Data 000		Conclusion

The EU ETS's time-varying impact on Competitiveness and Investments: Evidence from Dutch Manufacturing

Konstantin Sommer Leon Bremer

EEA Conference

25th of August 2022

UNIVERSITY OF AMSTERDAM Economics & Business

Sommer, Bremer

EU ETS

Introduction	Data	Methodology	Conclusion
•00000			

Motivation

EU Emissions trading system (ETS)

- EU's main climate policy tool
- World's oldest and largest carbon trading system

Policy (side) effects

- Competitiveness loss and leakage? (Pollution haven hypothesis)
- Investment impulse?

Effect identification

- Firms within the ETS can be very different to each other
- Effect is likely dynamic and dependent on regulation stringency
- Heterogeneities matter for identification

Introduction	Data	Methodology	Conclusion
00000			
			7

Research Question(s)

Study effect of ETS on regulated firms':

- Employment
- Profitability
- Investment behavior
- $\rightarrow\,$ Differentiate the effects for different groups of firms, in different phases

ELE NOR

→ < ∃ →</p>

Introduction	Data	Methodology	Conclusion
00000			

Background info ETS

- Introduced in 2005, revised three times (08,13,21)
 - $\rightarrow~$ New firms got regulated each phase
- Caps total amount of emissions (about 45% of EU emissions)
- Based on certificates, each corresponding to one tonne of CO2eq
- Each year, firms have to hand in as many certificates as they emitted
- Certificates can be traded, establishing a carbon price

ETS prices

Introduction	Data	Methodology		Conclusion
000000	000	0000	000	00

Regulated firms - Identification part

Not all firms regulated. Regulation on plant/installation level. Covered if:

- Exceeding fuel combustion capacity threshold, or
- Incorporate certain processes (NACE sectors C17,19,23,24), or
- Exceeding sector-specific output or input thresholds

Some of these regulations get adjusted (extended) between phases \rightarrow Use the fact that some firms remain unregulated for identification Number of firms

Introduction	Data		Conclusion
000000			

Literature

Competitiveness

- No negative effects on productivity and employment; little evidence for leakage (Marin et al. (2018), Wagner and Petrick (2014), Löschel et al. (2019), and Jaraite-Kažukauske & Di Maria (2016), Dechezleprêtre et al. (2019), Klemetsen et al. (2020), Colmer et al. (2022), Hintermann et al. (2020))
- $\rightarrow\,$ Verde (2020): no overall evidence of losses in competitiveness

Investments

- Increase in green patenting (Calel & Dechezleprêtre, 2016), and in targeted investments (Colmer et al., 2022)
- $\rightarrow\,$ Teixidó et al. (2019): evidence on technological change sparse

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Introduction	Data	Methodology		Conclusion
00000	000	0000	000	00

Outline and main conclusions

Heterogeneity

- Firms starting in different phases differ substantially
- Treatment stringency varies substantially over time

Estimation

- Two-way FE model (TWFE)
- Flexible DiD method, Callaway & Sant'Anna (2021) (CSA)

Effects on competitiveness and investment

- Some sign of reduction in employment for earlier regulated firms
- Effect heterogeneous over time and by cohort

	Sommer	Bremer
--	--------	--------

Data ●00		Conclusion 00

Data

Combining 2 data sources:

- 1. EU ETS transaction log Plant level
 - Link to account holder, corresponding to chamber of commerce (KvK)
- 2. Statistics Netherlands (CBS) (Manufacturing) Firm level
 - Administrative data
 - Merged based on KvK number
- Firm defined by CBS, bundle of KvKs
- $\rightarrow\,$ "Loss" of firms from merging, balancing panel, and enforcing common support leaves us with 118 treated firms; 2000-2020.

	Data	Methodology		Conclusion
000000	000	0000	000	00

Heterogeneity between treated firms - Energy expenditure

	Data	Methodology		Conclusion
000000	000	0000	000	00

Stringency: Emissions -free allowances

	Data	Methodology		Conclusion
000000	000	•000	000	00

Key challenges and approach

Control group

- Problem: ETS firms are significantly different to non ETS firms
- TWFE: Matching
- CSA: Propensity scores and outcome regression adjustment

Heterogeneity assumptions

- Homogenous treatment effect for which firms?
- We estimate cohort-phase effects

DiD example Skip TWFE

Data 000	Methodology ○●○○	Conclusion

TWFE - Estimation

Start by matching treated to control firms Details

Effects by treatment phase

$$y_{it} = \sum_{c \in C} \sum_{p \in P} ETS_i^c \times P_t^p \times \mathbb{1}\{p \ge c\}\alpha^{c,p} + \Gamma_{i,t} + \varepsilon_{i,t}$$
(2)

