The effect of highway access on firms' inventory investment in China

Yanyu Zhou, Sai Ding, Hisayuki Yoshimoto

Adam Smith Business School University of Glasgow

EEA-ESEM 2022

EEA-ESEM 2022

Table of Contents

1 Motivation and contribution

- 2 Literature, data and specification
- 3 Endogeneity and IV estimation
- 4 Mechanisms
- 5 Additional robustness tests
- 6 Implied savings of inventory

Conclusion

2/44

• The National Trunk Highway System (NTHS) in 1992

• It is aimed to construct seven east-west and five north-south routes, to connect all the provincial capitals, municipalities, all other cities with above one million urban registered population and 93% of cities with a population above 500,000.

3/44

• The National Trunk Highway System (NTHS) in 1992

• It is aimed to construct seven east-west and five north-south routes, to connect all the provincial capitals, municipalities, all other cities with above one million urban registered population and 93% of cities with a population above 500,000.

• National Expressway Network (NEN) in 2004

- It is aimed to construct a highway network of 7 capital radial, 9 north-south vertical and 18 east-west horizontal lines, with a planned total length of 85,000 km.
- It is targeted to interconnect provincial capitals and all cities with a population of over 200,000.

Yanyu Zhou, Sai Ding, Hisayuki Yoshimoto

Image: A matrix

æ

4 / 44

Motivation II

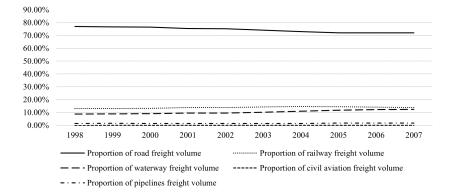


Figure: The proportion of freight volume among various transportation infrastructures

Source: China Statistical Yearbook

EEA-ESEM 2022

• First, unlike previous studies that only use the provincial road stock as the proxy of transportation development (for example, in Li and Li, 2013; Lin et al., 2019), we construct several measures of firm-level highway accessibility based on the geo-coded firms' location and highway network over the period of 1998-2007.

- First, unlike previous studies that only use the provincial road stock as the proxy of transportation development (for example, in Li and Li, 2013; Lin et al., 2019), we construct several measures of firm-level highway accessibility based on the geo-coded firms' location and highway network over the period of 1998-2007.
- The second contribution is to develop a more convincing method to address the endogenous issue.

- First, unlike previous studies that only use the provincial road stock as the proxy of transportation development (for example, in Li and Li, 2013; Lin et al., 2019), we construct several measures of firm-level highway accessibility based on the geo-coded firms' location and highway network over the period of 1998-2007.
- The second contribution is to develop a more convincing method to address the endogenous issue.
- Third, we provide some mechanisms though which highway infrastructure affects inventory from different aspects such as ownership, transportation reliance, supply chain position, inventory structure, main supplier's location, and regional difference.

Table of Contents

Motivation and contribution

2 Literature, data and specification

- 3 Endogeneity and IV estimation
- 4 Mechanisms
- 5 Additional robustness tests
- 6 Implied savings of inventory

Conclusion

• Empirical research on highway infrastructure:

- Regional level: employment (Linneker and Spence, 1996); suburbanization (Baum-Snow, 2007); trade (Duranton et al., 2014); regional productivity (Zhang and Ji, 2019); GDP growth (Banerjee et al., 2012); economic geography (Faber, 2014).
- Firm-level: innovation (Wang et al., 2018); export (Liu et al., 2018); productivity (Holl, 2016); fixed investment (Aiello et al., 2012).

8/44

• Empirical research on highway infrastructure:

- Regional level: employment (Linneker and Spence, 1996); suburbanization (Baum-Snow, 2007); trade (Duranton et al., 2014); regional productivity (Zhang and Ji, 2019); GDP growth (Banerjee et al., 2012); economic geography (Faber, 2014).
- Firm-level: innovation (Wang et al., 2018); export (Liu et al., 2018); productivity (Holl, 2016); fixed investment (Aiello et al., 2012).

