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Regression-discontinuity (RD) studies

The RD design is a quasi-experimental design where the treatment status changes
discontinuously according to some underlying variable (forcing variable) crossing a threshold

Examples

X Education: Treatment (e.g., scholarship offer, training course) assigned based on some
test/qualifying score

X Means-tested programs: Treatment (e.g., unemployment benefits, social benefits,
university grants) assigned based on a wealth indicator (e.g., income)

X Medicine and Public Health: Treatment (e.g., drug prescription, diet) assigned based on a
biomarker (e.g., cholesterol, BMI)

X Environmental studies (air quality regulations): Treatment (e.g., power plant closure, traffic
restrictions) assigned based on pollutant levels (e.g., PM2.5)

Basic idea Units with values of the forcing variables in a neighborhood of the threshold but
different levels should be as good as randomly assigned (Thistlethwaite and Campbell, 1960)

Internal/external validity (Angrist and Rokkanen, 2015)



Motivating Study: The Brazil’s Bolsa Familía (BF) Program

Bolsa Família is a social welfare program of the Brazilian government, that started in
2003 and ended ded at the end of 2021

X It has been replaced by a new welfare program, called AuxÃlio Brasil

Objective: Reducing short-term poverty by direct cash transfers and fighting
long-term poverty by increasing human capital among poor Brazilian people through
conditional cash transfers

Causal question: Assessing causal effects of the Bolsa Familía program on health
outcomes (here leprosy)

We formally describe the Bolsa Familía as a local randomized experiment

Causal effects can be identified and estimated on a subpopulation where a local
overlap assumption, a local SUTVA and a local ignorability assumption hold.

Potential advantages of this framework over local regression methods based on
continuity assumptions concern the definition of the causal estimands, the design and
the analysis of the study, and the interpretation and generalizability of the results



Main Contributions

Critical issue of local randomization approach is how to choose subpopulations

We propose to use a Bayesian model-based finite mixture approach to clustering to
classify observations into subpopulations where the RD assumptions hold and do not
hold on the basis of the observed data

This approach has important advantages

X It allows to account for the uncertainty in the subpopulation membership, which is
typically neglected (also in bandwidth selection);

X It does not impose any constraint on the shape of the subpopulation;

X It is scalable to high-dimensional settings;

X It allows to account for rare outcomes;

X It is robust to a certain degree of manipulation/selection of the running variable.



Main Contributions, cont’ d

The approach can be used as a design stage before the application of any type of
analysis for any causal estimand

X We can multiply impute subpopulation membership creating a set of complete
membership datasets

X Then for each complete membership dataset, we can estimate causal effects

X Finally we can combine the complete-data inferences on the local causal effects
to form one inference that properly reflects uncertainty on the subpopulation
membership

This will make any estimator more robust to deviations from the underlying
assumptions as well as incorporate uncertainty e.g. of the bandwidth selection



The BF study: BF Benefit Allocation Rule
BF benefit allocation rule: A family must (1) meet eligibility criteria; and (2) apply for the Bolsa
Família benefits
X Data on families who applied for some welfare programs and registered in Cadastro Único

in 2007-08 for the first time
Eligibility: Per capita household income (forcing variable) falling below or above a pre-fixed
threshold (120 Brazil Real ' 36.5 USD per month)
Here we focus on intention-to-treat effects of eligibility statuses, i.e, a sharp RD design with
respect to income eligibility

Monthly per capita household income (BRL)
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RD Designs as Local Randomized Experiments

Traditionally, RD designs are viewed as quasi-experimental designs with a
non-probabilistic assignment mechanism

RD designs as local randomized experiments (LREs) in a neighbourhood of the
threshold (e.g., Cattaneo et al., 2015; Li, Mattei and Mealli, 2015; Sales and Hansen, 2020;
Mattei and Mealli, 2016)

Probabilistic formulation of the assignment mechanism underlying RD designs within
the potential outcome approach (Li, Mattei and Mealli, 2015; Mattei and Mealli, 2016)

X The forcing variable is viewed as a random variable

X Local randomization: there exists at least a subpopulation, Us0 , around the
threshold where the forcing variable, and therefore the treatment/eligibility status,
can be seen as randomly assigned

X Other assignment mechanisms are considered in Branson and Mealli (2020)

X Focus on finite population causal effects for units in Us0

X Us0 is chosen in such a way so that LR assumptions hold



Framing RDDs as local randomized experiments
(Rubin, 1974, 1978)

i = Unit/Family (i = 1, . . . ,N)