- y_{it} , employment, profit margin, or investment ratio for firm i in year t
- *ETS*^{*c*}_{*i*}, dummy is one if firm in cohort *c*. Cohort defined by first year in treatment.
- P_t^p dummy is one if year in phase p
- Run without controls. Year and/or firm FEs in $\Gamma.$

	Data	Methodology		Conclusion
000000	000	0000	000	00

Effects by cohort and year

$$\widehat{ATT}_{ct} = \frac{1}{N} \sum_{i \in \mathcal{I}} \left[\widehat{w}_{i,c}^{treat}(y_{it} - y_{i,b} - \widehat{m}_{i,c,t}(X_i, \widehat{\lambda}_{c,t})) - \widehat{w}_{i,c}^{cont}(y_{it} - y_{i,b} - \widehat{m}_{i,c,t}(X_i, \widehat{\lambda}_{c,t})) \right]$$

$$(2)$$

- y_{it} , employment, profit margin, or investment for firm i in year t
- X_i Pre-treatment controls
- $\hat{w}_{i,c}^{treat} \hat{w}_{i,c}^{cont}$ adjusts for the probability of being treated (inverse probability weighting) Details
- $\hat{\lambda}$ from reg $y_{it} y_{ib} = X_i \lambda + \varepsilon_i$ (outcome regression on non-treated units)

CSA details CSA results

Sommer, Bremer

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

	Data	Methodology		Conclusion
000000	000	0000	000	00

CSA - Aggregations

Aggregate the individual ATTs:

$$\hat{\theta} = \sum_{t=2005}^{2019} \sum_{c \in \{2005, 2008, 2013\}} \hat{w}(ct) \ \widehat{ATT}_{ct}$$

• Per cohort-phase combination

< A[™]

(3)

Data	Methodology	Results	Conclusion
		000	
			7

Parallel trends

In CSA setting: Pre-trends tests do not reject for our three dependent variables. Matching Results

Sommer,	Bremer
---------	--------

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Data	Methodology	Results	Conclusion
		000	

Employment

Sommer, Bre

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Data	Methodology	Results	Conclusion
		000	

Investment margin

Sommer, Bremer

EU ETS	25th of August 2022	17 / 19
--------	---------------------	---------

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Data	Methodology	Conclusion
		0

Conclusion

Effects of regulation

- Noticeable differences between treatment cohorts
- Reduction of employment in earliest phase
 - Might be because of early adjustments
 - Phase 2 firms react similar
- Negative effect on investments of phase 1 firms, might indicate a reduction in EU activity
- Shows that most affected firms (cohort 1) show strongest response
- Results for last cohort very unstable
- Some differences between estimators

Different cohort 2 assumption

000 EIE 4E + 4E

Data	Methodology	Conclusion
		00

Thank you

Thank you for your attendance! We are happy for any kind of feedback or discussion: k.h.l.sommer2@uva.nl —— https://kosommer.github.io/ l.bremer@vu.nl —— https://leonbremer.nl/

References ●00	Additional figures	Methodology 000000000	Matching results 000000	Additional results 0000	

References

- Callaway, B., & Sant'Anna, P. H. (2021). Difference-in-differences with multiple time periods. *Journal of Econometrics*, 225(2), 200-230.
- Heckman, J. J., Ichimura, H., & Todd, P. E. (1997). Matching as an econometric evaluation estimator: Evidence from evaluating a job training programme. *The review of economic studies*, 64(4), 605-654.
- Marin, G., Marino, M., & Pellegrin, C. (2018). The impact of the European Emission Trading Scheme on multiple measures of economic performance. *Environmental and Resource Economics*, 71(2), 551-582.
- Sant'Anna, P. H., & Zhao, J. (2020). Doubly robust difference-in-differences estimators. *Journal of Econometrics*, 219(1), 101-122.