• Transportation infrastructure and firm inventory investment:

- International: Shirley and Winston (2004); Datta (2012)
- China-specific: Li and Li (2013); Cui and Li (2019)

• Theories on firm-level inventory investment:

- Models for raw materials and intermediate goods: the traditional EOQ model and its extensions of (Q, r) model and (S, s) model.
- Models for finished goods: the EPQ model, ROQ model etc.

• Theories on firm-level inventory investment:

- Models for raw materials and intermediate goods: the traditional EOQ model and its extensions of (Q, r) model and (S, s) model.
- Models for finished goods: the EPQ model, ROQ model etc.

Two hypotheses

- The improvement of highway may encourage firms to lower their input inventory level.
- Output inventory would be less affected by the highway improvement.

• Annual Survey of Industrial Firms (ASIF) database

- Firm-level panel data over the period 1998-2007, collected by the National Bureau of Statistics (NBS) of China
- All stated-owned enterprises (SOEs) and other types of enterprises with annual sales above RMB 5 million (about \$0.65 million)

• Annual Survey of Industrial Firms (ASIF) database

- Firm-level panel data over the period 1998-2007, collected by the National Bureau of Statistics (NBS) of China
- All stated-owned enterprises (SOEs) and other types of enterprises with annual sales above RMB 5 million (about \$0.65 million)

• Geo-referenced highway routes

- ACASIAN Data Centre at Griffith University in Brisbane
- Road atlases in 2000, 2002, 2005, and 2007

• Annual Survey of Industrial Firms (ASIF) database

- Firm-level panel data over the period 1998-2007, collected by the National Bureau of Statistics (NBS) of China
- All stated-owned enterprises (SOEs) and other types of enterprises with annual sales above RMB 5 million (about \$0.65 million)

Geo-referenced highway routes

- ACASIAN Data Centre at Griffith University in Brisbane
- Road atlases in 2000, 2002, 2005, and 2007
- Other data
 - China's Geo-spatial Data Cloud; Climate Change Initiative-Land Cover (CCI-LC) database
 - Harvard WorldMap
 - Provincial data are obtained from the China Statistical Yearbooks
 - Input-Output Table from NBS
 - Chinese Academy of Social Sciences (CASS) survey

- Measurement of inventory
 - the logarithm of total inventory, the logarithm of input inventory and the logarithm of output inventory
- Measurement of highway accessibility
 - Highway proximity, calculated as the inverse of distance (km), as the main highway access measure.
 - The logarithm of distance to the nearest highway
 - Relative highway proximity (RHP)

$$RHP_{i,j,k,t} = \frac{\min_{i \in j,k,t} (Inhighway(m)_{i,j,k,t})}{Inhighway(m)_{i,j,k,t}}$$
(1)

Inventory_{*i,j,k,t*} =
$$\alpha_0 + \alpha_1 \text{Highway}_{i,j,k,t} + \alpha_2' X_{i,j,k,t} + \alpha_3' Z_{k,t}$$

+ $\varepsilon_i + \varepsilon_j + \varepsilon_k + \varepsilon_t + \varepsilon_{i,j,k,t}$ (2)

- Firm-level controls: sales, firm size, firm age, leverage and export ratio.
- Provincial controls: road congestion, other roads' density, waterway density and rail density.
- Fixed effects: firm/industry/province/time fixed effect.

12/44

Baseline FE result

_

	(1) (2)		(3)
VARIABLES	Total inventory	Input inventory	Output inventory
Highway proximity	0.001	-0.006***	0.005**
	(0.61)	(-2.58)	(2.04)
Ln (sales)	0.271***	0.241***	0.265***
	(83.49)	(52.11)	(55.85)
Size	0.349***	0.364***	0.376***
	(87.12)	(63.89)	(63.39)
Age	0.086***	0.063***	0.136***
	(25.94)	(12.66)	(26.11)
Leverage	-0.001***	-0.001***	-0.001***
	(-48.13)	(-36.53)	(-34.04)
Export ratio	0.001***	0.001***	0.001***
	(8.92)	(9.47)	(6.79)
Congestion	0.002***	0.005***	0.001***
	(16.25)	(26.75)	(5.45)
Other roads density	-0.037***	0.063***	-0.060***
	(-2.60)	(2.99)	(-2.70)
River density	-0.281	7.723***	-5.661***
	(-0.97)	(17.98)	(-11.05)
Rail density	1.349**	4.540***	-0.601
	(2.10)	(4.75)	(-0.50)
Constant	0.609	0.299	1.274*
	(1.24)	(0.40)	(1.70)
Observations	1,856,417	1,856,417	1,856,417
R-squared	0.051	0.024	0.023
Number of firms	492,490	492,490	492,490
${\sf Company}/{\sf Year}/{\sf Industry}/{\sf Province}\ {\sf FE}$	YES	YES	YES