Xi = Vector of covariates
Zi = BF benefit eligibility status:

Zi = z ∈ {0,1} = {Ineligible,Eligible}

Si = Per capita household income: The forcing variable

Zi = 1{Si ≤ s0} s0 = 120 Brazil Real (threshold)

Assume that there is no interference

Yi(s) = Potential outcomes for the indicator of the presence of at least a leprosy case
(after 2009) in family i under a monthly per capita income equal to s ∈ R

Yi(s) =
{

1 If there is at least a leprosy case in family i given s
0 If there is no leprosy case in family i given s



Local Overlap, Local RD-SUTVA and Local Estimands

Assumption 1. Local Overlap. There exists a subset of units, Us0 , such that for each
i ∈ Us0 , Pr(Si ≤ s0) > ε and Pr(Si > s0) > ε for some sufficiently large ε > 0

Assumption 2. Local RD-SUTVA. For each i ∈ Us0 , consider two eligibility statuses
z

′
= 1(Si = s′ ≤ s0) and z

′′
= 1(Si = s

′′ ≤ s0), with possibly s
′ 6= s

′′
. If z

′
= z

′′
then

Yi(s
′
) = Yi(s

′′
)

X Under Local RD-SUTVA for each i ∈ Us0 , there are only two potential outcomes
for the indicator of the presence of at least a leprosy case: Yi(0) and Yi(1)

Causal Estimand. Local relative risk

RRUs0
≡ Pr {Yi(1) = 1; i ∈ Us0}

Pr {Yi(0) = 1; i ∈ Us0}



Probabilistic Treatment Assignment Mechanism for RD Designs

Assumption 3. Local Randomization (LR). For each i ∈ Us0 ,

Pr (Si | Yi(0),Yi(1),Xi) = Pr (Si)

X Under local randomization, for each i ∈ Us0 ,

Pr(Zi = 1) = Pr(Si ≤ s0)

Assumption 3’. Local Unconfoundedness (LU).
For each i ∈ Us0 ,

Pr (Si | Yi(0),Yi(1),Xi) = Pr (Si | Xi)

X Under local unconfoundedness, for each i ∈ Us0 ,

Pr(Zi = 1 | Xi) = Pr(Si ≤ s0 | Xi)



Potential Advantages of RDDs as LREs

When assumptions are judged plausible, there are several advantages of RD designs as
LREs:

Sub-population treatment effects: Treatment effects are for subpopulation members
rather than local average treatment effects for those at the cutoff only; results are
more easily generalizable

Focus on different estimands (e.g., RR for rare events)

No modelling assumptions: Modeling assumptions on the relationship between the
running variable and the outcome can be avoided, causal effect not necessarily
additive

Ignorable treatment assignment: The treatment assignment mechanism is allowed to
be random rather than deterministic as in typical RD analyses; finite population
inference can be used

Discrete running variables can be easily accounted for

Visualize covariate balancing (e.g., appealing for doctors)



Selection of Subpopulations Us0: State of the Art
Local randomization based methods; falsification tests (Cattaneo et al., 2015; Li, Mattei, Mealli,
2015; Licari and Mattei, 2020)

X Assume LR and select subpopulations where pre-treatment variables are well balanced in
the two subsamples defined by the assignment

X Randomization or model-based Bayesian tests, possibly with adjustment for multiplicities

X These methods usually rely on assumptions on the shape of the subpopulations and are
not immediately applicable when LU rather than LR is assumed

Local unconfoundedness based methods

X Assume LU and construct a subpopulation conditioning on observables and the
discontinuity using penalized matching methods (Keele et al., 2015)

X Assume LU and other designs using covariates (Branson and Mealli, 2020)

LR and LU based methods do not scale up well, assume a shape, and do not directly account
for the uncertainty about a selected subpopulation

Recently, Ricciardi et al. (2021) propose to include in the RDD analysis units who belong to
balanced and homogeneous clusters defined using a Dirichlet process mixture model



Selection of Subpopulations Us0: Our Proposal
The problem of selecting suitable subpopulations, Us0 , as a clustering problem

Sample units in a RD study come from three subpopulations:

U−s0 = {i /∈ Us0 : Si < s0} Us0 = {i : Si ∈ Is0} U+
s0 = {i /∈ Us0 : Si > s0}

where Is0 is a neighborhood around s0

Crucial issue: We have some information on each subpopulation but we do not know which
subpopulation each unit belongs to

What do we know about the three subpopulations?

