On the Optimality of Transparency

Emiliano Catonini (NYU Shanghai) Sergey Stepanov (HSE)

August 24, 2022

Research question

- Classical Sender-Receiver framework:

Research question

- Classical Sender-Receiver framework:
- Sender has information about underlying state

Research question

- Classical Sender-Receiver framework:
- Sender has information about underlying state
- She can communicate something to Receiver

Research question

- Classical Sender-Receiver framework:
- Sender has information about underlying state
- She can communicate something to Receiver
- Receiver takes an action

Research question

- Classical Sender-Receiver framework:
- Sender has information about underlying state
- She can communicate something to Receiver
- Receiver takes an action
- S and R's payoffs depend on state and action

Research question

- Classical Sender-Receiver framework:
- Sender has information about underlying state
- She can communicate something to Receiver
- Receiver takes an action
- S and R's payoffs depend on state and action
- Question: When is full disclosure ex-ante optimal for S ?

Literature (optimal info design with a "large" state space)

- Dworczak and Kolotilin (2019), Dworczak and Martini (2019), Gentzkow and Kamenica (2016), Kolotilin (2018), Kolotilin et al. (2021), Arieli et al. (2020)
- Indirect utility of the sender depends only on the expected state (perhaps on other moments of posterior distribution)
- Dworczak and Martini (2019), Kolotilin (2018), Kolotilin et al. (2020)
- Optimality of full disclosure, conditions in terms of sender's indirect utility
- Mensch (2021)
- Conditions for full disclosure jointly on receiver's utility function and a transformation of sender's utility function that takes into account the incentive compatibility constraint of the receiver ("virtual utility")
- Our paper:
- Very general assumptions on utilities
- Conditions directly on "primitives of the model", i.e., shapes of the parties' utility functions, easy to check

Model

- State of nature: $\omega \in \mathbb{R}$, common prior distribution

Model

- State of nature: $\omega \in \mathbb{R}$, common prior distribution
- Sender learns ω and sends message $m \in \mathbb{R}$ to Receiver

Model

- State of nature: $\omega \in \mathbb{R}$, common prior distribution
- Sender learns ω and sends message $m \in \mathbb{R}$ to Receiver
- After hearing m, R takes action $a \in \mathbb{R}$

Model

- State of nature: $\omega \in \mathbb{R}$, common prior distribution
- Sender learns ω and sends message $m \in \mathbb{R}$ to Receiver
- After hearing m, R takes action $a \in \mathbb{R}$
- Payoffs:

Model

- State of nature: $\omega \in \mathbb{R}$, common prior distribution
- Sender learns ω and sends message $m \in \mathbb{R}$ to Receiver
- After hearing m, R takes action $a \in \mathbb{R}$
- Payoffs:
- Sender: $V(\omega, a)$

Model

- State of nature: $\omega \in \mathbb{R}$, common prior distribution
- Sender learns ω and sends message $m \in \mathbb{R}$ to Receiver
- After hearing m, R takes action $a \in \mathbb{R}$
- Payoffs:
- Sender: $V(\omega, a)$
- Receiver: $U(\omega, a)$

Model

- State of nature: $\omega \in \mathbb{R}$, common prior distribution
- Sender learns ω and sends message $m \in \mathbb{R}$ to Receiver
- After hearing m, R takes action $a \in \mathbb{R}$
- Payoffs:
- Sender: $V(\omega, a)$
- Receiver: $U(\omega, a)$
- Before learning ω, S commits to a disclosure rule: $\forall \omega, \mu(m \mid \omega)$

Model

- State of nature: $\omega \in \mathbb{R}$, common prior distribution
- Sender learns ω and sends message $m \in \mathbb{R}$ to Receiver
- After hearing m, R takes action $a \in \mathbb{R}$
- Payoffs:
- Sender: $V(\omega, a)$
- Receiver: $U(\omega, a)$
- Before learning ω, S commits to a disclosure rule: $\forall \omega, \mu(m \mid \omega)$
- Disclosure rule is common knowledge

Model

- State of nature: $\omega \in \mathbb{R}$, common prior distribution
- Sender learns ω and sends message $m \in \mathbb{R}$ to Receiver
- After hearing m, R takes action $a \in \mathbb{R}$
- Payoffs:
- Sender: $V(\omega, a)$
- Receiver: $U(\omega, a)$
- Before learning ω, S commits to a disclosure rule: $\forall \omega, \mu(m \mid \omega)$
- Disclosure rule is common knowledge
- Assumption: $U(\omega, a)$ is twice continuously differentiable and strictly concave in a.

