algorithm in Giacomini et al. (2021).

Step 3 poses a nonconvex optimization problem. Hence, the typical approaches

to handle with gradient based optimization techniques are necessary. The simple

remedy is to use different initial values and to compute the maximum or minimum

over the set of solutions which are derived with the different initial values.

Giacomini et al. (2021) also provide an algorithm to approximate the boundaries

of the identified set in order to check the convergence of the numerical optimization

or simply as an alternative.

Algorithm 2. Replace Step 3 of Algortihm 1 with:

Step 3: Draw Q until N draws hat satisfy the identification restrictions are

reached. For each Qn, 1, ..., N compute ηn,i,j,h = e′iCmBzqn,j and approximate

ui,h(ϕ) and li,h(ϕ) by the maximum and minimum of ηn,i,j,h over all N draws.

Montiel Olea and Nesbit (2021) show that the random sampling approximation

of Algorithm 2 can be represented as a supervised learning problem. They provide

the number of admissible draws of Q that are needed to learn the set with a certain

precision. Generally, the approximated set will be smaller than the true set, yet with

a sufficient amount of draws the approximation error will be small. The theoretical

results of Montiel Olea and Nesbit (2021) can be used to judge the precision of the

approximation at a certain amount of draws N .

Giacomini et al. (2021) argue that this approximation might be favourable under

certain circumstances. Firstly, if the VAR system is large and one is interested in

the impulse responses for many variables at many horizons. Drawing many rotation

matrices Q is computationally less costly than optimizing for every variable at every

horizon. This is especially true with the representation of the proxy VAR used in

this paper as it is quite easy to draw simple l × l rotation matrices considering

that l is small in most empirical applications. Second, if not only the impulse

13



responses but also e.g. the FEV decomposition is of interest the approximation has

an advantage. Each draw of Q can be used to compute the impulse responses and

FEV decomposition of each variable at every horizon, while the optimization has to

be carried out for each parameter, variable and horizon individually.

3.2 Proxy VAR and Max-Share

This sections describes how the shocks in the proxy VAR can be disentangled using

the Max-Share framework that was introduced by Faust (1998) and Uhlig (2004b).

The key assumption behind the Max-Share approach is, that the shock of interest

j is the one that maximizes the contribution to the FEV of a target variable i over

the considered horizon h up to h. Recall, that the contributions to the FEV in the

proxy VAR are given by:

Ωz
i,j(h) =

e′i(
∑h−1

m=0CmBzqjq
′
jB

′
zC

′
m)ei

e′i(
∑h−1

m=0CmΣC ′
m)ei

, (26)

where qj is the jth column of the l× l orthonormal matrix Q. Then identification of

the target shock amounts to finding the rotation vector qj for which this maximum

is achieved:

q∗j = argmax
h∑

h=h

Ωz
i,j(h) s.t. q′jqj = 1. (27)

The closed form solution of the baseline Max-Share maximization problem via the

eigenvalues presented by Uhlig (2004b) also applies to the proxy VAR case in (27).

In the following I only consider the case when two shocks are identified with two

instruments. In practice the case of to instruments is highly relevant, as finding

multiple convincing proxy variables is difficult and finding two of them is already

a challenging task. If two shocks are identified using two instruments the rotations

matrix Q has dimension 2×2. Then identifying the first column of a 2×2 orthogonal

matrix also identifies the second column up to a sign normalization due to the

properties of orthonormal matrices:

Q =

(
q11 q12

q21 q22

)
, 1 = q221 + q222 and 1 = q211 + q212. (28)

The conditions of the 2 × 2 orthogonal matrices imply that each element of Q is

−1 ≤ qij ≥ 1. Further they imply that q21 =
√
1− q211, q22 = ±q11 and q12 = ±q21.

Hence, everything can be written in terms of q11 and the identification of one shock

via the Max-Share framework also gives the structural parameters of the second

shock up to a sign normalization. Suppose, the first shock is identified with the
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Max-Share strategy, then the impulse responses of the second shock are pinned

down up to sign. With more than two instruments the Max-Share approach does

not immediately grants identification of the remaining shocks that are related to

the instruments. Though, one rarely has more than two convincing instruments at

hand.

3.2.1 Ruling out Confounders via the Proxy VAR

Rather recently Dieppe et al. (2019) highlighted that the key identification assump-

tion of the Max-Share framework is violated if another shock also contributes to the

FEV of the target variable. To give an example, assume that the technology shock is

accountable for most of the FEV of a total factor productivity (TFP) measurement.

If the technology shock is identified as the shock that maximizes the contribution to

the TFP measurement, the results will be biased if also other shocks contribute to

the FEV of the TFP measurement. Dieppe et al. (2019) present strategies how to

circumvent this problem of confounding shocks in the baseline Max-Share identifi-

cation without proxies. In this section I focus on the remedies to the bias concerns

that the proxy VAR framework offers.

First and foremost, the proxy VAR helps with the confounding shocks as it rules

out confounding shocks that are not related to the proxies. Proposition 3.2 for-

malizes this property of the Max-Share approach in the proxy VAR. The proof is

relegated to the appendix.

Proposition 3.2. (Exclusive Contribution) Suppose two valid proxy variables z1

and z2 are available which are related to shocks w1 and w2. If Ωi,2(h) = 0 holds for

h ≤ h ≤ h. Then

q∗1 = argmax
h∑

h=h

Ωz
i,1(h) s.t. q′1q1 = 1,

point identifies the shocks w1 and w1 up to a sign normalization.

Proposition 3.2 establishes that if out of the shocks that are related to the instru-

ments one exclusively contributes to the FEV of the target variable, both shocks are

correctly identified by the Max-Share framework. For example, assume two proxies

are used to identify two shocks. One of the shocks contributes the most to the FEV

of a specified variable and out of the two shocks that are related to the proxies it

contributes exclusively to the FEV of this variable. Suppose another shock that is

not related to the proxies also contributes to the FEV of this target variable. Yet,

as it is not related to the proxies it is ruled out as a confounding shock. As out
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of the two shocks that are related to the proxies only one exclusively contributes

to the FEV of the target variable, the Max-Share framework correctly disentangles

and identifies both shocks of interest.

The case of exclusive contribution is a rather strict assumption which also offers

the possibility to identify the shocks through imposing a recursive structure on

the proxy impact matrix. Yet, the next subsection describes how the Max-Share

approach can be employed without the assumption of exclusive contribution.