メロト メタトメミト メミト 二日

Yanyu Zhou, Sai Ding, Hisayuki Yoshimoto

EEA-ESEM 2022

August 2022

Table of Contents

Motivation and contribution

2 Literature, data and specification

3 Endogeneity and IV estimation

4 Mechanisms

- 5 Additional robustness tests
- 6 Implied savings of inventory

7 Conclusion

• Type 1: The endogenous highway construction

- The distribution of highways is not random (reverse causality).
- There may be some omitted variables explaining both the highway proximity and firm's inventory decisions.

- Type 1: The endogenous highway construction
 - The distribution of highways is not random (reverse causality).
 - There may be some omitted variables explaining both the highway proximity and firm's inventory decisions.
- Type 2: The endogenous issue of new firms and relocation
 - Companies may relocate their location by moving closer to highways in order to benefit from the highway infrastructure.
 - New firms may also choose to locate close to the highways to benefit from the highway access.

• Type 1: FE-2SLS method: alternative instruments are used

- Least cost paths go to map
- Straight lines go to map
- Historical routes go to map

• Type 1: FE-2SLS method: alternative instruments are used

- Least cost paths go to map
- Straight lines go to map
- Historical routes go to map
- Type 2: We exclude relocating firms that switched their locations during the sample period and new firms that opened during the sample period.

Yanyu Zhou, Sai Ding, Hisayuki Yoshimoto

Image: A matrix and a matrix

æ

Yanyu Zhou, Sai Ding, Hisayuki Yoshimoto

EEA-ESEM 2022

August 2022

イロト イヨト イヨト

18/44

æ

Ming Dynasty (1364-1644) courier routes • return

Yanyu Zhou, Sai Ding, Hisayuki Yoshimoto

EEA-ESEM 2022

< 3 > August 2022

Image: Image:

19/44

æ

IV results: first-stage

Dep. Var.: Highway proximity	(1)	(2)	(3)	(4)
Instruments Least cost path (2004NEN)	-0.121*** (-3.35)			
Least cost path (1992NTHS)	()	-0.193* (-1.72)		
Ming courier routes			-0.233*** (-4.37)	
Straight line routes				-0.091** (-2.31)
Under identification test Weak identification test	0.000*** 1355.201	0.000*** 153.392	0.000*** 660.331	0.000*** 1136.150

Note: The under-identification test shows the p-value of Kleibergen-Paap rk LM statistic. The Weak-identification test reports the correspondingly robust Kleibergen-Paap rk Wald F statistic when clustered standard error is applied. The critical value to pass the Weak-identification test is 16.38.

	(1)	(2)	(3)	(4)		
VARIABLES	LCP_NEN	LCP_NTHS	Ming_routes	Straight_line		
Panel A: total inventory as dependent variable						
Highway proximity	-0.106***	-0.402***	-0.222***	-0.085***		
	(-4.58)	(-5.02)	(-6.21)	(-3.32)		
R-squared	0.039	-0.022	0.024	0.041		
Panel B: input inventory as dependent variable						
Highway proximity	-0.121***	-0.193*	-0.233***	-0.091**		
	(-3.35)	(-1.72)	(-4.37)	(-2.31)		
R-squared	0.015	0.011	0.009	0.016		
Panel C: output inventory as dependent variable						
Highway proximity	-0.029	-0.440***	-0.121**	-0.045		
	(-0.80)	(-3.59)	(-2.24)	(-1.10)		
R-squared	0.019	-0.013	0.016	0.019		
Observations	1,732,900	1,732,900	1,732,900	1,732,900		

Note: Control variables and Firm/year/province/industry fixed effects are all included.