Receiver's problem

- Message m generates posterior beliefs $\pi(\omega \mid m)$

$$
\max _{a} E(U(\omega, a) \mid m)
$$

- Assume, for each $\pi(\omega \mid m)$, FOC has a unique finite solution $a^{*}(m)$:

$$
\frac{d E(U(\omega, a) \mid m)}{d a}=0 \Rightarrow a^{*}(m)
$$

What we are after

- Suppose message m generates $\pi(\omega \mid m)$ with a non-singleton support
- We want to obtain a condition under which, for any such m, revealing the states in the support instead of sending m improves S^{\prime} ex-ante welfare
- Kolotilin et al. (2022): there exists an optimal disclosure rule in which all messages have an at most binary support
\Rightarrow We can restrict ourselves to messages with support $\left\{\omega_{1}, \omega_{2}\right\}$

Main idea

Compare probability-weighted marginal changes in S' utility pairwise as action moves from a^{*} to a_{1}^{*} and to a_{2}^{*} in states ω_{1} and ω_{2} respectively

Deriving the condition

- Let $\pi_{1}:=\operatorname{Pr}\left(\omega_{1} \mid m\right), \pi_{2}:=\operatorname{Pr}\left(\omega_{2} \mid m\right)$
- Disclosing states is better iff

$$
\begin{aligned}
& \pi_{1} V\left(\omega_{1}, a_{1}^{*}\right)+\pi_{2} V\left(\omega_{2}, a_{2}^{*}\right)>\pi_{1} V\left(\omega_{1}, a^{*}\right)+\pi_{2} V\left(\omega_{2}, a^{*}\right) \\
& \Leftrightarrow \pi_{2}\left[V\left(\omega_{2}, a_{2}^{*}\right)-V\left(\omega_{2}, a^{*}\right)\right]>\pi_{1}\left[V\left(\omega_{1}, a^{*}\right)-V\left(\omega_{1}, a_{1}^{*}\right)\right] \\
& \Leftrightarrow \int_{a^{*}}^{a_{2}^{*}} \pi_{2} V_{a}\left(\omega_{2}, a\right) d a>\int_{a_{1}^{*}}^{a^{*}} \pi_{1} V_{a}\left(\omega_{1}, a\right) d a
\end{aligned}
$$

Deriving the condition

$$
\begin{aligned}
& \int_{a^{*}}^{a_{2}^{*}} \pi_{2} V_{a}\left(\omega_{2}, a\right) d a>\int_{a_{1}^{*}}^{a^{*}} \pi_{1} V_{a}\left(\omega_{1}, a\right) d a \\
& x_{2}:=\frac{U_{a}\left(\omega_{2}, a\right)}{U_{a}\left(\omega_{2}, a^{*}\right)}, x_{1}:=1-\frac{U_{a}\left(\omega_{1}, a\right)}{U_{a}\left(\omega_{1}, a^{*}\right)}
\end{aligned}
$$

$\pi_{1} U_{a}\left(\omega_{1}, a^{*}\right)+\pi_{2} U_{a}\left(\omega_{2}, a^{*}\right)=0$ (FOC under "pooling")

$$
\Rightarrow \int_{0}^{1} \frac{V_{a}\left(\omega_{2}, a_{2}(x)\right)}{-U_{a a}\left(\omega_{2}, a_{2}(x)\right)} d x>\int_{0}^{1} \frac{V_{a}\left(\omega_{1}, a_{1}(x)\right)}{-U_{a a}\left(\omega_{1}, a_{1}(x)\right)} d x
$$

As x runs from 0 to $1, a_{2}(x)$ runs from a_{2}^{*} to $a^{*}, a_{1}(x)$ - from a^{*} to a_{1}^{*} Sufficient condition:

$$
\frac{V_{a}\left(\omega_{2}, a_{2}(x)\right)}{-U_{a a}\left(\omega_{2}, a_{2}(x)\right)}>\frac{V_{a}\left(\omega_{1}, a_{1}(x)\right)}{-U_{a a}\left(\omega_{1}, a_{1}(x)\right)}, \text { for each } x \in[0,1]
$$