3.2.2 Tackling the Bias

If the assumption of exclusive contribution for one of the two identified shocks

is not reasonable, additional inequality restrictions IQh,i,j(q11) which augment the

Max-Share framework can help to nevertheless correctly identify the true structural

parameters. Proposition 3.3 states a sufficient condition under which the structural

parameters are identified. The rotation matrix that corresponds to the true struc-

tural parameters is denoted by Q∗ with its columns q∗j . In the following I restrict

the first element of Q, q11 to be positive what simply helps with writing down the

conditions for successful identification. In practice this means the shock is normal-

ized to be an expansionary or contractionary - shock depending on the application

- during the identification. Yet, after successful identification one can transform the

shock into its contractionary/expansionary counterpart as usual by multiplying its

respective column of the impact matrix or rotation matrix Q∗ with −1.

Proposition 3.3. Let q11 ∈ [0, 1]. Suppose two valid proxy variables z1 and

z2 are available which are related to shocks w1 and w2. Suppose out of w1 and

w2, w1 predominantly, but not exclusively, contributes to the FEV of variable i for

h ≤ h ≤ h. The augmented Max-Share approach

q∗1 = argmax
h∑

h=h

Ωz
i,1(h) (29)

s.t.

q′1q1 = 1,

q′1q2 = 0,

q11 ≥ 0,

IQh,i,1(q11) ⋚ ϵ,

identifies the true structural parameters if

(a) IQh,i,1(q11) ⋚ ϵ implies a single binding linear restriction on q11 and
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(b) the restrictions is set such that it implies q11 ⋚ q∗11.

Whether condition (a) of Proposition 3.3 is satisfied depends on the type of in-

equality restriction that is placed while condition (b) requires the economic intuition

behind the chosen restriction to be correct.

This paper considers two types of inequality restrictions IQh,i,1(q1). Firstly, a

standard sign restriction on the impulse response of the first shock on a specified

variable for a single horizon h, i.e. ηi,1,h ⋚ ϵ. The second constraint restricts the

difference of the of impulse responses of the two identified shocks on a single variable

i for a single horizon h, i.e. Di,h = ηi,1,h − ηi,2,h ⋚ ϵ, what translates to on shock

having a larger impact than the other shock on the variable and horizon. The

latter type of restriction adds another possibility to incorporate economic intuition

into the identification and has the advantage that condition (a) of Proposition 3.3

can always be fulfilled. This sections proceeds to give sufficient conditions under

which condition (a) is satisfied for the two above mentioned types of restrictions.

Afterwards the implications of condition (b) are discussed.

Recall, that the structural impulse response of variable i to the first shock at

horizon h is given by ηi,1,h = e′iChBzq1, where ei is the first column of the identity

matrix I2. Let

ChBz =


CB1,h,1 CB1,h,2

CB2,h,1 CB2,h,2

...
...

CBk,h,1 CBk,h,2

 .

Proposition 3.4. Let q11 ∈ [0, 1]. Suppose a single linear restriction is placed on

ηi,1,h. If the signs of CBi,h,1q11 and CBi,h,2q21 are the opposite the linear restriction

of the form ηi,1,h ⋚ ϵ implies a single linear restriction on q11 for q11 ∈ [0, 1].

Whether the condition of Proposition 3.4 is satisfied or not depends on the

application and the variable whose response is restricted. In practice this condition

is easy to check. LetQmax be the rotation matrix obtained by the baseline Max-Share

framework under the condition that qmax
11 ≥ 0. Then CBi1 and CBi2 are available

reduced form parameters and q11 is normalized to be positive. The according sign of

q21 is obtained via the sign of qmax
21 . Yet, this is solely a sufficient condition and even

if the it is not satisfied one can check whether the chosen restriction on ηi,1,h implies

a linear restriction on q11 by looking at the impulse response function ηi,1,h(q11) over

the domain q11 ∈ [0, 1].

For the difference restriction condition (a) of Proposition 3.3 can always be

fulfilled with the correct normalization of the second column of Q. Recall that
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q22 = ±q11 and q12 = ±q21. Hence, the second column is only pinned down up to

sign due to the first column of Q. As for the first shock the second column of Q is

normalized such that it either represents an expansionary or contractionary shock

in the identification. Converting it back into a the opposing shock after successful

identification is described above based on the first shock.

Proposition 3.5. Let q11 ∈ [0, 1]. Suppose the restriction is of the form Di,h ⋚ ϵ.

Let ηi,2,h correspond to q12 ≥ 0 and −ηi,2,h to q12 ≤ 0. Either the restriction

Di,h = ηi,1,h − ηi,2,h ⋚ ϵ or Di,h = ηi,1,h − (−ηi,2,h) ⋚ ϵ implies a single linear restric-

tion on q11 for q11 ∈ [0, 1].

Algorithm 3 provides a guideline how to determine the needed normalization for

the second column of the orthogonal matrix Q such that the difference restriction

definitely implies a linear restriction on q11.

Algorithm 3.

1. Carry out the baseline Max-Share identification under the condition q11 ≥ 0

and check whether qmax
21 is positive or negative.

2. Compute DCi,h = CBi,h,1−CBi,h,2 and SCi,h = CBi,h,1+CBi,h,2, where i and

h correspond to the variable and horizon that is restricted. Record the signs

of the two quantities.

3.1 If qmax
21 is positive:

(i) If the signs of DCi,h and SCi,h are the same normalize q2 such that q22 =

q11 and q12 = −q21.

(ii) If the signs are the opposite normalize q2 such that q22 = −q11 and q12 =

q21.

3.2 If qmax
21 is negative:

(i) If the signs of DCi,h and SCi,h are the same normalize q2 such that q22 =

q11 and q12 = −q21.

(ii) If the signs are the opposite normalize q2 such that q22 = −q11 and q12 =

q21.

In practice the normalization of the second column of Q alters how ϵ has to be

specified as either ηi,1,h−ηi,2,h or ηi,1,h− (−ηi,2,h) is restricted. One possible problem

with this normalization of the second column is that the difference Di,h potentially

turns into a sum if ηi,1,h and ηi,2,h/− ηi,2,h have the opposite sign. If that is the case
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it is difficult to specify a meaningful restriction as it is difficult to gauge the sum

of two responses at a given horizon. Choosing the opposing normalization of the

second column Q solves this issue but then condition (a) of Proposition 3.3 is not

guaranteed. Hence, for the simple inequality restriction condition (a) of Proposition

3.3 is potentially not guaranteed and for the difference restriction it is potentially

difficult to come up with a restriction that satisfies condition (b) of Proposition 3.3.

