Zero-hours Contracts in a Frictional Labor Market

Juan J. Dolado ${ }^{1}$ Etienne Lalé ${ }^{2}$ Hélène Turon ${ }^{3}$

European Meeting of the Econometric Society
August 22-26, 2022

[^0]
Introduction

- The rise of alternative work arrangements, largely sparked by the digitization of the economy, has raised growing concerns about their employment and welfare effects
- Zero-hours contracts (ZHCs) have been under the spotlight, particularly in the U.K., where they have become the focus of a heated debate in the media and political arena
- ZHCs: contracts where employers are not obliged to provide any minimum working hours, and workers are not obliged to accept any work offered
- In this paper, we develop a structural model of ZHCs to assess the impact of these labor contracts on equilibrium allocation and welfare

This paper

- Develop a model where firms and workers are both heterogeneous in their valuation of ZHCs compared to regular contracts. Model captures three key aspects of ZHCs:

This paper

- Develop a model where firms and workers are both heterogeneous in their valuation of ZHCs compared to regular contracts. Model captures three key aspects of ZHCs:
- Job creation: flexible contracts help firms endowed with more volatile business conditions to enter the market and/or create additional jobs
- Substitution: some jobs that would be otherwise viable under regular contracts become advertised as ZHCs
- Participation: individuals who prefer flexible work schedules join the labor market to take advantage of ZHCs

This paper

- Develop a model where firms and workers are both heterogeneous in their valuation of ZHCs compared to regular contracts. Model captures three key aspects of ZHCs:
- Job creation: flexible contracts help firms endowed with more volatile business conditions to enter the market and/or create additional jobs
- Substitution: some jobs that would be otherwise viable under regular contracts become advertised as ZHCs
- Participation: individuals who prefer flexible work schedules join the labor market to take advantage of ZHCs
- Calibrate / estimate the structural parameters of the model, and make inference about the heterogeneous types of workers and firms in the U.K. low-wage labor market

This paper

- Develop a model where firms and workers are both heterogeneous in their valuation of ZHCs compared to regular contracts. Model captures three key aspects of ZHCs:
- Job creation: flexible contracts help firms endowed with more volatile business conditions to enter the market and/or create additional jobs
- Substitution: some jobs that would be otherwise viable under regular contracts become advertised as ZHCs
- Participation: individuals who prefer flexible work schedules join the labor market to take advantage of ZHCs
- Calibrate / estimate the structural parameters of the model, and make inference about the heterogeneous types of workers and firms in the U.K. low-wage labor market
- Analyze and quantify the effects of a min. wage raise [not today] and of a ban on ZHCs

Key results

(1) All three channels play quantitatively important roles and interact with each other \Rightarrow Job creation effects of ZHCs are largest and reinforced by labor force participation

Key results

(1) All three channels play quantitatively important roles and interact with each other \Rightarrow Job creation effects of ZHCs are largest and reinforced by labor force participation
(2) A ban on ZHCs leads to an expansion of regular employment \Rightarrow Jobs that can serve as a stepping stone towards regular employment, such as ZHCs, may also cause labor market trajectories to be more unstable on average

Key results

(1) All three channels play quantitatively important roles and interact with each other \Rightarrow Job creation effects of ZHCs are largest and reinforced by labor force participation
(2) A ban on ZHCs leads to an expansion of regular employment \Rightarrow Jobs that can serve as a stepping stone towards regular employment, such as ZHCs, may also cause labor market trajectories to be more unstable on average
(3) Welfare effects are not obvious, as both unemployment and regular employment increase \Rightarrow Full impact of a ban on ZHCs is a welfare loss by about $0.9-1.1 \%$ in CEV
\Rightarrow Eliminating the substitution effects of ZHCs would increase welfare by $0.2-0.5 \%$ in CEV

Key results

(1) All three channels play quantitatively important roles and interact with each other \Rightarrow Job creation effects of ZHCs are largest and reinforced by labor force participation
(2) A ban on ZHCs leads to an expansion of regular employment \Rightarrow Jobs that can serve as a stepping stone towards regular employment, such as ZHCs, may also cause labor market trajectories to be more unstable on average
(3) Welfare effects are not obvious, as both unemployment and regular employment increase \Rightarrow Full impact of a ban on ZHCs is a welfare loss by about $0.9-1.1 \%$ in CEV
\Rightarrow Eliminating the substitution effects of ZHCs would increase welfare by $0.2-0.5 \%$ in CEV
(4) [Not today] Structural estimates of the willingness to pay (MWP) for shorter working shifts \Rightarrow Wide dispersion in MWPs. The least attached workers on ZHCs would require at least $£ 10.9$ (= 1.45 times the hourly minimum wage) to accept working one extra hour

Roadmap of presentation

The model

Calibration and inference on workers' and firms' types [Not today]