Deriving the condition

$$
\frac{V_{a}\left(\omega_{2}, a_{2}(x)\right)}{-U_{\text {аа }}\left(\omega_{2}, a_{2}(x)\right)}>\frac{V_{a}\left(\omega_{1}, a_{1}(x)\right)}{-U_{\text {аа }}\left(\omega_{1}, a_{1}(x)\right)}, \text { for each } x \in[0,1]
$$

Sufficient condition for full disclosure

For all $a_{1}, a_{2}, \omega_{1}, \omega_{2}$,

$$
\left\{\begin{array}{c}
a_{2}>a_{1} \tag{1}\\
U_{a}\left(\omega_{2}, a_{2}\right)>U_{a}\left(\omega_{1}, a_{1}\right)
\end{array} \Rightarrow \frac{V_{a}\left(\omega_{2}, a_{2}\right)}{-U_{a a}\left(\omega_{2}, a_{2}\right)}>\frac{V_{a}\left(\omega_{1}, a_{1}\right)}{-U_{a a}\left(\omega_{1}, a_{1}\right)} .\right.
$$

Theorem

If (1) holds, full disclosure maximizes Sender's expected utility.
Alternative formulation:

$$
-\frac{\partial V\left(\omega_{2}, a_{2}\right)}{\partial U_{a}\left(\omega_{2}, a_{2}\right)}>-\frac{\partial V\left(\omega_{1}, a_{1}\right)}{\partial U_{a}\left(\omega_{1}, a_{1}\right)}
$$

Sufficient condition for full disclosure

$$
-\frac{\partial V\left(\omega_{2}, a_{2}\right)}{\partial U_{a}\left(\omega_{2}, a_{2}\right)}>-\frac{\partial V\left(\omega_{1}, a_{1}\right)}{\partial U_{a}\left(\omega_{1}, a_{1}\right)}
$$

Sufficient condition for suboptimality of full disclosure

Fix ω_{1}, ω_{2}. Consider condition
For all a_{1}, a_{2},

$$
\left\{\begin{array}{c}
a_{2}>a_{1} \tag{2}\\
U_{a}\left(\omega_{2}, a_{2}\right)>U_{a}\left(\omega_{1}, a_{1}\right)
\end{array} \Rightarrow \frac{V_{a}\left(\omega_{2}, a_{2}\right)}{-U_{a a}\left(\omega_{2}, a_{2}\right)}<\frac{V_{a}\left(\omega_{1}, a_{1}\right)}{-U_{a a}\left(\omega_{1}, a_{1}\right)} .\right.
$$

Theorem

If there exist ω_{1}, ω_{2} such that (2) holds, full disclosure is suboptimal.

Some well known cases. "Simple case"

$$
\begin{aligned}
U(\omega, a) & =-\frac{1}{2}(a-\omega)^{2}, V(\omega, a)=V(a) \\
U_{a} & =\omega-a, U_{a a}=0
\end{aligned}
$$

- The condition becomes

$$
\begin{gathered}
\left\{\begin{array}{c}
a_{2}>a_{1} \\
\omega_{2}+\left(a_{1}-a_{2}\right)>\omega_{1}
\end{array} \Rightarrow V^{\prime}\left(a_{2}\right)>V^{\prime}\left(a_{1}\right)\right. \\
\text { or } \\
a_{2}>a_{1} \Rightarrow V^{\prime}\left(a_{2}\right)>V^{\prime}\left(a_{1}\right)
\end{gathered}
$$

- Coincides with the necessary and sufficient condition in the "simple case" (Kolotilin et al. (2022))

Some well known cases. "Simple receiver case"

$$
U_{a}(\omega, a)=-\frac{1}{2}(a-\omega)^{2}, \quad V(\omega, a)
$$

- The condition becomes

$$
\left\{\begin{array}{c}
a_{2}>a_{1} \\
\omega_{2}+\left(a_{1}-a_{2}\right)>\omega_{1}
\end{array} \Rightarrow V_{a}\left(\omega_{2}, a_{2}\right)>V_{a}\left(\omega_{1}, a_{1}\right)\right.
$$

- Kolotilin et al. (2022)'s sufficient condition in the "simple receiver case":

$$
\left\{\begin{array}{l}
\text { For any } \omega \text { and } a_{2}>a_{1}, V_{a}\left(\omega, a_{2}\right)>V_{a}\left(\omega, a_{1}\right) \dot{\text { j }} \\
\text { For any } a \text { and } \omega_{2}>\omega_{1}, V_{a}\left(\omega_{2}, a\right)>V_{a}\left(\omega_{1}, a\right)
\end{array}\right.
$$

- Our condition is weaker, because it requires that V_{a} increases along a subset of all directions in which both a and ω weakly increase (and one of them strictly increases).