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

References ○●○	Additional figures	Methodology 000000000	Matching results 000000	Additional results 0000	

References

- Calel, R., & Dechezleprêtre, A. (2016). Environmental policy and directed technological change: evidence from the European carbon market. *Review of economics and statistics*, 98(1), 173-191.
- Dechezleprêtre, A., Gennaioli, C., Martin, R., Muûls, M., & Stoerk, T. (2021). Searching for carbon leaks in multinational companies. *Journal of Environmental Economics and Management*, 102601.
- Goodman-Bacon, A. (2021). Difference-in-differences with variation in treatment timing. *Journal of Econometrics*, 225(2), 254-277.
- Jaraite-Kažukauske, J., & Di Maria, C. (2016). Did the EU ETS make a difference? An empirical assessment using Lithuanian firm-level data. *The Energy Journal*, 37(1).
- Klemetsen, M. E., Rosendahl, K. E., & Jakobsen, A. L. (2016). The impacts of the EU ETS on Norwegian plants' environmental and economic performance. *Statistics Norway, Research Department, (No. 833). Discussion Papers.*

References 00●	Additional figures	Methodology 000000000	Matching results 000000	Additional results 0000	

References

- Löschel, A., Lutz, B. J., & Managi, S. (2019). The impacts of the EU ETS on efficiency and economic performance–An empirical analyses for German manufacturing firms. *Resource and Energy Economics*, 56, 71-95.
- Petrick, S., & Wagner, U. J. (2014). The impact of carbon trading on industry: Evidence from German manufacturing firms. Available at SSRN 2389800.
- Teixidó, J., Verde, S. F., & Nicolli, F. (2019). The impact of the EU Emissions Trading System on low-carbon technological change: The empirical evidence. *Ecological Economics*, 164, 106347.
- Verde, S. F. (2020). The impact of the EU emissions trading system on competitiveness and carbon leakage: the econometric evidence. *Journal of economic surveys*, 34(2), 320-343.
- Wagner, U. J., Muûls, M., Martin, R., & Colmer, J. (2014, June). The causal effects of the European Union Emissions Trading Scheme: evidence from French manufacturing plants. *In Fifth World Congress of Environmental and Resources Economists*, Istanbul, Turkey.

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Additional figures	Methodology	Matching results	Additional results	
00000				

ETS allowances

Figure: ETS allowances and their allocation

Source: European Court of Auditors

Sommer, Bremer	EU ETS	25th of August 2022	4 / 30
----------------	--------	---------------------	--------

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Additional figures	Methodology	Matching results	Additional results	
0000				

ETS price path

Figure: ETS price development. Differentiated by phases.

Data source: FactSet Background Stringency

1.5

Number of regulated plants and accounts in Netherlands

Main

三日 のへの

イロト イポト イヨト イヨト

Additional figures	Methodology	Matching results	Additional results	
00000				

Employment

Sommer, Bremer	EU ETS	25th of August 2022	7/30
----------------	--------	---------------------	------

Additional figures	Methodology	Matching results	Additional results	
0000				

Value added

Sommer, Bremer	EU ETS	25th of August 2022	8/30
----------------	--------	---------------------	------

Additional figures

Staggered DiD: A Three-Group Example

TWFE - Matching

Match ETS firms to firms that are never regulated, based on pre-treatment values of:

- Energy costs
- Employment
- Turnover
- Wage bill
- 2-digit sector code (exact)

Matching 1:5, with replacement based on Mahalanobis distance, too far matches are dropped.

86 treated, 183 untreated, about 4000 total observations

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

	Additional figures	Methodology	Matching results	Additional results	
000	00000	00000000	000000	0000	000

Matching details

- Measure Mahalanobis distance: $d(A,B) = \sqrt{(x_A^T - \mu^T)S^{-1}(x_B^C - \mu^C)}$
- Chose 5 closest neighbours
- Filter out any matched values that are 80% percent larger or smaller than the treated unit's values
- Do for each treatment group

Main

313 990

글 에 에 글 어

Problems with TWFE

Recent literature has pointed out problems with TWFE in staggered DiD settings for:

- Heterogeneity over treatment groups
- Heterogeneity over treatment time

We thus also rely on more flexible recent methodology developed by Callaway & Sant'Anna (2021) (CSA)

Main

Additional figures	Methodology	Matching results	Additional results	
	000000000			

CSA - Idea

Estimate :

$$\widehat{ATT}_{t,g} = \frac{1}{N_g} \sum_{i:G_i=g} [y_{i,t} - y_{i,b}] - \frac{1}{N_g} \sum_{i:G_i \in \mathcal{G}} [y_{i,t} - y_{i,b}]$$
(4)

- g: the treatment group/cohort, e.g. the start of the treatment (2005,2008,2013)
- G_i: indicating the first year of treatment for a firm
- b: the group-specific base year
- \mathcal{G} : the set of control firms
- $\rightarrow\,$ Thus estimate treatment effect by cohort and for each year into treatment

CSA - Covariate conditioning

Inverse probability weighting

- Estimate propensity scores (probability to be treated)
- Re-weight control observations based on propensity scores