Policy experiments

Conclusion

The model

The model

- Time is discrete. Think of a model time period as 2 weeks
\Rightarrow Rapidly changing business conditions, independent across periods
- Economy is populated by heterogeneous workers i and heterogeneous firms j
- All agents discount the future at rate ρ
- Focus on minimum-wage labor market. No wage dispersion. All jobs pay w \Rightarrow No bargaining. Abstract from compensating differential in wages

Workers' types

- N : a worker's asset value of being not employed
$-W_{Z}$ and W_{R} : worker's asset values of being employed under resp. Z and R contracts

$$
\begin{cases}N<W_{Z}<W_{R} & \text { for type 1 } \tag{1}\\ W_{R}<N<W_{Z} & \text { for type 2 } \\ W_{Z}<N<W_{R} & \text { for type 3 } \\ N<W_{R}<W_{Z} & \text { for type 4 }\end{cases}
$$

Workers' types

- N : a worker's asset value of being not employed
$-W_{Z}$ and W_{R} : worker's asset values of being employed under resp. Z and R contracts

$$
\begin{cases}N<W_{Z}<W_{R} & \text { for type } 1 \tag{1}\\ W_{R}<N<W_{Z} & \text { for type } 2 \\ W_{Z}<N<W_{R} & \text { for type } 3 \\ N<W_{R}<W_{Z} & \text { for type } 4\end{cases}
$$

Notice that:

- Type-1 and type-4 workers have reasons to search on the job

Workers' types

- N : a worker's asset value of being not employed
$-W_{Z}$ and W_{R} : worker's asset values of being employed under resp. Z and R contracts

$$
\begin{cases}N<W_{Z}<W_{R} & \text { for type 1 } \tag{1}\\ W_{R}<N<W_{Z} & \text { for type 2 } \\ W_{Z}<N<W_{R} & \text { for type 3 } \\ N<W_{R}<W_{Z} & \text { for type 4 }\end{cases}
$$

Notice that:

- Type-1 and type-4 workers have reasons to search on the job
- If Z jobs were to be banned, type-2 workers would remain inactive \Rightarrow Participation effect

Workers' types

- N : a worker's asset value of being not employed
$-W_{Z}$ and W_{R} : worker's asset values of being employed under resp. Z and R contracts

$$
\begin{cases}N<W_{Z}<W_{R} & \text { for type 1 } \tag{1}\\ W_{R}<N<W_{Z} & \text { for type 2 } \\ W_{Z}<N<W_{R} & \text { for type 3 } \\ N<W_{R}<W_{Z} & \text { for type 4 }\end{cases}
$$

Notice that:

- Type-1 and type-4 workers have reasons to search on the job
- If Z jobs were to be banned, type-2 workers would remain inactive \Rightarrow Participation effect
- Rankings must hold in equilibrium: N, W_{Z}, W_{R} are equilibrium objects!

Firms' types

$\rightarrow V_{Z}$ and V_{R} : Firms' asset values of advertising a vacant position as either a Z or R contract

- Under free entry, value of a firm being inactive is 0 . Firms can be of one of three types:

$$
\begin{cases}V_{R}<0<V_{Z} & \text { for type } c \tag{2}\\ 0<V_{R}<V_{Z} & \text { for type } s \\ 0<V_{Z}<V_{R} & \text { for type } r\end{cases}
$$

Firms' types

- V_{Z} and V_{R} : Firms' asset values of advertising a vacant position as either a Z or R contract
- Under free entry, value of a firm being inactive is 0 . Firms can be of one of three types:

$$
\begin{cases}V_{R}<0<V_{Z} & \text { for type } c \tag{2}\\ 0<V_{R}<V_{Z} & \text { for type } s \\ 0<V_{Z}<V_{R} & \text { for type } r\end{cases}
$$

Notice that:

- Without ZHCs, type- c firms would abstain from creating any jobs \Rightarrow Job creation effect

Firms' types

- V_{Z} and V_{R} : Firms' asset values of advertising a vacant position as either a Z or R contract
- Under free entry, value of a firm being inactive is 0 . Firms can be of one of three types:

$$
\begin{cases}V_{R}<0<V_{Z} & \text { for type } c \tag{2}\\ 0<V_{R}<V_{Z} & \text { for type } s \\ 0<V_{Z}<V_{R} & \text { for type } r\end{cases}
$$

Notice that:

- Without ZHCs, type- c firms would abstain from creating any jobs \Rightarrow Job creation effect
- Type-s firms advertise Z contracts but would be viable as R contracts \Rightarrow Substitution effect

Firms' types

- V_{Z} and V_{R} : Firms' asset values of advertising a vacant position as either a Z or R contract
- Under free entry, value of a firm being inactive is 0 . Firms can be of one of three types:

$$
\begin{cases}V_{R}<0<V_{Z} & \text { for type } c \tag{2}\\ 0<V_{R}<V_{Z} & \text { for type } s \\ 0<V_{Z}<V_{R} & \text { for type } r\end{cases}
$$