Application. Principal-Agent model

- Principal - Sender, Agent - Receiver
- A's effort $a \Rightarrow$ output $y(\omega, a)$
- A's wage $w(y)=\delta y, P$ receives $(1-\delta) y$
- $U(\omega, a)=\delta y(\omega, a)-a, \quad V(\omega, a)=(1-\delta) y(\omega, a)$

Example 1. Role of risk-aversion

- Output $y(\omega, a)=\omega \sqrt{a}$
- $U(\omega, a)=\delta y(\omega, a)-a, \quad V(\omega, a)=(1-\delta) y(\omega, a)$
- A's and P's utilites of money

$$
u(x)=\frac{x^{1-\gamma}}{1-\gamma}, \quad v(x)=\frac{x^{1-\rho}}{1-\rho}
$$

Example 1. Role of risk-aversion

$$
\begin{aligned}
& y(\omega, a)=\omega \sqrt{a}, u(x)=\frac{x^{1-\gamma}}{1-\gamma}, v(x)=\frac{x^{1-\rho}}{1-\rho} \\
& U(\omega, a)=\frac{1}{1-\gamma}(\delta \omega)^{1-\gamma} a^{\frac{1}{2}(1-\gamma)}-a \\
& V(\omega, a)=\frac{1}{1-\rho}((1-\delta) \omega)^{1-\rho} a^{\frac{1}{2}(1-\rho)} \\
& U_{a}(\omega, a)=\frac{1}{2}(\delta \omega)^{1-\gamma} a^{-\frac{1}{2}-\frac{1}{2} \gamma}-1 \\
& V_{a}(\omega, a)=\frac{1}{2}((1-\delta) \omega)^{1-\rho} a^{-\frac{1}{2}-\frac{1}{2} \rho} \\
& U_{a a}(\omega, a)=-(1+\gamma) \frac{1}{4}(\delta \omega)^{1-\gamma} a^{-\frac{3}{2}-\frac{1}{2} \gamma}
\end{aligned}
$$

Example 1. Role of risk-aversion

$$
\frac{V_{a}(\omega, a)}{-U_{a a}(\omega, a)}=\text { const } \cdot\left(U_{a}(\omega, a)+1\right)^{\frac{\gamma-\rho}{1-\gamma}} \cdot a^{\frac{1-\rho}{1-\gamma}},
$$

There exists a direction in which both a and U_{a} go up (if $\gamma<1(\gamma>1)$ just increase (decrease) ω sufficiently when $a \uparrow$)

Role of risk-aversion. Intuition

$$
\begin{aligned}
U(\omega, a) & =\frac{1}{1-\gamma}(\delta \omega)^{1-\gamma} a^{\frac{1}{2}(1-\gamma)}-a \\
V(\omega, a) & =\frac{1}{1-\rho}((1-\delta) \omega)^{1-\rho} a^{\frac{1}{2}(1-\rho)}
\end{aligned}
$$

- $\gamma<1<\rho \Rightarrow$ State and effort are complements for A but substitutes for $\mathrm{P} \Rightarrow$ disclosing states boosts/reduces effort in states where P benefits less/more from effort \Rightarrow transparency is suboptimal

Role of risk-aversion. Intuition

$$
\begin{aligned}
U(\omega, a) & =\frac{1}{1-\gamma}(\delta \omega)^{1-\gamma} a^{\frac{1}{2}(1-\gamma)}-a \\
V(\omega, a) & =\frac{1}{1-\rho}((1-\delta) \omega)^{1-\rho} a^{\frac{1}{2}(1-\rho)}
\end{aligned}
$$

- $\gamma<1<\rho \Rightarrow$ State and effort are complements for A but substitutes for $\mathrm{P} \Rightarrow$ disclosing states boosts/reduces effort in states where P benefits less/more from effort \Rightarrow transparency is suboptimal
- $\gamma<1, \rho<1 \Rightarrow$ State and effort are complements for both P and A \Rightarrow state-contingent preferences are more aligned \Rightarrow transparency gets a chance