Outcome regression adjustment

- Estimate $\hat{\lambda}$ in $y_{it} y_{ib} = \lambda X_{ib} + \varepsilon_i$, for untreated
- Predict $\hat{m}_{i,t}(X_i, \hat{\lambda}_{t,g}) = \widehat{y_{it} y_{ib}}$, for treated
- Use this instead of difference in control outcomes

 \rightarrow Combine both for "double-robustness" (Sant'Anna et al.(2020))

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Additional figures	Methodology 000000●00	Matching results 000000	Additional results 0000	

Effects by cohort and year

$$\widehat{ATT}_{t,g} = \frac{1}{N} \sum_{i \in \mathcal{I}} \underbrace{[(\hat{w}_{i,g}^{treat} - \hat{w}_{i,g}^{cont})]}_{\text{Inv. prob.}} (y_{it} - y_{i,b} - \underbrace{\hat{m}_{i,t,g}(X_i, \hat{\lambda}_{t,g})]}_{\text{Outc. reg.}}$$
(5)

- N the amount of all firms, $\mathcal I$ the set of all firms
- X_i Pre-treatment controls (whereby pre-treatment is group-specific).
- $\hat{w}_{i,g}^{treat} \hat{w}_{i,g}^{cont}$ adjusts for the probability of being treated (inverse probability weighting) Details
- $\hat{m}_{i,g}(X, \hat{\lambda}_{t,g})$, adjustment from outcome regression.

Additional figures	Methodology	Matching results	Additional results	
	000000000			

$$\hat{w}_{i,g}^{treat} = \frac{G_{i,g}}{\frac{1}{N} \sum_{i} G_{i,g}}$$
(6)
$$\hat{w}_{i,g}^{cont} = C_{i,g} \frac{\frac{p_{i,g}(X_{i},\hat{p}_{i_g})}{1 - p_{i,g}(X_{i},\hat{p}_{i_g})}}{\frac{1}{N} \sum_{i} \frac{p_{i,g}(X_{i},\hat{p}_{i_g})}{1 - p_{i,g}(X_{i},\hat{p}_{i_g})}}$$
(7)

Main

Additional figures	Methodology	Additional results	
	00000000		

Standard errors:

Bootstrapped

Testing for pre-trends:

• Wald test on pre-treatment estimates

Table: Weights used in the different aggregations.

Aggregation	w(t,g)
Cohort Phase	$\mathbb{1}(g= ilde{g})\mathbb{1}(t\in ilde{ ho})P(t g= ilde{g}\cap t\in ilde{ ho})$
Dynamic	$1(g + e \le 2019)1(t - g = e)P(G = g G + e \le 2019)$
Group	$\mathbb{1}(t\geq g)\mathbb{1}(g=\widetilde{g})/(2019-g-1)$
Calendar	$\mathbb{1}(t\leq g)\mathbb{1}(t=\widetilde{t})P(G=g G\leq t)$

18 / 30

TWFE - Matching Energy first cohort

Distributions for Energy expenses (Millions EUR) Year = 2003

TWFE - Matching Employment first cohort

Distributions for No. of employees

Year = 2003

C	Duemen
Sommer.	Dremer

TWFE - Matching Energy second cohort

Distributions for Energy expenses (Millions EUR) Year = 2006

TWFE - Matching Employment second cohort

Distributions for No. of employees

Year = 2006

Sommer, Bremer	EU ETS	25th of August 2022	21 / 30
----------------	--------	---------------------	---------

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のなべ

TWFE - Matching Energy third cohort

Distributions for Energy expenses (Millions EUR) Year = 2011

TWFE - Matching Employment third cohort

Distributions for No. of employees

Year = 2011

Sommer, I	Bremer	
-----------	--------	--

Additional figures	Methodology	Matching results	Additional results	
			0000	

Gross profit margin

<□> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回< の< ○

Additional figures Meth

gy Mate 00 000

latching results

25 / 30

Employment - CSA dis-aggregated

Disaggregated treatment effect coefficients-Employment

References Additional figures Methodology Matching results Additional results Robu:

Gross profits - CSA dis-aggregated

Disaggregated treatment effect coefficients-Gross Profit Margin

26 / 30

Investment ratio - CSA dis-aggregated

Disaggregated treatment effect coefficients-Investment/Turnover

27 / 30

Never treated control group

Treat cohort 2 firms as cohort 1 firms

Sommer, Bremer

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のなべ

Additional figures	Methodology	Matching results	Additional results	Robustness
				000

Match on trends