Notice that:

- Without ZHCs, type- c firms would abstain from creating any jobs \Rightarrow Job creation effect
- Type-s firms advertise Z contracts but would be viable as R contracts \Rightarrow Substitution effect
- Job creation is somewhat of a misnomer, given that there is free entry of firms

Workers' preferences

- No saving/borrowing, workers consume all their income
- When not employed, workers receive unemployment benefits b
- When working h hours and earning labor income $w h$, workers lose their unemployment benefit at a taper rate τ :

$$
\begin{equation*}
\operatorname{inc}(h)=\max \{w h, b+(1-\tau) w h\} \tag{3}
\end{equation*}
$$

- The intra-period utility function is given by:

$$
\begin{equation*}
u^{i}(h, a)=\frac{\operatorname{inc}(h)^{1-\eta}-1}{1-\eta}-\alpha_{i} \max \{h-a, 0\} \tag{4}
\end{equation*}
$$

Workers' preferences

- No saving/borrowing, workers consume all their income
- When not employed, workers receive unemployment benefits b
- When working h hours and earning labor income $w h$, workers lose their unemployment benefit at a taper rate τ :

$$
\begin{equation*}
\operatorname{inc}(h)=\max \{w h, b+(1-\tau) w h\} \tag{3}
\end{equation*}
$$

- The intra-period utility function is given by:

$$
\begin{equation*}
u^{i}(h, a)=\frac{\operatorname{inc}(h)^{1-\eta}-1}{1-\eta}-\alpha_{i} \max \{h-a, 0\} . \tag{4}
\end{equation*}
$$

α_{i} is heterogeneous, even potentially across workers of same type i

Production technology

- \widetilde{h} denotes the number of working hours that would meet the demand that a firm faces at a given point in time
- Deviations between actual hours h and \widetilde{h} are costly (reputation costs, marketing expenses)
- Firms' instantaneous profit function is:

$$
\begin{equation*}
\pi(h, \widetilde{h})=(p-w) h-\frac{\phi}{2}(h-\widetilde{h})^{2} \tag{5}
\end{equation*}
$$

Production technology

- \tilde{h} denotes the number of working hours that would meet the demand that a firm faces at a given point in time
- Deviations between actual hours h and \widetilde{h} are costly (reputation costs, marketing expenses)
- Firms' instantaneous profit function is:

$$
\begin{equation*}
\pi(h, \widetilde{h})=(p-w) h-\frac{\phi}{2}(h-\widetilde{h})^{2} \tag{5}
\end{equation*}
$$

- \widetilde{h} is stochastic and is drawn from a distribution $H_{j}($.$) which is heterogeneous across firms$

Production technology

- \tilde{h} denotes the number of working hours that would meet the demand that a firm faces at a given point in time

Deviations between actual hours h and \widetilde{h} are costly (reputation costs, marketing expenses)

- Firms' instantaneous profit function is:

$$
\begin{equation*}
\pi(h, \widetilde{h})=(p-w) h-\frac{\phi}{2}(h-\widetilde{h})^{2} \tag{5}
\end{equation*}
$$

- \widetilde{h} is stochastic and is drawn from a distribution $H_{j}($.$) which is heterogeneous across firms$
- Think of ZHCs as contracts that enable firms to set $h=\widetilde{h}$. In R contracts, $h=\bar{h}$

Search frictions

- Search is random, labor market tightness θ pins down the contact rate between job seekers and vacancies
- When employed workers choose to search on the job. Their relative search intensity is x_{i}
- Exogenous job destruction shock hits firms with probability δ, making firm leave the market
- When a worker quits into another job, the firm remains and re-advertises its job
- Firms choose the contract type at the point of advertising, under full commitment

Policy experiments

Ban on ZHCs: Equilibrium allocation

Table: Equilibrium (re)allocation effects of a ban on Z contracts

	Share of type- c among Z jobs					
		$\mathbf{0 . 0 0}$	$\mathbf{0 . 2 5}$	$\mathbf{0 . 5 0}$	$\mathbf{0 . 7 5}$	$\mathbf{1 . 0 0}$
Employment rate (in \%)		86.0	85.9	85.7	85.6	85.4
		-4.79	-4.93	-5.08	-5.23	-5.40
Unemployment rate (in \%)		11.2	11.4	11.5	11.7	11.8
		2.03	2.17	2.33	2.48	2.65
Duration of R vacancies (in weeks)	10.5	8.0	8.0	7.9	7.8	7.8
Net output (1 = baseline)		-2.47	-2.53	-2.59	-2.66	-2.73
	1.00	0.98	0.97	0.97	0.97	0.96