Yet, condition (a) is just a sufficient condition and even if it is not guaranteed, the

augmented Max-Share approach can work. See Appendix A for more details.

Condition (b) of Proposition 3.3 requires the restriction to be set such that

q11 ⋚ q∗11. For the simple sign restriction on the impulse responses this means

that one response of the identified shock at one horizon has to be known. For

the difference restriction one needs to gauge the difference in the responses of the

shocks correctly. In practice such knowledge has to be drawn from economic theory,

previous results or pure economic intuition.

Yet, if the true ϵ∗ is unknown an inequality restriction can nevertheless help

to reduce the bias. Let δi,j,h = ηi,j,h(q
∗
11) − ηi,j,h(q11) be the bias of the structural

impulse response of variable i at horizon h to shock j and ϵmax = IQi,j,h(q
max
11 ).

Proposition 3.6. (Reducing the Bias) Let q11 ∈ [0, 1]. Suppose IQh,i,1(q11) is

continuous in q11 and IQh,i,1(q11) ⋛ ϵ implies a binding linear restriction on q11. Let

qres11 be the implied restriction such that q11 ⋛ qres11 . If ϵmax < ϵ < ϵ∗ (ϵmax > ϵ > ϵ∗)

and ηi,j,h(q11) is a strictly monotonic function at q11 ∈ [qres11 , q∗11] (q11 ∈ [q∗11, q
res
11 ]) the

absolute bias |δi,j,h| decreases as ϵ∗ − ϵ (ϵ− ϵ∗) decreases.

If the condition of Proposition 3.4 holds or the second column of Q is normalized

accordingly to Algorithm 3 then the underlying functions are strictly monotonic at

q11 ∈ [0, 1]. Hence, ϵmax < ϵres < ϵ∗ implies qmax
11 < qres11 < q∗11 or qmax

11 > qres11 > q∗11.

Further it implies that |q∗11 − qres11 | decreases as ϵ∗ − ϵres decreases. The same logic

holds when ϵmax > ϵres > ϵ∗.

Thus, checking whether the bias is guaranteed to decrease in this case boils down

to checking whether ηi,j,h(q11) is strictly monotonous over the relevant domain. If

the condition of Proposition 3.4 is fulfilled for the variable and horizon, ηi,1,h(q11)

is strictly monotonous for q11 ∈ [0, 1], and thus also over the relevant domain.

Following the idea behind Proposition 3.4, for the second shock on has to check

whether CBi,h,1q12 and CBi,h,2q22 have opposite signs in order to determine whether

ηi,2,h(q11) is strictly monotonous or not.

Approaching ϵ∗ from ϵmax therefore reduces the bias. Yet, if one overshoots

and i.e. ϵmax < ϵ∗ < ϵres is likely to increase again depending on the functional

form of ηi,j,h(q11). Hence, if the true ϵ∗ is unknown a more conservative choice of ϵ
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guarantee a reduction of the bias under the condition described in Proposition 3.6.

In practice one can also report results for different values of ϵ over a range of values

one is confident that ϵ∗ is contained. This however de-sharpens the identification

the larger the range of ϵ values. Thus the augmented Max-Share approach is most

useful when a rather strong intuition for the correct ϵ∗ exists.

3.2.3 Estimation and Inference

The combination of the proxy VAR with the Max-Share framework can also be han-

dled with the bayesian Algorithm 1 that was depicted above. In combination with

the Max-Share framework, steps two and three are simply replaced with carrying

out the Max-Share optimization. Note that this reduces the robust bayesian ap-

proach to conventional bayesian inference. Step three in Algorithm 1, the core of

the robust bayesian inference, computes the boundaries of the identified set and in

the point identification case the identified set is a singleton. Hence, computing the

bounds reduces to the computation of the point estimate.

However, in point identification scheme bootstrap inference is popular. In this

case, I propose the bootstrap by Jentsch and Lunsford (2019), which is based on the

heteroskedasticity robust bootstrap by Brüggemann, Jentsch, and Trenkler (2016).

This approach relies on estimating Z and Σ to get an estimate for Bc
11 (see Piffer

& Podstawski, 2018). The bootstrap confidence intervals are constructed in the

conventional way.

4 Simulation Results

In the simulation studies of this section I simulate a trivariate system. I follow Piffer

and Podstawski (2018) and use the New Keynesian model by An and Schorfheide

(2007) and Komunjer and Ng (2011). The model contains interest rates rt, output

xt and inflation πt. TFP shocks wz
t , government spending shocks wg

t and monetary

shocks wr
t are the structural shocks that hit the system. As pointed out by Giacomini

(2013), calibrating the parameter gives following DGP: rt

xt

πt

 =

 0.79 0 0.25

0.19 0.95 −0.46

0.12 0 0.62


 rt−1

xt−1

πt−1

+

 0.61 0 0.69

1.49 1 −1.16

1.49 0 −0.75


 wz

t

wg
t

wr
t

 .

(30)

In contrast to Piffer and Podstawski (2018) I set the variance of the structural shocks

to unity in order easily compute the actual contribution to the FEV decomposition.

Hence, the structural shocks are drawn from a normal distribution with mean zero
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and unit variance and then used to simulate the data with equation (30). The

instruments are constructed with:

m1t = τ1w
z
t + (1− τ1)w

g
t + τ2ν1t

m2t = (1− τ1)w
z
t + τ1w

g
t + τ2ν2t,

where τ1 governs the strength of the relation of the first to shocks with the instru-

ments and τ2 governs the effect of the white noise disturbances ν1t and ν2t. I set

τ1 = 0.55 and τ2 = 0.01 which leads to the proxies being sufficiently strong.

The technology shock wz
t is accountable for the most part of the FEV of the

interest rate rt. An interesting feature of this DGP is that the government spending

shock does not contribute to the FEV of the interest rate and inflation at any

horizon. This enables me to construct two scenarios:

Scenario A: The proxies are constructed such that they are related to the

technology shock z
t and the government spending shock wg

t . Out of this two

shocks wz
t contributes exclusively to the FEV of the interest rate rt.