FE-TSLS result after controlling the endogeneity of new firms and relocation

	(1)	(2)	(3)	(4)		
	()	()	()	. ,		
VARIABLES	LCP_NEN	LCP_NTHS	Ming_routes	Straight_line		
Panel A:	Panel A: total inventory as dependent variable					
Highway proximity	-0.080*	-0.038	-0.079	-0.059		
	(-1.95)	(-0.34)	(-1.33)	(-1.37)		
R-squared	0.046	0.048	0.046	0.047		
Panel B:	Panel B: input inventory as dependent variable					
Highway proximity	-0.208***	0.055	-0.267***	-0.164**		
	(-3.15)	(0.32)	(-2.88)	(-2.38)		
R-squared	0.012	0.018	0.008	0.014		
Panel C: output inventory as dependent variable						
Highway proximity	0.052	0.070	0.064	0.085		
	(0.80)	(0.39)	(0.70)	(1.20)		
R-squared	0.018	0.018	0.018	0.018		
Observations	784,096	784,096	784,096	784,096		
Under identification test	0.000***	0.000***	0.000***	0.000***		
Weak identification test	487.787	79.215	238.511	449.347		

Note: Control variables and Firm/year/province/industry fixed effects are all included.

Table of Contents

Motivation and contribution

- 2 Literature, data and specification
- 3 Endogeneity and IV estimation

4 Mechanisms

- 5 Additional robustness tests
- 6 Implied savings of inventory

Conclusion

go to tables

- Ownership: private firms vs. SOEs
- Transportation reliance: high transportation reliance vs. low transportation reliance
- **Production line position**: upstream vs. downstream
- Main suppliers' location: main suppliers located in other provinces vs. main suppliers located in the same province
- Inventory structure: high input inventory ratio vs. low input inventory ratio
- **Spatial difference**: coastal areas vs. inland areas

Table of Contents

Motivation and contribution

- 2 Literature, data and specification
- 3 Endogeneity and IV estimation
- 4 Mechanisms
- 5 Additional robustness tests
 - 6 Implied savings of inventory

7 Conclusion

25 / 44

I Further control the endogenous issue of targeted cities of targeted cities

- The results are robust when we drop observations which located in the targeted NTHS cities.
- 2 Historical IVs go to table
 - Result is robust no matter using Ming's routes, Qing's routes, or their combination.
 - The results are also robust if the observations located in these seven provinces are excluded in the IV regression.
- - Robust results using alternative highway measures of highway distance and relative highway proximity.
- Alternative buffers go to table
 - The result is still robust when using panel IVs generated based on the 5km's highway buffer.

Table of Contents

Motivation and contribution

- 2 Literature, data and specification
- 3 Endogeneity and IV estimation
- 4 Mechanisms
- 5 Additional robustness tests
- Implied savings of inventory

Conclusion

Variable	(1)	(2)	(3)	(4)	(5)	
	LCP_NEN	LCP_NTHS	Ming routes	Straight line	Observations	
Firm level						
Annual changes in highway proximity	0.038	0.038	0.038	0.038	1,325,516	
Annual saving rate of input inventory	0.455%	0.726%	0.877%	0.342%	1,325,516	
Annual saving rate of total inventory	0.399%	1.513%	0.835%	0.320%	1,325,516	
Annual input inventory saving	21.464	34.235	41.331	16.142	1,325,516	
Annual total inventory saving	30.203	114.542	63.255	24.219	1,325,516	
	Natior	nal level				
Annual saving rate of input inventory	0.486%	0.776%	0.937%	0.366%	9	
Annual saving rate of total inventory	0.406%	1.540%	0.850%	0.326%	9	
Input inventory saving/highway investment	2.079%	3.317%	4.004%	1.564%	1	
Total inventory saving/highway investment	2.926%	11.097%	6.128%	2.346%	1	
Adjusted national level						
Input inventory saving/highway investment	5.198%	8.293%	10.010%	3.910%	1	
Total inventory saving/highway investment	6.730%	25.523%	14.094%	12.389%	1	

Note: Mean values are reported.

At the adjusted national level, each dollar of highway spending in China during the period of 1998-2007 reduced the input inventory stock by about 3.910-10.010 cents and the total inventory stock by around 6.730-25.523 cents.