Ban on ZHCs: Equilibrium allocation

Table: Equilibrium (re)allocation effects of a ban on Z contracts

	Share of type- c among Z jobs					
		$\mathbf{0 . 0 0}$	$\mathbf{0 . 2 5}$	$\mathbf{0 . 5 0}$	$\mathbf{0 . 7 5}$	$\mathbf{1 . 0 0}$
Employment rate (in \%)		86.0	85.9	85.7	85.6	85.4
		-4.79	-4.93	-5.08	-5.23	-5.40
Unemployment rate (in \%)		11.2	11.4	11.5	11.7	11.8
		2.03	2.17	2.33	2.48	2.65
Duration of R vacancies (in weeks)	10.5	8.0	8.0	7.9	7.8	7.8
Net output (1 = baseline)		-2.47	-2.53	-2.59	-2.66	-2.73
	1.00	0.98	0.97	0.97	0.97	0.96

- Important role for job creation even when substitution effects are largest (i.e., when $\gamma_{c}=0$)

Ban on ZHCs: Accession to regular employment

Change in regular employment, $\widetilde{e}_{R} / e_{R}$, depends on three channels:

$$
\begin{equation*}
\frac{\tilde{e}_{R}}{e_{R}}=\underbrace{\frac{\lambda(\tilde{\theta})}{\lambda(\theta)}}_{\text {job creation }} \times \underbrace{\frac{1}{v_{R} / v}}_{\text {vacancy competition }} \times \underbrace{\frac{\tilde{n}_{1}}{(1-\delta) x e_{1, Z}+n_{1}}}_{\text {search efficiency }} . \tag{6}
\end{equation*}
$$

Ban on ZHCs: Accession to regular employment

Change in regular employment, $\widetilde{e}_{R} / e_{R}$, depends on three channels:

$$
\begin{equation*}
\frac{\tilde{e}_{R}}{e_{R}}=\underbrace{\frac{\lambda(\tilde{\theta})}{\lambda(\theta)}}_{\text {job creation }} \times \underbrace{\frac{1}{v_{R} / v}}_{\text {vacancy competition }} \times \underbrace{\frac{\tilde{n}_{1}}{(1-\delta) x e_{1, Z}+n_{1}}}_{\text {search efficiency }} \tag{6}
\end{equation*}
$$

- $\lambda(\widetilde{\theta}) / \lambda(\theta)=71 \%$, meaning that lower job creation would reduce regular employment by almost 30% ceteris paribus

Reduction in vacancy competition in isolation from the other effects would increase regular employment by 24%

- Additional search efficiency units for employment following a ban on ZHCs would increase regular employment by 15% ceteris paribus

Ban on ZHCs: Welfare impact

- What is the overall impact of the ban on time spent out of regular employment?
- After the policy reform, this duration is given by the duration of unemployment spells
- Prior to the ban, this is the duration that type-1 workers spent in unemployment as well as in Z waiting to eventually transit to R employment

Difference is readily measured in our model, as

$$
\begin{equation*}
\triangle=\frac{\omega_{1}}{\lambda(\widetilde{\theta}) \widetilde{n}_{1}}-\frac{\omega_{1}}{\lambda(\theta) \frac{v_{R}}{v}\left(x(1-\delta) e_{1, Z}+n_{1}\right)} \approx-7 \text { weeks } \tag{7}
\end{equation*}
$$

Ban on ZHCs: Welfare impact

- What is the overall impact of the ban on time spent out of regular employment?
- After the policy reform, this duration is given by the duration of unemployment spells
- Prior to the ban, this is the duration that type-1 workers spent in unemployment as well as in Z waiting to eventually transit to R employment
- Difference is readily measured in our model, as

$$
\begin{equation*}
\triangle=\frac{\omega_{1}}{\lambda(\widetilde{\theta}) \widetilde{n}_{1}}-\frac{\omega_{1}}{\lambda(\theta) \frac{v_{R}}{v}\left(x(1-\delta) e_{1, Z}+n_{1}\right)} \approx-7 \text { weeks } \tag{7}
\end{equation*}
$$

\rightarrow Even though the unemployment rate increases after a ban on ZHCs, type-1 workers spend on average more time in regular employment

Ban on ZHCs: Welfare impact

Table: Welfare (in \% of CEV) effects of a ban on Z contracts

	Share of type- c among Z jobs					
		$\mathbf{0 . 2 5}$	$\mathbf{0 . 5 0}$	$\mathbf{0 . 7 5}$	$\mathbf{1 . 0 0}$	
At 1st percentile of α		-0.93	-0.99	-1.06	-1.12	-1.15
At 25th percentile of α		-0.96	-1.02	-1.08	-1.13	-1.14
At 50th percentile of α		-0.99	-1.04	-1.09	-1.15	-1.13
At 75th percentile of α	0.00	-1.02	-1.07	-1.11	-1.16	-1.13
At 99th percentile of α	0.00	-1.05	-1.09	-1.13	-1.17	-1.12