Scenario B: The proxies are constructed such that they are related to the

technology shock wz
t and the monetary policy shock wr

t . Both of this two

shocks contribute to the FEV of the interest rate rt.

4.1 Simulation Results - Max-Share

This subsection presents the simulation results for the case when to shocks are

disentangled in the proxy VAR. The first results compare Scenario A and B which

were described above. In Scenario A out of the two identified shocks, only the

technology shocks contributes to the FEV of the interest rate. In Scenario B both

shocks contribute to the FEV of the interest rate. Up to horizon H = 13 the

technology shock wz
t contributes on average 82%, the government spending shock

wg
t does not contribute to the FEV and the monetary policy shock wr

t contributes

the remaining 18%. In this section the interest rate is always the target variable in

the Max-Share framework. Hence, the underlying assumption is that the technology

shock is the one that maximizes the contribution to the FEV of the interest rate.

Table 1 depicts the results for the identification via maximization of the FEV

after incorporating the information of the instruments as in (26) and without further

inequality restrictions on relative magnitudes. As this is more of a confirmation

exercise in which cases the Max-Share approach succeeds and fails I choose a large

sample size of T = 1, 000 with M = 1, 000 Monte-Carlo iterations. The first two

columns of the table show the true structural parameters of the DGP, the next

two columns the combination of proxy VAR and Max-Share and the last two the
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identification via the Cholesky decomposition as in e.g. Mertens and Ravn (2013),

i.e. B11 = Bc
11 is lower triangular. Looking at the results for Scenario A shows that

after incorporating the proxies the shock that is not related to them is purged from

the maximization problem. Only the two shocks that are related to the instruments

are factored in and as one of the shocks contributes exclusively to the FEV of

the target variable the Max-Share approach is suitable to disentangle these two.

Yet, this set-up with exclusive contribution implies a recursive structure for the

contemporaneous impacts of the shock, and thus the Cholesky decomposition for the

upper 2× 2 block of the proxy impact matrix will also identify the true underlying

structural parameters.

Hence, the potentially more interesting case is when both identified shocks con-

tribute to the FEV of the target variable as in Scenario B. As seen in the panel

for Scenario B of Table 1, the Cholesky decomposition fails to identify the true

impact matrix as there is no recursive structure between the two identified shocks.

However, as expected also the combination of the proxy VAR with the Max-Share

approach yields biased results because both shocks contribute to the FEV of the

target variable. As pointed out by Dieppe et al. (2019), the Max-Share framework

will be biased due to the confounding shock.

To successfully disentangle the two shocks when both shocks contribute to the

FEV, the Max-Share framework needs to be augmented. In this case I use an in-

Table 1: Two Shocks without Exclusive Contribution

DGP Proxy + Max-Share Proxy + Cholesky

Scenario A

0.61 0
0.609
(0.007)

0.004
(0.004)

0.609
(0.007)

0
(0)

1.49 1
1.487
(0.016)

1.014
(0.036

1.485
(0.012)

1.004
(0.03)

1.49 0
1.488
(0.008)

0.015
(0.008)

1.488
(0.008)

0.004
(0.023)

Scenario B

0.61 0.69
0.766
(0.008)

0.512
(0.004)

0.921
(0.006)

0
(0)

1.49 -1.1
1.161
(0.021)

1.624
(0.019

0.163
(0.022)

1.845
(0.016)

1.49 -0.75
1.25
(0.016)

1.578
(0.014)

0.426
(0.017)

1.6131
(0.011)

The table depicts the average of the estimated structural parameters over the 1,000 Monte-
Carlo simulation iterations derived with the proxy SVAR. The shocks are once disentangled
with the baseline Max-Share approach and once with the Cholesky decomposition. The
value in the bracket depicts the respective standard deviation.
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equality constraint which restricts the difference in the contemporaneous responses

of output D2, 0. In this DGP, a common, one standard deviation, expansionary

technology shock has a more pronounced positive effect (1.49) than a common ex-

pansionary monetary policy shock (1.1). Augmenting the maximization problem

such that this inequality constraint holds helps to disentangle the two shocks.

If the conditions of Proposition 3.3 hold, identification of the true underlying

shocks is guaranteed. Algorithm 3 is used to normalize the second column such that

D2,0(q11) is a monotonic function at q11 ∈ [0, 1], and thus a linear restriction on it

implies a linear restriction on q11.

1. Carrying out the unrestricted Max-Share approach with q11 ≥ 0 gives q21 ≥ 0.

2. From the reduced form parameter one gets DC2,0 ≤ 0 and SC2,0 ≥ 0.

Table 2: Max-Share with Additional Inequality Constraint - Scenario B

DGP Max-Share+, T=1000 Max-Share+, T=250

Panel A: ϵ = 0.38

0.61 0.69
0.613
(0.029)

0.688
(0.026)

0.612
(0.057)

0.688
(0.052)

1.49 -1.1
1.486
(0.044)

-1.106
(0.044)

1.481
(0.087)

-1.101
(0.087)

1.49 -0.75
1.487
(0.031)

-0.755
(0.038)

1.483
(0.062)

-0.755
(0.075)

Panel B: ϵ = 0.2

0.61 0.69
0.659
(0.027)

0.644
(0.027)

0.658
(0.055)

0.643
(0.054)

1.49 -1.1
1.406
(0.044)

-1.206
(0.045)

1.405
(0.075)

-1.205
(0.074)

1.49 -0.75
1.432
(0.032)

-0.856
(0.037)

1.429
(0.062)

-0.858
(0.072)

Panel C: ϵ = 0

0.61 0.69
0.706
(0.026)

0.592
(0.027)

0.706
(0.053)

0.591
(0.055)

1.49 -1.1
1.311
(0.037)

-1.311
(0.037)

1.31
(0.075)

-1.309
(0.074)

1.49 -0.75
1.362
(0.032)

-0.963
(0.036)

1.36
(0.063)

-0.965
(0.07)

The table depicts the average of the estimated structural parameters over the 1,000 Monte-
Carlo simulation iterations. The estimates are derived with the Max-Share+ framework
in the proxy VAR with different values of ϵ.
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3.1 As the signs of DC2,0 and SC2,0 are the opposite the second column has to be

normalized such that q22 = q11 ≥ 0 and q12 = −q12 ≤ 0.