X Each unit belongs to only one of the 3 subpopulations

X For units who belong to Us0 the RD assumptions hold

X For units who belong to either U−s0
or U+

s0 some RD assumptions may fail to hold

Idea: Use clustering methods to ascertain, on the basis of the information we have, which
subpopulation each unit belongs to



Selection of Subpopulations Us0: A Finite Mixture Model Approach

A finite mixture model-based approach (e.g., McLachlan and Basford, 1988;
Titterington, Smith, and Markov, 1985)

p (Si , {Yi(s)}s∈R+ | Xi ;θ) =

πi(U−s0
)p(Si | Xi ; i ∈ U−s0

;η−)p({Yi(s)}s∈R+
| Si ,Xi ; i ∈ U−s0

;γ−) +

πi(Us0)p(Si | Xi , i ∈ Us0 ;η)p(Yi(0),Yi(1) | Xi , i ∈ Us0 ;γ) +

πi(U+
s0
)p(Si | Xi , i ∈ U+

s0
;η+)p({Yi(s)}s∈R+

| Si ,Xi , i ∈ U+
s0
;γ+)

where

πi(U−s0 ) = Pr(i ∈ U−s0 | Xi ;α) ≥ 0 πi(U+
s0
) = Pr(i ∈ U+

s0
| Xi ;α) ≥ 0

πi(Us0) = Pr(i ∈ Us0 | Xi ;α) ≥ 0

are the mixing probabilities, with πi(U−s0 ) + πi(Us0) + πi(U+
s0
) = 1, (η−,γ−), (η,γ) and

(η+,γ+) are parameter vectors defining each mixture component, and
θ = (α,η−,γ−,η,γ,η+,γ+) is the complete set of parameters specifying the mixture

Units with close values of S may belong to different subpopulations



The BF Study: Summary Statistics

Population of N = 152 602 families who registered in Cadastro Único in 2007-08 for
the first time

Eligible (S ≤ 120) = 138 220 Ineligible (S > 120) = 14 382

Forcing variable: Per capita household income (S)

Statistics All S ≤ 120 S > 120
Min 0.0 0.0 120.2
Median 46.7 40.0 190.0
Max 500.0 120.0 500.0

Outcome variable: Leprosy rate in 2009 (Y ) ‰

All S ≤ 120 S > 120
2.78 2.80 2.57



The BF Study: Background Characteristics

Household structure
Covariate Eligible Ineligible
Mean age 21.89 45.52
Min age 10.32 36.55
Household size 3.02 2.11
No children 1.38 0.46
No adults 1.60 1.05
Children not at school 0.04 0.01
Presence of weak people 0.23 0.12

Household head’s characteristics
Covariate Eligible Ineligible
Male 0.87 0.76
Race: Hispanic 0.88 0.83
Primary/Middle Education 0.47 0.61
Occupation: Unemployed 0.49 0.25

Living and economic conditions
Covariate Eligible Ineligible
Rural (Urban) 0.40 0.23
Apartment (Other) 0.95 0.97
Home ownership: Homeowner 0.58 0.75
No rooms pc 1.57 2.92
House of bricks/row dirt 0.91 0.96
Water treatment 0.78 0.86
Water supply 0.63 0.79
Lighting 0.79 0.91
Bathroom fixture 0.62 0.49
Waste treatment 0.63 0.80
Zero PC expenditure 0.22 0.17
PC expenditure 2.89 4.06
Other programs 0.06 0.10



BF Study: Mixture-Model Specification
Model for the mixing probabilities: conditional probit

πi (U−s0
) = Pr(G∗i (−) ≤ 0) πi (U+

s0 ) = Pr(G∗i (−) > 0 and G∗i (+) ≤ 0)

πi (Us0 ) = 1− πi (U−s0
)− πi (U+

s0 )

where G∗i (−) = α−0 + X′iα
−
X + ε−i and G∗i (+) = α+

0 + X′iα
+
X + ε+i , with ε−i ∼ N(0, 1) and

ε+i ∼ N(0, 1), independently

Models for the forcing variable (per capita household income): Log-normal models

log(Si ) | Xi , i ∈ U−s0 ∼ N
(
β−0 + X′iβ

−
X ;σ2

−

)
log(Si ) | Xi , i ∈ U+

s0 ∼ N
(
β+

0 + X′iβ
+
X ;σ2

+

)
log(Si ) | Xi , i ∈ Us0 ∼ N

(
β0 + X′iβX ;σ2

)
Models for the outcome (probit link):