Ban on ZHCs: Welfare impact

Table: Welfare (in \% of CEV) effects of a ban on Z contracts

	Share of type-c among Z jobs					
Baseline		$\mathbf{0 . 2 5}$	$\mathbf{0 . 5 0}$	$\mathbf{0 . 7 5}$	$\mathbf{1 . 0 0}$	
At 1st percentile of α		-0.93	-0.99	-1.06	-1.12	-1.15
At 25th percentile of α		-0.96	-1.02	-1.08	-1.13	-1.14
At 50th percentile of α		-0.99	-1.04	-1.09	-1.15	-1.13
At 75th percentile of α		-1.02	-1.07	-1.11	-1.16	-1.13
At 99th percentile of α	0.00	-1.05	-1.09	-1.13	-1.17	-1.12

- Still, the consequences of more unemployment is that welfare decreases by 0.9-1.1\%

Ban on ZHCs: Welfare impact

Table: Welfare (in \% of CEV) effects of a ban on Z contracts: The substitution channel

	Bhaseline of type- c among Z jobs					
		$\mathbf{0 . 0 0}$	$\mathbf{0 . 2 5}$	$\mathbf{0 . 5 0}$	$\mathbf{0 . 7 5}$	$\mathbf{1 . 0 0}$
At 1st percentile of α		0.54	0.54	0.53	0.53	0.52
At 25th percentile of α		0.45	0.45	0.45	0.44	0.44
At 50th percentile of α		0.37	0.36	0.36	0.36	0.35
At 75th percentile of α		0.28	0.28	0.27	0.27	0.27
At 99th percentile of α	0.00	0.20	0.19	0.19	0.19	0.18

Ban on ZHCs: Welfare impact

Table: Welfare (in \% of CEV) effects of a ban on Z contracts: The substitution channel

	Baseline	$\mathbf{0 . 0 0}$	$\mathbf{0 . 2 5}$	$\mathbf{0 . 5 0}$	$\mathbf{0 . 7 5}$	$\mathbf{1 . 0 0}$
At 1st percentile of α		0.54	0.54	0.53	0.53	0.52
At 25th percentile of α		0.45	0.45	0.45	0.44	0.44
At 50th percentile of α		0.37	0.36	0.36	0.36	0.35
At 75th percentile of α		0.28	0.28	0.27	0.27	0.27
At 99th percentile of α		0.20	0.19	0.19	0.19	0.18

- Not negligible. May explain the seemingly paradoxical responses to the spread of ZHCs
- Importance of a general equilibrium analysis that accounts for the other forces that come into play (Job creation, Labor force participation)

Conclusion

Conclusion

Our findings suggest that:

- Most workers employed under ZHCs would prefer having a regular contract
- At the same time, and in line with related studies, there is a substantial willingness to pay for flexible work schedules in some segments of the (potential) labor force
- There are productive opportunities in sectors facing highly volatile demand which may not be viable without the ability to adjust working hours at no cost
- Identifying such segments of economic activity requires the availability of richer data on firms' profitability and workers' time use and preferences

Appendix

Related literature

- Growing literature (mostly empirical) on understanding alternative work arrangements
- Measuring the trends and characteristics of workers: Abraham et al. [2019, 2021], Katz and Krueger [2019], Collins et al. [2019], Boeri et al. [2020], etc.
- Mas and Pallais [2017]: Experiment with workers in a U.S. national call center to measure different MWPs:
- Workers willing to give up 8% of wages for the option to work from home
- Willing to pay 20% to avoid a schedule set by an employer on short notice
- Datta et al. [2019] document how the 2016 rise in the U.K. minimum wage has resulted in increased usage of ZHCs in the social care and related low-wage sectors
- Only few attempts to analyze flexible hours contracts in a structural model
- Scarfe [2020]: search-matching model of "casual work" in Australia (where casual work accounts for 10% of the labor force)
- Frazier [2017]: directed-search model with two types of jobs, one with fixed hours, the other with variable hours. Estimated with data on the U.S. retail sector

Bellman equations

- Workers' asset values depend on their own type i and contract k
- These asset values solve:

$$
\begin{equation*}
N^{i}=u_{N}+\frac{1}{1+\rho}\left[(1-\lambda(\theta)) N^{i}+\lambda(\theta) \sum_{k^{\prime}} \frac{v_{k^{\prime}}}{v} \max \left\{N^{i}, W_{k^{\prime}}^{i}\right\}\right], \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{k}^{i}=u_{k}^{i}+\frac{1}{1+\rho}\left[\delta N^{i}+(1-\delta)\left(\left(1-x_{i} \lambda(\theta)\right) W_{k}^{i}+x_{i} \lambda(\theta) \sum_{k^{\prime}} \frac{v_{k^{\prime}}}{v} \max \left\{W_{k}^{i}, W_{k^{\prime}}^{i}\right\}\right)\right] \tag{9}
\end{equation*}
$$