With these normalizations the contemporaneous response of output to the tech-

nology shock is η2,1,0 = 1.161 while the response to the monetary shock is η2,2,0 =

1.6124 in the unrestricted Max-Share framework. Hence, D2,0 = η2,1,0 − η2,2,0 is an

actual difference as the signs of the two responses are the same. Knowing the DGP

makes it easy also fulfil condition (b) of Proposition 3.3 by placing the constraint

D2,0 ≥ ϵ = 0.39, which is a binding constraint. In order to impose such a constraint,

one would need to argue that from prior knowledge or economic theory it is known

that the common expansionary technology shock affects output more than the com-

mon expansionary monetary policy shock on impact. Without knowledge about the

true DGP the true margin ϵ∗ is typically unknown and needs to be gauged by the

researcher. This simulation exercise reports results for different values of ϵ.

The full maximization problem for this particular simulation with the just men-

tioned restrictions is:

q∗1 = argmax
H∑

h=0

Ωz
1,1(h) (31)

s.t.

q′1q1 = 1,

q′1q2 = 0,

η2,1,0 − η2,2,0 ≥ ϵ,

q11 ≥ 0,

q22 ≥ 0.

Table 2 depicts the results for this augmented Max-Share identification, denoted

by Max-Share+. The first two columns again depict the true DGP parameters, while

columns three and four give the results of the Max-Share+ framework with T = 1000

while the last two columns give the results for T = 250. Panel A shows the results

for ϵ = 0.38 which is very close to the true margin by which η2,1,0 exceeds η2,2,0 in

absolute terms. Panel B shows the results for ϵ = 0.2 and Panel C the results for

ϵ = 0. The latter represents the case when restriction boils down to a sign restriction

on the relative magnitudes of the two shocks.

Comparing the estimates throughout the panels reveals that having the (almost)

correct economic intuition with the inequality restriction (ϵ = 0.38) removes almost

all of the bias of the Max-Share approach. Yet, if the true margin is not met part of

the bias remains and it is larger the less close the true margin is met. This is true

for both the technology as well as the monetary policy shock. Comparing the results
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in terms of the sample sizes shows that also for smaller sample sizes like T = 250

the correct identification is achieved. Naturally, the bias also remains for smaller

sample sizes when ϵ is not very close to the true margin.

Figure 1: 95% Point Estimate Bands, ϵ = 0.38 - Scenario B

The solid lines depict the true impulse responses of the DGP. The dashed lines are the
2,5% and 97,5% quantile of the solutions found for the 1,000 Monte-Carlo simulation
iterations.

Figure 1 and 2 show the 2,5% and 97,5% quantiles (dashed lines) of the estimated

impulse responses identified by the augmented Max-Share throughout the 1,000

Monte-Carlo simulation rounds. The true impulse responses are depicted by the

solid lines. Figure 1 presents the responses obtained with the ϵ = 0.38, close to the

true margin while Figure 2 presents the results for ϵ = 0. The impulse responses for

ϵ = 0.2 can be found in the Appendix B.

The figures are in line with the results of Table 2. The estimated responses in

Figure 1 closely identify the true structural impulse response parameters while the

responses in Figure 2 reflect the bias of the impact matrix parameters in the bias of

the impulse responses especially at earlier horizons.

The bias of the structural impulse responses at different horizon and for different

values of ϵ is depicted in Table 3 for the technology shock and in Table 4 for the

monetary policy shock. Comparing the results along the columns shows that the

bias is typically larger the further away ϵ is from ϵ∗ and for earlier horizons of the
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Figure 2: 95% Point Estimate Bands, ϵ = 0 - Scenario B

The solid lines are the true impulse responses of the DGP. The dashed lines are the 2,5%
and 97,5% quantile of the solutions found for the 1,000 Monte-Carlo simulation iterations.

responses. These patterns are consistent throughout both tables, and therefore both

identified shocks. Results for T = 250 are presented to the Appendix B.

The patters found in Tables 3 and 4 are visualized in Figures 3 and 4. The

coloured lines depict the bias of the structural impulse responses at different horizons

and for different values of ϵ. Comparing the results throughout the panels the bias is

larger when ϵ is farther away from the true margin. This indicates that the condition

of Proposition 3.6 is most likely fulfilled for most of the responses throughout the

variables, shocks and horizons. Only the responses of output to the monetary policy

shock η2,2,h for some horizons hint towards some non-monotonic functions. The same

visualization for T = 250 is again relegated to the Appendix B.

Lastly, the additional constraints in the maximization problem (29) or (31) can

also serve a pure inequality restrictions in order to set identify the shocks. Hence,

one could also try to disentangle the shocks in the Proxy VAR with this inequality

restrictions. The resulting sets of impulse responses are depicted in Figure 13 of the

Appendix. The picture shows that the use of the Max-Share framework helps to

estimate the structural impulse responses more precisely, as the simulated sets are

rather wide compared to the range of simulated point estimates of the Max-Share

approach for the majority of the impulse responses.
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Table 3: Bias of the IRFs to the Technology Shock, T = 1000 - Scenario B

Variable H = 0 H = 6 H = 12 H = 18

Panel A: ϵ = 0.38

rt 0.0025 -0.0178 -0.0198 -0.0136

xt -0.0045 -0.0108 -0.0055 -0.0018

πt -0.0026 -0.0146 -0.0113 -0.0065

Panel B: ϵ = 0.2

rt 0.0486 -0.0186 -0.0207 -0.014

xt -0.0844 -0.0131 -0.0061 -0.0022

πt -0.0584 -0.0163 -0.0117 -0.0067

Panel C: ϵ = 0

rt 0.0958 -0.0233 -0.0235 -0.0154

xt -0.1795 -0.016 -0.0068 -0.0025

πt -0.1273 -0.0199 -0.0129 -0.0072

The table depicts the average of the estimated structural parameters over the 1,000 Monte-
Carlo simulation iterations. The estimates are derived with the Max-Share+ framework
in the proxy VAR with different values of ϵ.
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Table 4: Bias of the Impulse Response Functions to the Monetary Shock, T = 1000.

