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Motivation

Why the Frisch extensive margin elasticity?

Heckman (1984): the larger part of the fluctuations of labor
supply during business cycles is due to adjustment along the
extensive margin, not to the variation at the intensive margin.

Hansen (1985) and Rogerson (1988): the indivisible nature of
labor supply makes extensive margin response the main
component of labor supply elasticity.

Prescott (2004): plays a major role in explaining aggregate
differences in total hours worked across countries.

Chetty et al. (2011): unlike the Hicksian and Marshallian
elasticities, the macroeconomic calibrations imply much larger
Frisch labors supply elasticities than microeconometric studies.

2 / 18



Publication and Identification Biases in Measuring the Intertemporal Substitution of Labor Supply

Motivation

Policy implications

Impulse responses to a government spending shock in the standard
New Keynesian setting
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Data

Data

36 primary studies (published and unpublished)

Published between 1996-2020

723 estimates

Sample mean = 0.49

Sample median = 0.36

22 explanatory variables
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Data

Distribution of estimates
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Data

Estimates vary within and between studies
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Publication Bias

Publication Bias

Researchers tend to discard statistically insignificant estimates
or those with the wrong sign.

Publication bias causes an increase in the importance of the
relationship between the dependent variable and explanatory
variables with each positive publication.

Different methods to assess publication bias:

Visual tools

Linear techniques

Non-linear techniques
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Publication Bias

Funnel plot

Funnel plot suggests publication bias

0
20

40
60

80
10

0
Pr

ec
is

io
n 

of
 e

st
im

at
es

, (
1/

SE
)

-2.00 -1.00 0.00 1.00 2.00 3.00 4.00
Elasticity

8 / 18



Publication and Identification Biases in Measuring the Intertemporal Substitution of Labor Supply

Publication Bias

Linear techniques

Linear techniques I

Regression-based funnel asymmetry tests:

η̂ij = η0 + δ · SE (η̂ij) + eij , (1)

η̂ij : the i-th estimate of the Frisch extensive elasticity in the
j-th study

η0: the mean elasticity corrected for the bias

δ: the size of publication bias

SE (η̂ij): the corresponding standard error

Can be used with various model specifications, e.g., OLS, fixed
effects, etc.
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Publication Bias

Linear techniques

Linear techniques II

Table 1: Linear and funnel asymmetry tests

OLS FE Precision Study

Standard error 1.595∗∗∗ 0.788 2.222∗∗∗ 2.106∗∗∗

(publication bias) (0.262) (0.767) (0.484) (0.258)
[0.93, 2.20] - [1.23, 3.31] [1.53, 2.56]

Constant 0.301∗∗∗ 0.370∗∗∗ 0.247∗∗∗ 0.252∗∗∗

(mean beyond bias) (0.044) (0.066) (0.065) (0.109)
[0.12, 0.42] - [0.11, 0.31] [0.13, 0.38]

Observations 723 723 723 723
Studies 36 36 36 36

OLS = ordinary least squares, FE = study fixed effects, Precision = the estimates are weighted by the inverse of
their standard errors, Study = the inverse number of estimates per study is used as weight. *p < 0.10, **p < 0.05,
***p < 0.01.
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Publication Bias

Linear techniques

Non-linear techniques I

Weighted Average of Adequately Powered (WAAP), Ioannidis
et al. (2017): statistical power above an 80% threshold

Andrews and Kasy (2019): publication probability changes
noticeably after crossing conventional t-statistic’s thresholds

Endogenous Kink (EK), Bom and Rachinger (2019): the
selection of estimates for publication constrained with
particular precision cut-offs in the literature

Furukawa (2020):

non-parametric method
only the most precise estimates
optimizes the trade-off between:

i efficiency (increasing in the number of included estimates)
ii bias (decreasing in the number of included more precise

estimates)
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Publication Bias

Linear techniques

Non-linear techniques II

Table 2: Non-linear tests

Ioannidis et al.
(2017)

Andrews and Kasy
(2019)

Bom and Rachinger
(2019)

Furukawa
(2020)

Effect beyond bias 0.260∗∗∗ 0.356∗∗∗ 0.207∗∗∗ 0.187∗∗∗

(0.041) (0.010) (0.094) (0.112)

Observations 723 723 723 723
Studies 36 36 36 36

*p < 0.10, **p < 0.05, ***p < 0.01.
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Heterogeneity

Explanatory variables

Explanatory variables

Demographics Data characteristics Specifications Publication characteristics

Prime age Time span Indivisible labor Publication year
Near retirement Monthly Quasi-experimental Top journal
Females only Quarterly Probit Citations
Males only Industry Non-parametric Byproduct
Married Macro IV
Single USA
Income
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Heterogeneity

Bayesian model averaging (BMA)

Bayesian model averaging (BMA)

Using all possible subsets of explanatory variables, BMA runs
numerous regression models (i.e., 2k , where k is the number of
explanatory variables).

different priors

posterior model probability (PMP): assigned to each model.

posterior inclusion probability (PIP): or each variable indicates
the sum of posterior model probabilities of the models in
which the variable is included.

Our case includes 223 models.

Markov chain Monte Carlo (MCMC)

dilution prior, George (2010)

other priors for robustness checks, e.g., BRIC, HQ, etc.
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Heterogeneity

BMA results

Model inclusion in BMA
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Heterogeneity

BMA results

Explaining heterogeneity with BMA

Standard error +

Demographics:
Prime age -
Near retirement +
Males only -

Data characteristics:
Industry +
Macro +

Specifications:
Quasi-experimental -
Probit +

Publication characteristics:

Citations +
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Conclusion

Conclusion

Principal parameters distorting the reported magnitude of the
Frisch extensive elasticity of labor supply in the literature:

1 Publication bias:

the mean of reported elasticities (0.49) is exaggerated twofold
in the primary studies
0.25 is a reasonable estimate for the Frisch extensive elasticity
after correcting for publication bias

2 Aggregation bias: studies using macro data tend to report
estimates that are larger by 0.2 on average

3 Identification bias: studies that follow a quasi-experimental
approach tend to report smaller estimates by 0.3 on average.
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