Bellman equations

- Workers' asset values depend on their own type i and contract k
- These asset values solve:

$$
\begin{equation*}
N^{i}=u_{N}+\frac{1}{1+\rho}\left[(1-\lambda(\theta)) N^{i}+\lambda(\theta) \sum_{k^{\prime}} \frac{v_{k^{\prime}}}{v} \max \left\{N^{i}, W_{k^{\prime}}^{i}\right\}\right], \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{k}^{i}=u_{k}^{i}+\frac{1}{1+\rho}\left[\delta N^{i}+(1-\delta)\left(\left(1-x_{i} \lambda(\theta)\right) W_{k}^{i}+x_{i} \lambda(\theta) \sum_{k^{\prime}} \frac{v_{k^{\prime}}}{v} \max \left\{W_{k}^{i}, W_{k^{\prime}}^{i}\right\}\right)\right] \tag{9}
\end{equation*}
$$

- Flow values of employment u_{k}^{i} in (9) depend on the equilibrium mix of firm types:

$$
\begin{equation*}
u_{Z}^{i}=\frac{e_{c}}{e_{Z}} \int u^{i}(\widetilde{h}, a) d G_{c}(\widetilde{h})+\frac{e_{s}}{e_{Z}} \int u^{i}(\widetilde{h}, a) d G_{s}(\widetilde{h}) \text { and } u_{R}^{i}=u^{i}(\widetilde{h}, a) \tag{10}
\end{equation*}
$$

Bellman equations

- Firms of a given type j compare the asset value V_{k}^{j} of holding a vacant position advertised as a contract $k=Z, R$
- These depend on $J_{i, k}^{j}$, which is the asset value of filling the position with a worker of type i
- These asset values solve:

$$
\begin{equation*}
V_{k}^{j}=-\kappa+\frac{1}{1+\rho}\left[V_{k}^{j}+\frac{\lambda(\theta)}{\theta} \sum_{i} \frac{\left.n_{i} \mathbb{1}_{\left\{W_{k}^{i}>N^{i}\right\}}+\sum_{j^{\prime}} x_{i} e_{i, j^{\prime}} \mathbb{1}_{\left\{W_{k}^{i}>W_{k\left(j^{\prime}\right)}^{i}\right\}}\right\}}{n+\sum_{i^{\prime}} x_{i^{\prime}} e_{i^{\prime}}}\left(J_{i, k}^{j}-V_{k}^{j}\right)\right] \tag{11}
\end{equation*}
$$

Bellman equations

- Firms of a given type j compare the asset value V_{k}^{j} of holding a vacant position advertised as a contract $k=Z, R$
- These depend on $J_{i, k}^{j}$, which is the asset value of filling the position with a worker of type i
- These asset values solve:

$$
\begin{equation*}
V_{k}^{j}=-\kappa+\frac{1}{1+\rho}\left[V_{k}^{j}+\frac{\lambda(\theta)}{\theta} \sum_{i} \frac{\left.n_{i} \mathbb{1}_{\left\{W_{k}^{i}>N^{i}\right\}}+\sum_{j^{\prime}} x_{i} e_{i, j^{\prime}} \mathbb{1}_{\left\{W_{k}^{i}>W_{k\left(j^{\prime}\right)}^{i}\right\}}\right\}}{n+\sum_{i^{\prime}} x_{i^{\prime}} e_{i^{\prime}}}\left(J_{i, k}^{j}-V_{k}^{j}\right)\right] \tag{11}
\end{equation*}
$$

$>$ Notice the role $\mathbb{1}_{\{.\}}$: The worker's decision to accept the job depends on:

- The contract k offered by the firm
- The worker's own current labor market status and preferred employment contract

Bellman equations

- For filled jobs, the asset values solve:

$$
\begin{equation*}
J_{i, k}^{j}=\pi_{k}^{j}+\frac{1-\delta}{1+\rho}\left[V_{k}^{j}+\left(1-x_{i} \lambda(\theta) \sum_{k^{\prime}} \frac{v_{k^{\prime}}}{v} \mathbb{1}_{\left\{W_{k^{\prime}}^{i}>W_{k}^{i}\right\}}\right)\left(J_{i, k}^{j}-V_{k}^{j}\right)\right] \tag{12}
\end{equation*}
$$

- Probability of job continuation depends on the equilibrium offers from other firms (through $v_{k^{\prime}} / v$) and on workers' preferences over those offers
- The flow values of employing a worker under contract k are:

$$
\begin{equation*}
\pi_{Z}^{j}=\int \pi(\widetilde{h}, \widetilde{h}) d G_{j}(\widetilde{h}) \text { and } \pi_{R}^{j}=\int \pi(\bar{h}, \widetilde{h}) d G_{j}(\widetilde{h}) \tag{13}
\end{equation*}
$$