Variable H = 0 H = 6 H = 12 H = 18

Panel A: ϵ = 0.38

rt -0.0021 -0.0059 -0.0025 -0.0008

xt -0.0055 -0.0005 0.0009 0.001

πt -0.0051 -0.0029 -0.0007 -0.0001

Panel B: ϵ = 0.2

rt -0.0462 -0.0546 -0.0278 -0.0138

xt -0.1056 -0.0088 -0.0025 -0.0007

πt -0.1062 -0.0249 -0.0115 -0.0057

Panel C: ϵ = 0

rt -0.0982 -0.1084 -0.0557 -0.0282

xt -0.2105 -0.0184 -0.0067 -0.0029

πt -0.2135 -0.0491 -0.0234 -0.0119

The table depicts the average of the estimated structural parameters over the 1,000 Monte-
Carlo simulation iterations. The estimates are derived with the Max-Share+ framework
in the proxy VAR with different values of ϵ.
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Figure 3: Bias of the IRFs to the Technology Shock, T = 1000 - Scenario B
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The coloured lines depict the average bias of the impulse response functions over 1,000
Monte-Carlo simulations for different values of ϵ.
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Figure 4: Bias of the IRFs to the Monetary Shock, T = 1000 - Scenario B
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The coloured lines depict the average bias of the impulse response functions over 1,000
Monte-Carlo simulations for different values of ϵ.

30



5 Conclusion

Identifying restrictions on the FEV can be used in multiple ways to disentangle the

shocks in the proxy VAR framework. Firstly, bounds the FEV as introduced by

Volpicella (2021) replace or accompany other inequality restrictions to disentangle

the shocks in the proxy VAR. This paper provides the general framework of the

bounds applied to the proxy VAR, how to conduct robust bayesian inference in this

setting.

Second, the structural parameters are sharply point identified in the proxy VAR

with the help of the Max-Share framework. In the highly relevant case of two

proxies shocks can be identified by the baseline Max-Share framework if out of the

shocks related to the proxies one exclusively contributes to the FEV of the target

variable. Confounding shocks not related to the proxies are avoided. Without

exclusive contribution, the bias due to confounding shocks in Max-Share approach

can be tackled by augmenting the Max-Share approach with an inequality constraint.

This paper provides sufficient conditions under which the inequality constraint yields

identification of the true underlying structural parameters. Further, it assesses when

these conditions are met for simple inequality restrictions on an impulse response

and on the difference of the impulse responses of the two identified shocks.

A simulation study illustrates how to assess the conditions behind the inequality

constraint and showcases successful identification. Further it illustrates the be-

haviour of the bias of Max-Share approach if the conditions for successful identifi-

cation are not entirely met. For the future an empirical illustration is planned to

highlight the usefulness in practice.
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A Appendix A

Proof of Proposition 3.1.

The proof of Proposition 3.1 closely follows the ideas of the proof for Proposition

3.1 in the article by Volpicella (2021). The contribution of shock j to the FEV of

variable i at horizon h is given by:

Ωi,j(h) = q′jRi,hqj, (32)

where Ri,h is a positive semidefinite symmetric l×l real matrix. As Ri,h is symmetric

it can be diagonalized such that:

P ′Ri,hP = D, (33)

where P is an orthogonal matrix and D a diagonal matrix with the real eigenvalues

λih
m of matrix Ri,h as entries on the diagonal for m = 1, ..., l.

For the l × 1 orthogonal eigenvector qm it holds that:

Ri,hqm = λih
mqm, (34)

and thus:

q′mRi,hqm = λih
mq

′
mqm = λih

m. (35)

The bound restrictions on the FEV are collected by:

τ i,j,h ≤ q′jRi,hqj ≤ τ i,j,h, for i ∈ Ij and h ∈ Hij. (36)

Hence, if there exists an eigenvalue for which τ i,j,h ≤ λih
m ≤ τ i,j,h it holds that:

τ i,j,h ≤ q′mRi,hqm ≤ τ i,j,h, (37)

and condition (a) is satisfied for qj = qm. Condition (b) states that qm satisfies also

the remaining bound restrictions for all i ∈ Ij and h ∈ Hij and the all the other

identifying restrictions that are imposed. It follow that there exists an orthogonal

matrix Q = [q1, ..., qm, ..., ql] for which all restrictions are satisfied and the identified

set is non-empty.

Given that the identified set for the structural impulse responses is non-empty

ηi,j,h = e′iCmBzqj exists. Due to the restriction that the reduced-form VAR process is

invertible in holds that ||e′iCmBz|| < ∞. Thus, it holds that |ηi,j,h| ≤ ||e′iCmBz|| < ∞
and the identified set for the impulse responses is bounded.

■
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To aid with the proof of Proposition 3.2 I first define under which conditions a

shock does not contribute to the FEV of a specified variable.

Definition 1: Let chij be the ij-th element of the moving average coefficient

matrix Ch and bzij the ij-th element of the proxy impact matrix Bz. Shock j does

not contribute to the FEV of variable n at horizon h if the following conditions hold:

a) h = 0 : The nj-th element of the impact matrix bznj = 0.

b) h > 0 : Additionally to condition a), chni = 0 if bij ̸= 0 for i = 1, ..., k, i ̸= n

and for all h ≤ h.

Condition b) of Definition 1 states that all variables affected by shock j are not

allowed to affect the target variable n in the moving average process over all horizons

lower than h.

Example: Consider the case with two instruments in a three variable system.

The second shock does not contribute to the FEV of the first variable. Conditions

a) and b), for example, require:

Bz =

∗ 0

∗ ∗
∗ ∗

 and Ch =

 ∗ 0 0

∗ ∗ ∗
∗ ∗ ∗

 for all h ≤ h,

or

Bz =

∗ 0

∗ ∗
∗ 0

 and Ch =

 ∗ 0 ∗
∗ ∗ ∗
∗ 0 ∗

 for all h ≤ h.

Proof of Proposition 3.2.

Suppose the two proxies z1 and z2 are valid and satisfy conditions (9) of the

main text. Hence, the proxy VAR alone will identify the true proxy impact matrix

Bz up to a rotation with an orthonormal matrix Q. For simplicity and w.l.o.g.

assume that the initial rotation matrix Q is just the identity matrix such that proxy

impact matrix in the maximization problem is just the true proxy impact matrix.

Furthermore, w.l.o.g assume that the first two shocks of the system are related to

the proxy variable and that the second shock does not contribute to the FEV of

the first variable over the horizon h up to h. Condition a) of Definition 1 requires

structure of the proxy impact matrix to be:
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Bz =


∗ 0

∗ ∗
...
...