Image: A matrix and a matrix

Table of Contents

Motivation and contribution

- 2 Literature, data and specification
- 3 Endogeneity and IV estimation
- 4 Mechanisms
- 5 Additional robustness tests
- 6 Implied savings of inventory

7 Conclusion

29/44

- Our estimates indicate a robust causal effect of highway proximity on the reduction in firm-level total inventories and input inventories.
- Additional results indicate that cost saving benefits of input inventories are unevenly distributed across different firms, sectors and regions.
- Each dollar of highway spending in China during the period of 1998-2007 reduced the input inventory stock by about 3.910-10.010 cents and the total inventory stock by around 6.730-25.523 cents.

Ownership

return

Dep. Var.:	(1)	(2)	(3)	(4)	
In (input inventory)	LCP_NEN	LCP_NTHS	Ming_routes	Straight_line	
	Panel A: SOEs				
Highway proximity	0.271***	0.530***	0.168	0.143	
	(2.84)	(2.89)	(1.52)	(1.47)	
Observations	154,763	154,763	154,763	154,763	
R-squared	0.010	-0.022	0.016	0.018	
Under identification test	0.000***	0.000***	0.000***	0.000***	
Weak identification test	374.965	130.349	226.441	331.775	
	Panel B:	private firms			
Highway proximity	-0.181***	-0.653***	-0.276***	-0.109**	
	(-3.84)	(-3.72)	(-4.16)	(-1.98)	
Observations	1,075,124	1,075,124	1,075,124	1,075,124	
R-squared	0.011	-0.043	0.005	0.013	
Under identification test	0.000***	0.000***	0.000***	0.000***	
Weak identification test	796.753	72.614	402.836	573.768	
Empirical p-value	0.005***	0.000***	0.065**	0.145	

Note: Control variables and Firm/year/province/industry fixed effects are all included.

3

Transportation infrastructure reliance

▶ return

Dep. Var.:	(1)	(2)	(3)	(4)
In (input inventory)	LCP_NEN	LCP_NTHS	Ming_routes	Straight_line
Par	nel A: high ir	nfrastructure re	eliance	
Highway proximity	-0.110**	-0.446***	-0.236***	-0.085*
	(-2.36)	(-2.72)	(-3.33)	(-1.70)
Observations	828,754	828,754	828,754	828,754
R-squared	0.011	-0.015	0.005	0.012
Under identification test	0.000***	0.000***	0.000***	0.000***
Weak identification test	851.664	82.676	350.424	719.243
Pa	nel B: low in	frastructure re	liance	
Highway proximity	-0.094	-0.152	-0.189**	-0.091
	(-1.48)	(-0.75)	(-2.10)	(-1.30)
Observations	841,080	841,080	841,080	841,080
R-squared	0.017	0.015	0.013	0.017
Under identification test	0.000***	0.000***	0.000***	0.000***
Weak identification test	494.300	52.637	275.479	428.327
Empirical p-value	0.130	0.015**	0.070*	0.270

Note: Control variables and Firm/year/province/industry fixed effects are all included.

< ∃⇒

Image: A matrix

э

Production line position

▶ return

Dep. Var.:	(1)	(2)	(3)	(4)	
In (input inventory)	LCP_NEN	LCP_NTHS	Ming_routes	Straight_line	
Panel A: upstream					
Highway proximity	-0.172***	-0.328*	-0.242***	-0.142**	
	(-2.99)	(-1.94)	(-3.02)	(-2.32)	
Observations	877,914	877,914	877,914	877,914	
R-squared	0.012	0.000	0.007	0.013	
Under identification test	0.000***	0.000***	0.000***	0.000***	
Weak identification test	620.270	79.828	345.133	542.993	
	Panel B:	downstream			
Highway proximity	-0.107**	-0.133	-0.171**	-0.060	
	(-2.18)	(-0.80)	(-2.36)	(-1.11)	
Observations	811,962	811,962	811,962	811,962	
R-squared	0.014	0.013	0.011	0.015	
Under identification test	0.000***	0.000***	0.000***	0.000***	
Weak identification test	681.208	68.197	334.057	564.256	
Empirical p-value	0.045**	0.075*	0.045**	0.020**	

Note: Control variables and Firm/year/province/industry fixed effects are all included.