Job creation

- Firms pay a business creation cost K to enter the market, and then draw their type j from a distribution $\left(\gamma_{j}\right)_{j=c, s, r}$
- In equilibrium, these types must be consistent with firms' ranking of posted contracts
- As a result, under free entry, we have

$$
\begin{equation*}
K=\gamma_{c} \cdot V_{Z}^{c}+\gamma_{s} \cdot V_{Z}^{s}+\gamma_{r} \cdot V_{R}^{r} \tag{14}
\end{equation*}
$$

- Market tightness θ, which is the ratio between v and $n+\sum_{i} x_{i} e_{i}$, adjusts to satisfy Eq. (14)

Steady-state equilibrium

A steady-state equilibrium is a list of asset values $N^{i}, W_{k}^{i}, V_{k}^{j}, J_{i, k}^{j}$; a stationary distribution of job matches $e_{i, j}$, non-employed workers n_{i} and vacancies v_{j}; and labor market tightness θ such that:

1. Given the measures $e_{i, j}, n_{i}, v_{j}$, and market tightness θ, the asset values $N^{i}, W_{k}^{i}, V_{k}^{j}, J_{i, k}^{j}$ solve the Bellman equations (8), (9), (11), (12)
2. Given N^{i}, W_{k}^{i}, worker types satisfy the rankings presented in (1); given $V_{k}^{j}, J_{i, k}^{j}$ firm types satisfy the rankings presented in (2)
3. Given V_{k}^{j}, where $k=Z, R$ is the contract offered by type- j firms, market tightness θ solves the free entry condition in Equation (14)
4. Given market tightness θ, the measures $e_{i, j}, n_{i}, v_{j}$ are time-invariant with respect to the law of motion of the economy

Vacancy elasticity of the matching function

- Newly-formed matches $\left(M_{o, t}\right)$, unemployment claims $\left(U_{o, t}\right)$ and job vacancies $\left(V_{o, t}\right)$

Occupations o : ('Administrative', 'Secretarial and related', 'Caring personal service', 'Leisure and other personal service',
'Process, plant and machine', 'Elementary trades, plant and storage related', 'Elementary administration and service')

- Run a linear regression:

$$
\begin{equation*}
\log \left(\frac{M_{o, t}}{U_{o, t}}\right)=\alpha_{o}+\sigma^{\prime} g(t)+\psi \log \left(\frac{V_{o, t}}{U_{o, t}}\right)+\varepsilon_{o, t} \tag{15}
\end{equation*}
$$

Table: Vacancy elasticity of the matching function

	Log- job finding $\left(\log \left(M_{o, t} / U_{o, t}\right)\right)$			
Log- market tightness $\left(\log \left(V_{o, t} / U_{o, t}\right)\right)$	$0.643^{* * *}$	$0.701^{* * *}$	$0.586^{* * *}$	$0.703^{* * *}$
	(0.027)	(0.041)	(0.025)	(0.034)
R-squared	0.859	0.896	0.802	0.871
Time trend $(g(t))$		\boldsymbol{V}		\boldsymbol{V}
Occupation fixed effect $\left(\alpha_{o}\right)$			\boldsymbol{V}	$\boldsymbol{\checkmark}$

Parameters set externally

- Model period is 2 weeks. $\rho=0.0015$ to yield an annual discount rate of 4 percent [To ease interpretation, several parameter values are expressed in weekly values]
- $w=£ 7.50$ per hour (U.K. national minimum wage for workers aged 25 and over)
- Cobb-Douglas matching function:

$$
\begin{equation*}
m(s, v)=M v^{\psi} s^{1-\psi} \tag{16}
\end{equation*}
$$

where $v=$ vacancies and $s=$ job seekers weighted by their search intensity

- ψ can be an important parameter for the job creation effects predicted by the model. Using U.K. data for the low-pay segment of the labor market, we estimate $\psi=0.65$

First-step calibration parameters

- Set M, θ, δ, x, the ω_{i} 's and γ_{r} to match data moments on job and worker turnover

Identification (somewhat heuristic):

- Either M or $\theta \rightarrow$ transition out of $N, \gamma_{r} \rightarrow$ whether N to R as opposed to transition N to Z
- δ, x, the ω_{i} 's \rightarrow transitions out of Z and R, with ω_{i} 's identified by the distribution of job tenure within each contract type
- No type-4 workers (virtually no R to Z transitions). Rule out type- 3 workers as $\omega_{3} \rightarrow 0$
- We obtain the sum $\gamma_{c}+\gamma_{s}$, but not γ_{c} and γ_{s} separately from each other