∗ ∗

 .

As the first variable contributes exclusively to the FEV of the first variable, the

Max-Share approach maximizes the contribution of the first shock to the FEV of

the first variable.

Recall that the contribution of the first shock to the FEV of the first variable at

horizon h can be written as:

Ω1,1(h) = q′1R1,hq1. (38)

Uhlig (2004b) shows that the sum over all Ω1,1(h) from horizons h up to h can

be expressed by:
h∑

h=h

Ωz
1,1(h) = q′1Sq1, (39)

where

S =
h∑

h=0

(h+ 1−max(h, h))(e1ChBz)
′(e1ChBz) =

h∑
h=0

(h+ 1−max(h, h))Sh, (40)

with e1 being the first row of the identity matrix Ik. Hence, e1ChBz is just the first

row of ChBz.

For h = 0, C0 is just the identity matrix, and e1C0Bz = (∗ 0), and thus

S0 =

(
∗ 0

0 0

)
.

If h > 0, due to condition b) of Definition 1, e1ChBz = (∗ 0) for h < h, and thus

Sh =

(
∗ 0

0 0

)
∀ h < h.

As S is just the weighted sum over all Sh,

S =

(
∗ 0

0 0

)
.

Uhlig (2004b) shows that finding the rotation vector q∗1 that maximizes the sum
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over the contributions

q∗1 = argmax q′1Sq1 s.t. q′1q1 = 1 (41)

amounts to finding the eigenvector associated with the largest eigenvalue of the

matrix S. Due to the particular structure of the matrix S induced by the exclusive

contribution it can easily be seen that the eigenvector associated with the non-zero

eigenvalue is just the first column of the identity matrix I2. Hence, the rotation

matrix Q∗ is just the identity matrix I2 up to a sign normalization of the columns.

Thus, the maximum of the contribution to the FEV is achieved at the true proxy

impact matrix parameters up to a sign normalization of the columns.

■

Hence, with the appropriate ordering of the variables in the system choosing the

the lower triangular Cholesky decomposition Bc
11 as a solution for B11 = Σ11−B12B

′
12

immediately identifies the true structural parameters. Yet, if a different solution for

B11 = Σ11−B12B
′
12 is chosen the Max-Share maximization approach will revert this

initial rotation as the maximum is achieved at the true parameters.

This can be illustrated for the case where h = h = 0. Again assume that

the instruments are valid and that the first two shocks are the target shocks, from

which the first shocks exclusively contributes to the FEV of the first variable. Now

a different initial solution to B11 = Σ11 − B12B
′
12 is obtained for the proxy impact

matrix. This solution is simply a rotation of the true proxy impact matrix with an

orthogonal matrix Qinit:

Bq
z = BzQinit =


b11 0

b21 b22
...
...

bk1 bk2


(
q11 q12

q21 q22

)
.

Hence, the first column of the rotated proxy impact matrix is (b11q11 b11q12) and

S =

(
b211q

2
11 b211q11q12

b211q11q12 b211q
2
12

)
.

It can be shown that the eigenvalues of S are [b211, 0] and a corresponding eigen-

vector to the non-zero eigenvalue is

q∗1 =

(
q11

q12

)
.
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Hence, the optimal rotation matrix due to the Max-Share identification is Q′
init, up

to a sign normalization of the columns. Thus, the initial rotation is reverted as

BzQinitQ
′
init = Bz (42)

and the true impact matrix parameters are identified. Again, up to a sign normal-

ization of the columns.

Proof of Proposition 3.3.

Let q11 ∈ [0, 1]. Without loss of generality assume that the first shock is the target

shock in the maximization of the Max-Share approach. In general the maximization

problem of the Max-Share framework can be written as:

q∗1 = argmax q′1Sq1 s.t. q′1q1 = 1, (43)

where S is defined above and is a symmetric and positive semi definite matrix.

Let:

S =

(
s11 s21

s21 s22

)
and q1 =

(
q11

q21

)
,

where q21 =
√

1− q211. Hence, the maximization problen in (43) can be written as:

q∗1 = argmax q211s11 + 2q11q21s21 + q221s22 s.t. q′1q1 = 1. (44)

As S is positive semi definite q211s11 ≥ 0 and q221s22 ≥ 0. To achieve the maximum

the middle term also has to be positive. As q11 ≥ 0 this term is positive if q21 and

s21 have the same sign. Hence, q21 =
√

1− q211 is implicitly normalized to be the

same sign as s21 due to the maximization in the Max-Share framework.

With the normalization of q21 the contribution to the FEV, Ωz
1,1(q11) = q′1Sq1 has

one extreme value at qmax
11 and Ωz

1,1(q11) increases at q11 ∈ [0, qmax
11 ] and decreases at

q11 ∈ [qmax
11 , 1].

Let the true rotation, that yields the true structural parameters, be q∗11. Suppose

q∗11 ≤ qmax
11 . Suppose the inequality restriction IQh,i,1(q11) ⋚ ϵ implies a binding lin-

ear restriction on q11 such that q11 < q∗11. As Ω
z
1,1(q11) is a strictly increasing function

at q11 ∈ [0, qmax
11 ] the maximum of the maximization problem (43) augmented with

IQh,i,1(q11) ⋚ ϵ is at q∗11. The very same logic holds when q11 > q∗11.

■

Proof of Proposition 3.4.

Let q11 ∈ [0, 1]. Recall that the impulse response of variable i at horizon h to

the first shock is ηi,1,h = e′iChBzq1, with ei being the first column of Ik and
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ChBz =


CB1,h,1 CB1,h,2

CB2,h,1 CB2,h,2

...
...

CBk,h,1 CBk,h,2

 .

Hence, the impulse response function ηi,1,h(q11) is given by:

ηi,1,h = CBi,h,1q11 + CBi,h,2q21 = CBi,h,1q11︸ ︷︷ ︸
A

+CBi,h,2

√
1− q211︸ ︷︷ ︸

B

. (45)

If the signs of A and B are the opposite ηi,1,h(q11) is monotonic at q11 ∈ [0, 1],

and thus a linear restriction on ηi,1,h(q11) implies a linear restriction on q11.

■

Note that the signs of q11 and q21 =
√

1− q211 are fixed due to the normalization

that q11 ≥ 0 and the maximization of the Max-Share framework (see. proof of

Proposition 3.3). Hence, in practice one can determine the signs of terms A and B

in the proof of Proposition 3.4 easily by checking whether the baseline Max-Share

framework gives you a positive or negative q21 when fixing q11 to be positive.