ヨト・イヨト

Image: A matrix and a matrix

Main supplier's location

▶ return

Dep. Var.:	(1)	(2)	(3)	(4)
In (input inventory)	LCP_NEN	LCP_NTHS	Ming_routes	Straight_line
Pane	el A: supplier	s outside the p	province	
Highway proximity	-0.133***	-0.173	-0.231***	-0.078*
	(-3.39)	(-1.56)	(-4.00)	(-1.77)
Observations	1,431,164	1,431,164	1,431,164	1,431,164
R-squared	0.015	0.013	0.009	0.016
Under identification test	0.000***	0.000***	0.000***	0.000***
Weak identification test	1138.233	162.199	557.233	896.566
Pan	el B: supplier	rs within the p	rovince	
Highway proximity	-0.002	-0.088	-0.201	-0.143
	(-0.03)	(-0.15)	(-1.40)	(-1.63)
Observations	296,135	296,135	296,135	296,135
R-squared	0.014	0.013	0.009	0.012
Under identification test	0.000***	0.000***	0.000***	0.000***
Weak identification test	196.045	4.881	95.980	244.066
Empirical p-value	0.345	0.290	0.150	0.055*

Note: Control variables and Firm/year/province/industry fixed effects are all included.

ヨト・イヨト

▶ return

Dep. Var.:	(1)	(2)	(3)	(4)
In (input inventory)	LCP_NEN	LCP_NTHS	Ming_routes	Straight_line
Pa	nel A: high i	nput inventory	ratio	
Highway proximity	-0.112***	-0.287***	-0.141***	-0.071***
	(-5.20)	(-3.34)	(-4.42)	(-3.15)
Observations	634,276	634,276	634,276	634,276
R-squared	0.094	-0.008	0.084	0.105
Under identification test	0.000***	0.000***	0.000***	0.000***
Weak identification test	506.422	42.591	250.436	443.287
Pa	anel B: low ir	put inventory	ratio	
Highway proximity	-0.074	-0.087	-0.023	0.056
	(-1.22)	(-0.42)	(-0.28)	(0.78)
Observations	625,043	625,043	625,043	625,043
R-squared	0.010	0.010	0.011	0.010
Under identification test	0.000***	0.000***	0.000***	0.000***
Weak identification test	637.520	62.744	310.307	489.301
Empirical p-value	0.170	0.030**	0.055*	0.040**

Note: Control variables and Firm/year/province/industry fixed effects are all included.

イロト イポト イヨト イヨト

Spacial difference

▶ return

Dep. Var.:	(1)	(2)	(3)	(4)		
In (input inventory)	LCP_NEN	LCP_NTHS	Ming_routes	Straight_line		
	Panel A: coastal areas					
Highway proximity	-0.150***	-0.361	-0.442***	-0.150***		
	(-3.29)	(-1.36)	(-5.35)	(-2.91)		
Observations	1,274,821	1,274,821	1,274,821	1,274,821		
R-squared	0.014	-0.004	-0.015	0.014		
Under identification test	0.000***	0.000***	0.000***	0.000***		
Weak identification test	677.964	22.689	242.421	527.383		
	Panel B:	inland areas				
Highway proximity	-0.070	0.061	0.010	0.006		
	(-1.25)	(0.62)	(0.14)	(0.10)		
Observations	458,071	458,071	458,071	458,071		
R-squared	0.017	0.017	0.018	0.018		
Under identification test	0.000***	0.000***	0.000***	0.000***		
Weak identification test	827.955	403.104	606.533	885.606		
Empirical p-value	0.065*	0.015**	0.000***	0.005***		

Note: Control variables and Firm/year/province/industry fixed effects are all included.