Complementarity/substitutability. Relation to the general sufficient condition

$$
\left\{\begin{array}{c}
a_{2}>a_{1} \\
U_{a}\left(\omega_{2}, a_{2}\right)>U_{a}\left(\omega_{1}, a_{1}\right)
\end{array} \Rightarrow \frac{V_{a}\left(\omega_{2}, a_{2}\right)}{V_{a}\left(\omega_{1}, a_{1}\right)}>\frac{-U_{a a}\left(\omega_{2}, a_{2}\right)}{-U_{a a}\left(\omega_{1}, a_{1}\right)}\right.
$$

- Suppose a and ω are complements for $R \Rightarrow a_{2}>a_{1}$ and $U_{a}\left(\omega_{2}, a_{2}\right)>U_{a}\left(\omega_{1}, a_{1}\right)$ imply $\omega_{2}>\omega_{1} \Rightarrow$
- For given $V_{a}\left(\omega_{1}, a_{1}\right), V_{a}\left(\omega_{2}, a_{2}\right) / V_{a}\left(\omega_{1}, a_{1}\right)$ is higher if a and ω are complements for S rather than substitutes
- Hence, given complementarity for R, complementarity (substitutability) for S makes the condition easier (harder) to satisfy

Example 2. Risk neutrality, more general production function

$$
\begin{gathered}
U(\omega, a)=\delta y(\omega, a)-a, V(\omega, a)=(1-\delta) y(\omega, a) \\
\left\{\begin{array}{c}
a_{2}>a_{1} \\
y_{a}\left(\omega_{2}, a_{2}\right)>y_{a}\left(\omega_{1}, a_{1}\right)
\end{array} \Rightarrow \frac{y_{a}\left(\omega_{2}, a_{2}\right)}{-y_{a a}\left(\omega_{2}, a_{2}\right)}>\frac{y_{a}\left(\omega_{1}, a_{1}\right)}{-y_{a a}\left(\omega_{1}, a_{1}\right)} .\right.
\end{gathered}
$$

If ω and a are complements in the production function, the condition can be expressed as

$$
\left\{\begin{aligned}
y_{a \partial \omega} y_{a} & \geq y_{a \omega} y_{a a} \\
y_{a \mathrm{aa}} y_{a \omega} & \geq y_{a a \omega} y_{a a}
\end{aligned}\right.
$$

with at least one inequality being strict

Example 2. Risk neutrality, more general production function

$$
\left\{\begin{array}{c}
y_{a а \omega} y_{a} \geq y_{a \omega} y_{a \mathrm{a}} \\
y_{a \mathrm{aa}} y_{a \omega} \geq y_{\text {aa }} y_{a \mathrm{a}}
\end{array},\right.
$$

with at least one inequality being strict

- Suppose $y(\omega, a)=\alpha(\omega)+\beta(\omega) \varphi(a)+\xi(a)$

Example 2. Risk neutrality, more general production function

$$
\left\{\begin{array}{c}
y_{a a \omega} y_{a} \geq y_{a \omega} y_{a a} \\
y_{a a a} y_{a \omega} \geq y_{a a \omega} y_{a a}
\end{array}\right.
$$

with at least one inequality being strict

- Suppose $y(\omega, a)=\alpha(\omega)+\beta(\omega) \varphi(a)+\xi(a)$
- $\varphi(a)=k a^{s}, \xi(a)=l a^{t}$, with $k>0, l>0, s \in(0,1), t \in(0,1) \Rightarrow$ sufficient condition becomes $s \geq t$

Example 2. Risk neutrality, more general production function

$$
\left\{\begin{array}{c}
y_{a а} y_{a} \geq y_{a \omega} y_{a \mathrm{a}} \\
y_{\text {ааа }} y_{a \omega} \geq y_{\text {аа }} y_{a a}
\end{array}\right.
$$

with at least one inequality being strict

- Suppose $y(\omega, a)=\alpha(\omega)+\beta(\omega) \varphi(a)+\xi(a)$
- $\varphi(a)=k a^{s}, \xi(a)=l a^{t}$, with $k>0, I>0, s \in(0,1), t \in(0,1) \Rightarrow$ sufficient condition becomes $s \geq t$
- $\varphi(e)=s \cdot \ln a$ and $\xi(e)=t \cdot \ln a \Rightarrow$ sufficient condition is always satisfied

Conclusion

- Interpretable and easily verifiable sufficient condition for the optimality of transparency in a general setting
- Sufficient condition for suboptimality of transparency
- Further research:
- When is complete non-transparency optimal?
- Interaction between explicit compensation schemes for the agent and disclosure policy?
- Joint determination of the optimal compensation and disclosure