Further note, that a linear restriction on ηi,1,h(q11) can also imply a linear re-

striction on q11 if the sufficient condition of Proposition 3.4 is not fulfilled. Let qres11

be the value of...(to be continued)

Proof of Proposition 3.5.

Let q11 ∈ [0, 1]. The difference in the impulse responses of variable i at horizon

h to the two identified shocks Di,h is given by:

Di,h = ηi,1,h − ηi,2,h = e′iChBzq1 − e′iChBzq2, (46)

where ei is again the first column of Ik. This difference can also be written as:

Di,h = (CBi,h,1q11 + CBi,h,2q21)− (CBi,h,1q12 + CBi,h,2q22)

= CBi,h,1(q11 − q12) + CBi,h,2(q21 − q22).

Due to the properties of 2× 2 orthonormal matrices q22 = ±q11, q12 = ±q21 and

q21 =
√

1− q211. Yet, q12 and q22 have opposite signs if the sings of q11 and q21 are the

same and vice versa. Hence, Di,h(q11) is a function of q11. Let ηi,h,2 be the response

that corresponds to q22 ≥ 0 and −ηi,h,2 the one that corresponds to q22 ≤ 0.
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Due to the properties of orthonormal matrices:

Di,h(q11) = (CBi,h,1 − CBi,h,2)︸ ︷︷ ︸
A

q11 + (CBi,h,1 + CBi,h,2)︸ ︷︷ ︸
B

√
1− q211 if q22 ≥ 0 (47)

D−
i,h(q11) = (CBi,h,1 + CBi,h,2)︸ ︷︷ ︸

B

q11 + (CBi,h,2 − CBi,h,1)︸ ︷︷ ︸
-A

√
1− q211 if q22 ≤ 0. (48)

The signs of q11 and
√

1− q211 are determined in the maximization process of

the Max-Share approach (see proof of Proposition 3.3) and they are either the same

or the opposite. From equations (47) and (48) you see that either Di,h(q11) or

D−
i,h(q11) is a monotonic function over the domain q11 ∈ [0, 1] depending on the

sign normalization of the second column of Q. Hence, you can always express the

difference as a monotonic function at q11 ∈ [0, 1] and a linear restriction on either

Di,h(q11) or D
−
i,h(q11) implies a linear restriction on q11 at q11 ∈ [0, 1].

■

Proof of Proposition 3.6. Let q11 ∈ [0, 1]. Let δi,j,h = ηi,j,h(q
∗
11) − ηi,1,h(q11

be the bias of the structural impulse response of variable i at horizon h to shock

j. Suppose qmax
11 < qres11 < q∗11. If ηi,j,h(q11) is strictly monotonically increasing at

q11 ∈ [qmax
11 , q∗11], then ηi,j,h(q

max
11 ) < ηi,j,h(q

res
11 ) < ηi,j,h(q

∗
11) and δresi,j,h < δmax

i,j,h . The

same logic holds for qmax
11 > qres11 > q∗11 and/or for strictly decreasing functions.

Hence, if qres11 approaches q∗11 from qmax
11 , |δi,j,h| decreases. ■
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B Appendix B

Figure 5: 95% Point Estimate Bands, ϵ = 0.2

The solid lines are the true impulse responses and the dashed lines are the 2,5% and 97,5%
quantile of the solutions found for the 1,000 simulation iterations.
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Table 5: Bias of the IRFs to the Technology Shock, T = 250 - Scenario B

Variable H = 0 H = 6 H = 12 H = 18

Panel A: ϵ = 0.38

rt 0.0023 -0.0745 -0.0736 -0.0473

xt -0.0084 -0.0381 -0.0173 -0.0059

πt -0.0072 -0.0576 -0.0398 -0.0219

Panel B: ϵ = 0.2

rt 0.0484 -0.0748 -0.0739 -0.0474

xt -0.0846 -0.0394 -0.0171 -0.0058

πt -0.0607 -0.059 -0.0399 -0.0219

Panel C: ϵ = 0

rt 0.0956 -0.0795 -0.0764 -0.0485

xt -0.1803 -0.0421 -0.0176 -0.006

πt -0.1302 -0.0624 -0.0409 -0.0224

The table depicts the average of the estimated structural parameters over the 1,000 Monte-
Carlo simulation iterations. The estimates are derived with the Max-Share+ framework
in the proxy VAR with different values of ϵ.
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Table 6: Bias of the IRFs to the Monetary Shock, T = 250 - Scenario B

Variable H = 0 H = 6 H = 12 H = 18

Panel A: ϵ = 0.38

rt -0.0026 -0.0105 -0.003 -0.0001

xt -0.0016 0.0032 0.0049 0.0039

πt -0.005 -0.0046 -0.0003 0.0004

Panel B: ϵ = 0.2

rt -0.0465 -0.0561 -0.0249 -0.011

xt -0.1053 -0.0041 0.0017 0.0021

πt -0.1082 -0.024 -0.0093 -0.0042

Panel C: ϵ = 0

rt -0.0986 -0.1052 -0.0486 -0.0228

xt -0.2086 -0.011 -0.0012 0.0005

πt -0.2146 -0.0449 -0.0189 -0.0092

The table depicts the average of the estimated structural parameters over the 1,000 Monte-
Carlo simulation iterations. The estimates are derived with the Max-Share+ framework
in the proxy VAR with different values of ϵ.
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Figure 6: Bias of the IRFs to the Technology Shock, T = 250 - Scenario B
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The coloured lines depict the average bias of the impulse response functions over 1,000
Monte-Carlo simulations for different values of ϵ.
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Figure 7: Bias of the IRFs to the Monetary Shock, T = 250 - Scenario B
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The coloured lines depict the average bias of the impulse response functions over 1,000
Monte-Carlo simulations for different values of ϵ.
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Figure 8: Point Estimate Bands and Sign Restriction Sets, ϵ = 0.

The solid lines are the true impulse responses and the dashed lines are the 2,5% and
97,5% quantile of the solutions found for the 1,000 simulation iterations. The red dashed
line are the maximum and minimum responses of the identified set of the proxy SVAR
disentangled via pure sign restrictions. The sign restrictions correspond to the constraints
of the maximization problem.
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