イロト イポト イヨト イヨト

Further control the endogenous issue of targeted cities

▶ return

	()	(-)	(-)	(-)
Dep. Var.:	(1)	(2)	(3)	(4)
In (input inventory)	LCP_NEN	LCP_NTHS	Ming_routes	Straight_line
Highway proximity	-0.190***	-0.239***	-0.224***	-0.081*
	(-3.79)	(-2.94)	(-4.30)	(-1.81)
Observations	615,546	615,546	615,546	615,546
R-squared	0.011	0.009	0.010	0.014
Instruments	First-stage	results: highw	ay proximity as	dependent variable
Least cost path (2004NEN)	-0.125***			
	(-25.60)			
Least cost path (1992NTHS)	. ,	-0.115***		
		(-13.08)		
Ming courier routes		· · · ·	-0.112***	
6			(-19.51)	
Straight line routes			,	-0.120***
0				(-27.62)
Under identification test	0.000***	0.000***	0.000***	0.000***
Weak identification test	912.921	238.185	530.522	1062.932
	F : / /	• /• • •	C CC	

Note: Control variables and Firm/year/province/industry fixed effects are all included.

э

Historical IVs

▶ return

Dep. Var.:	(1)	(2)	(3)
In (input inventory)	Ming	Qing	Ming&Qing
Pan	el A: full sar	nple	
Highway proximity	-0.233***	-0.405**	-0.203***
	(-4.37)	(-2.35)	(-4.20)
Observations	1,732,900	1,732,900	1,732,900
R-squared	0.009	-0.008	0.011
Under identification test	0.000***	0.000***	0.000***
Weak identification test	660.331	96.418	337.580
Overidentification test	-	-	0.218
Panel	B: drop 7 pro	ovinces	
Highway proximity	-0.249***	-0.516***	-0.204***
	(-4.62)	(-2.79)	(-4.20)
Observations	1,680,944	1,680,944	1,680,944
R-squared	0.007	-0.024	0.011
Under identification test	0.000***	0.000***	0.000***
Weak identification test	651.894	86.051	334.629
Overidentification test	-	-	0.071

Note: Control variables and Firm/year/province/industry fixed effects are all included. The critical value to pass the Weak-identification test is 16.38 in column (1)-(2) and 19.93 in column (3). Overidentification test reports the p-value of Hanson J statistic. The critical p-value to pass the overidentification test is more than 0.05.

▶ next

Dep. Var.:	(1)	(2)	(3)	(4)
In (input inventory)			Ming_routes	Straight_line
	Panel A	: full sample	0	
Ln (highway distance)	0.021***	0.016*	0.034***	0.014**
	(3.36)	(1.74)	(4.43)	(2.32)
Observations	1,732,900	1,732,900	1,732,900	1,732,900
R-squared	0.017	0.017	0.017	0.017
Under identification test	0.000***	0.000***	0.000***	0.000***
Weak identification test	5.5e+04	1.9e+04	3.4e+04	4.5e+04
Panel B: drop obser	vations which	n located in th	e targeted NTI	HS cities
Ln (highway distance)	0.035***	0.055***	0.046***	0.015*
	(3.81)	(3.01)	(4.37)	(1.81)
Observations	615,546	615,546	615,546	615,546
R-squared	0.014	0.014	0.014	0.014
Under identification test	0.000***	0.000***	0.000***	0.000***
Weak identification test	3.3e+04	5929.895	2.3e+04	3.5e+04

Note: Control variables and Firm/year/province/industry fixed effects are all included.

▶ return

	()	()			
Dep. Var.:	(1)	(2)	(3)	(4)	
In (input inventory)	LCP_NEN	LCP_NTHS	Ming_routes	Straight_line	
Panel A: full sample					
RHP	-0.396***	-0.330*	-0.650***	-0.272**	
	(-3.36)	(-1.74)	(-4.43)	(-2.32)	
Observations	1,732,900	1,732,900	1,732,900	1,732,900	
R-squared	0.017	0.017	0.016	0.017	
Under identification test	0.000***	0.000***	0.000***	0.000***	
Weak identification test	2.1e+04	7592.971	1.5e+04	2.0e+04	
Panel B: drop obser	vations which	n located in th	e targeted NTI	HS cities	
RHP	-0.720***	-1.120***	-0.872***	-0.289*	
	(-3.81)	(-3.01)	(-4.37)	(-1.81)	
Observations	615,546	615,546	615,546	615,546	
R-squared	0.014	0.013	0.014	0.014	
Under identification test	0.000***	0.000***	0.000***	0.000***	
Weak identification test	1.0e+04	2124.520	8936.221	1.4e+04	

Note: Control variables and Firm/year/province/industry fixed effects are all included.