Pr(Yi (s) = 1 | Xi , i ∈ U−s0 ) = Φ
(
γ−0 + log(s)γ−1 + X′iγ

−
X

)
Pr(Yi (s) = 1 | Xi , i ∈ U+

s0 ) = Φ
(
γ+

0 + log(s)γ+
1 + X′iγ

+
X

)
Pr(Yi (z) = 1|Xi , i ∈ Us0 ) = Φ

(
γ0,z + X′iγX

)
z = 0, 1



BF Study: Bayesian Inference

We assume that parameters are a priori independent

We use weakly informative priors

X Multivariate normal priors for the coefficients (mean vector = 0; covariance-variance
matrix = σ2 · I = 100 · I)

X Scaled inverse-χ2 priors for the variances (3 df; scale parameter = 1/3)

Finite sample estimands

MCMC algorithm: For ` = 1 . . . , L

X Impute missing subpopulation membership for each unit using a data augmentation step
X Update the model parameters using Gibbs sampling
X For each unit i in Us0 , draw the missing potential outcome, Y mis

i = ZiYi (0) + (1− Zi )Yi (1)
from its posterior predictive distribution and calculate

RR`
Us0

=

∑
i:i∈Us0

[ZiY obs
i + (1− Zi )Y `

i (1)]
/

N`
Us0∑

i:i∈Us0
[(1− Zi )Y obs

i + ZiY `
i (0)]

/
N`
Us0

where Y obs
i = ZiYi (1) + (1− Zi )Yi (0) and N`

Us0
is the number of units in Us0



Posterior distributions of the mixing probabilities

Estimand Median 2.5% 97.5%

π(U−s0 ) 0.433 0.430 0.435

π(U+
s0
) 0.074 0.073 0.075

π(Us0) 0.493 0.491 0.496

NUs0
75 273 74 893 75 653∑

i∈Us0
(1− Zi) 3 076 2 989 3 166∑

i∈Us0
Zi 72 198 71 844 72 542

No assumption on the shape of the subpopulations; units with similar realized values of S
may belong to different subpopulations



Posterior Distribution of RRUs0
(Finite Sample Causal Effect)

 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Median 2.5% 97.5%
0.769 0.455 2.933

Width of the 95% PCI = 2.478

Pr(RRUs0
< 1) = 0.574

Nice interpretation of our approach: the causal effect estimate is an average over the
distribution of the proportion of units in Us0 - cfr: worst-case bounds w.r.t. proportion of
contamination in Bonvini, Kennedy (2020)



Summary statistics of the posterior distributions of RRUs0
for specific MSE-optimal subpopulations

Subpopulation: Us0 Median 2.5% 97.5% (width) Pr
(

RRUs0
< 1

)
(NUs0

=
∑

i∈Us0
(1− Zi ) +

∑
i∈Us0

Zi )

Uniform kernel (p = 1)

[70.2; 176.9] = [120− 49.9; 120 + 56.9] 1.238 0.762 2.125 (1.363) 0.189
(26 893 = 6 077 + 20 816)

Triangular kernel (p = 1)

[39.0; 172.0] = [120− 81.0; 120 + 52.0] 1.256 0.751 2.250 (1.499) 0.199
(83 295 = 5 128 + 78 167)

Uniform kernel (p = 2)

[0.0; 193.5] = [120− 120.0; 120 + 73.5] 1.420 0.892 2.356 (1.464) 0.067
(145 612 = 7 392 + 138 220)

Triangular kernel (p = 2)

[0.0; 209.7] = [120− 120.0; 120 + 89.7] 1.267 0.822 2.035 (1.213) 0.150
(146 173 = 7 953 + 138 220)



Concluding Remarks

Features of the model-based Bayesian mixture approach to the selection of subpopulations,
Us0 , in RD designs

X It explicitly accounts for the uncertainty about Us0 membership
X It imposes no constraint on the shape of Us0

X It provides inference on causal effects in a unique Bayesian framework
X It works with different assignment mechanisms
X It can be easily extended to fuzzy RDDs

Alternative approaches could use our mixture approach just as a tool to select suitable
subpopulations

X Multiply impute sub-population membership creating a set of complete membership
datasets

X For each complete membership dataset, use units belonging to Us0 to draw inference on
the causal effects of interest using a proper mode of causal inference

X Combine the complete-data inferences on the local causal effects to form one inference
that properly reflects missing Us0 -membership uncertainty (and possibly sampling
variability)

Results may form the basis to conduct a sensitivity analysis
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