First-step calibration parameters

Table: Description of baseline equilibrium

		Model	Data
n	Unemployment rate	9.2	10.1
$e_{Z} /\left(e_{Z}+e_{R}\right)$	Employment share of ZHCs	6.5	7.2
$v_{Z} /\left(v_{Z}+v_{R}\right)$	Vacancy share of ZHCs	19.4	-
$e_{1, Z} / e_{1}$	Share of employed type-1 workers in ZHCs	4.8	-
$e_{1, Z} / e_{Z}$	Share of filled ZHCs employing type-1 workers	66.8	-

- Type-1 workers are key to sustain an equilibrium with ZHC jobs
- ZHCs exert a negative effect on R vacancies by making it more difficult for these vacancies to contact type-1 workers (given that search is random)

First-step calibration parameters

Figure: Model fit: Job tenure by labor contract

Second-step calibration parameters

In the second step, we calibrate $p, \bar{h}, \phi, \kappa, K$, and the stochastic distributions $H_{j}($.$) for each type j$
> $p=8.25$, assuming that the marginal productivity of low-pay workers is 10% higher than w

- No direct empirical counterpart for ϕ, but (ϕ, κ, K) pinned down by free-entry condition:
- Expected cost of vacancy posting (i.e. $\kappa \theta / \lambda(\theta)$) of 14% of average quarterly labor earnings (Elsby and Michaels [2013])
- Startup costs of creating a business, K, at around $£ 4,500$
- For job creation condition to hold, we find $\phi=0.16$
\Rightarrow Deviating from \tilde{h} by 5 hours \downarrow firms' weekly accounting profits $((p-w) h)$ by 10%

Second-step calibration parameters

In the second step, we calibrate $p, \bar{h}, \phi, \kappa, K$, and the stochastic distributions $H_{j}($.$) for each type j$

- $p=8.25$, assuming that the marginal productivity of low-pay workers is 10% higher than w
- No direct empirical counterpart for ϕ, but (ϕ, κ, K) pinned down by free-entry condition:
- Expected cost of vacancy posting (i.e. $\kappa \theta / \lambda(\theta)$) of 14% of average quarterly labor earnings (Elsby and Michaels [2013])
- Startup costs of creating a business, K, at around $£ 4,500$
- For job creation condition to hold, we find $\phi=0.16$ \Rightarrow Deviating from \tilde{h} by 5 hours \downarrow firms' weekly accounting profits $((p-w) h)$ by 10%
- $H_{j}($.$) 's are Beta distributions over [0,50]$, where $50=$ maximum weekly hours worked
- Choose μ_{j} and σ_{j} within regions of the parameter space that are consistent with firm types, and given the \neq between R and Z jobs documented in Section 3

Parameter values

Table: Parameter values

(a) Parameters set externally		
ρ	Discount rate of 4 percent per annum	0.0015
ψ	Elasticity of job-filling rate w.r.t. tightness	0.65
w	Minimum hourly wage in $£$ (U.K. policies)	7.50
(b) First stage calibration parameters		
M	Matching function elasticity	0.1278
θ	Labor market tightness	0.2418
δ	Job destruction probability	0.0047
x	On-the-job search efficiency	0.3524
ω_{1}	Share of type-1 workers	0.9689
γ_{r}	Probability of type-r firms upon entry	0.9498
(c) Second stage calibration parameters		
p	Productivity of hours worked	8.25
$\left(\mu_{c}, \mu_{s}, \mu_{r}\right)$	Average of weekly hours by firm type	$(18,18,28)$
$\left(\sigma_{c}, \sigma_{s}, \sigma_{r}\right)$	St. dev. of weekly hours by firm type	$(6,3,2)$
ϕ	Marginal cost of deviating from targeted hours	0.16
κ	Flow cost of vacancy posting, in $£$ per week	38.0
K	Startup cost of new businesses, in $£ 1,000$	4.38

Heterogeneous firms' types

Figure: Firms' types across (some) regions of the parameter space

Heterogeneous workers' types

Figure: Workers' types across (some) regions of the parameter space

Heterogeneous workers' types

- Type-1 workers are individuals who do not value short hours much: at $a=22$ hours would give up $£ 0.5$ to $£ 4.6$ of consumption (per week) to avoid working one hour beyond a
- Type-2 workers have a higher valuation of short hours. They would be willing to give up at least $£ 10.9$, or 1.45 times the minimum wage, to avoid working one hour beyond a

Table: Parameter values for welfare assessment

η	Relative risk aversion coefficient	2.0
b	Unemployment benefits in $£$ per week (U.K. policies)	148.5
τ	Taper rate (U.K. policies)	0.63
a	Available hours per week	22.0

[^0]: ${ }^{1}$ Universidad Carlos III de Madrid, CEPR and IZA
 ${ }^{2}$ Université du Québec à Montréal, CIRANO and IZA
 ${ }^{3}$ University of Bristol and IZA