Alternative buffer (5KM)

Dep. Var.:	(1)	(2)	(3)	(4)
In (input inventory)	LCP_NEN	LCP_NTHS	Ming_routes	Straight_line
	highway pro	ximity as high		
Highway proximity	-0.156***	-0.141**	-0.228***	-0.123***
0 , 1 ,	(-3.53)	(-2.09)	(-5.15)	(-3.20)
Observations	615,546	615,546	615,546	615,546
R-squared	0.012	0.012	0.009	0.013
Under identification test	0.000***	0.000***	0.000***	0.000***
Weak identification test	1043.096	308.993	636.172	1272.641
Panel B	: highway dis	tance as highv	vay variable	
Ln (highway distance)	0.032***	0.037**	0.053***	0.025***
	(3.54)	(2.11)	(5.25)	(3.22)
Observations	615,546	615,546	615,546	615,546
R-squared	0.014	0.014	0.014	0.014
Under identification test	0.000***	0.000***	0.000***	0.000***
Weak identification test	4.2e+04	7796.665	2.8e+04	4.1e+04
Panel C: highwa	y proximity t	o the frontier	as highway var	iable
RHP	-0.637***	-0.748**	-0.983***	-0.491***
	(-3.54)	(-2.11)	(-5.25)	(-3.22)
Observations	615,546	615,546	615,546	615,546
R-squared	0.014	0.014	0.014	0.014
Under identification test	0.000***	0.000***	0.000***	0.000***
Weak identification test	1.2e+04	2523.466	1.0e+04	1.6e+04

Note: Control variables and Firm/year/province/industry fixed effects are all included.

Image: A matrix and a matrix

- the logarithm of sales
- sales surprise dummy
- sales growth
- excess sales growth, calculated as sales growth minus the mean value of four-digit industry-level sales growth in each year.

$$Lnsales_{i,t} = \gamma_0 + \gamma_1 Lnsales_{i,t-1} + \varepsilon_i + \varepsilon_t + \varepsilon_{i,t}$$
(3)

$$Sales_surprise_{i,t} = \frac{Lnsales_{i,t}}{\widehat{Lnsales}_{i,t}}$$
(4)

42 / 44

Highway may indirectly affect firms' inventories through the channel of demand.

$$Inventory_{i,j,k,t} = \gamma_0 + \gamma_1 Highway_{i,j,k,t} + \gamma_2 Highway_{i,j,k,t} * Demand_{i,j,k,t} + \gamma_3 Demand_{i,j,k,t} + \gamma_4' X_{i,j,k,t} + \gamma_5' Z_{k,t} + \theta_i + \theta_j + \theta_k + \theta_t + \theta_{i,j,k,t}$$
(5)

The demand proxies include the logarithm of sales, sales surprise dummy, sales growth, excess sales growth, respectively.

IV result: demand channel

	(1)	(2)	(3)	(4)	(5)	(6)
VARIABLES	Total inventory		Input inventory		Output inventory	
Highway proximity	-0.968***	-0.113***	-0.894***	-0.130***	-0.656***	-0.020
	(-9.19)	(-4.70)	(-5.75)	(-3.53)	(-4.23)	(-0.54)
Highway proximity*Insales	0.090***		0.081***		0.065***	
	(8.48)		(5.06)		(4.08)	
Insales	0.228***		0.203***		0.234**	
	(38.14)		(22.93)		(26.90	
Highway proximity*SSD		0.055***		0.060**		-0.001
		(3.37)		(2.33)		(-0.03)
Sales surprise dummy (SSD)		0.138***		0.102***		0.175***
		(15.05)		(7.09)		(12.39)
Observations	1,732,900	1,732,900	1,732,900	1,732,900	1,732,900	1,732,900
R-squared	0.036	0.032	0.014	0.013	0.018	0.016
Under identification test	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***
Weak identification test	546.694	660.322	546.694	660.322	546.694	660.322

Note: Control variables and Firm/year/province/industry fixed effects are all included. The interaction terms of highway proximity and sales growth/ or excess sales growth are insignificant.