Model 0000 #1 Positive analysis 0000000 #2 Normative analysis 0000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion O

Disclosure Services and Welfare Gains in Takeover Markets

Kei Kawakami Aoyama Gakuin University

August 22nd, 2022 ESEM at Bocconi University

Motivation	Model	#1 Positive analysis	#2 Normative analysis	Conclusion
●0000	0000	0000000	0000000	O
		Motivatio	n	

- M&A markets are large and economically important.
- Fees are also large.
 - 85% of deals (by values) used advisers. (Golubov et al. 2012).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Q. Effcets of fees on M&As at the aggregate level?
- Q. Should we regulate investment banks? How?

Mode 0000

Motivation

±1 Positive analysis 0000000 #2 Normative analysis

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion O

M&A markets : three features

Heterogeneous firms, each facing (at least) 3 options.
 Model: Bidder / Target / Stand-alone.

- 2. Information friction.
- Model: Costly disclosure by target firms.

3. Intermediation by large investment banks. Model: Monopoly intermediary.

±1 Positive analysis 0000000 #2 Normative analysis

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion O

Literature : 3 views of M&As

IO. Market-power motives. Industry structure.

• Kamien and Zang (1990), Loertscher and Marx (2019).

Finance. Managerial motives. Asset pricing.

• Roll (1986), Gorton et al. (2009).

Macro. Resource-based motives. Aggregate efficiency.

• Nocke and Yeaple (2007,8), David (2021), this paper.

M

Motivation

⊭1 Positive analysis 0000000 #2 Normative analysis

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion O

Matching model of M&As subject to...

- Two-dimensional heterogeneity + info friction (disclosure) + trading costs (intermediary).
- Target firms need to disclose the quality of what they sell.

Compare the following scenarios:

- 1. No disclosure (a welfare benchmark).
- 2. Minimum disclosure v.s. full disclosure.
- 3. Firms choosing between the two modes of disclosure.

Model 0000 #1 Positive analysis

#2 Normative analysis

Conclusion O

Three takeaways

#1. Fees and characteristics of matched firms.

Intuition. Fees distort matching, making targets smaller.

- #2. Full disclosure offered by a monopolist makes firms worse off than no disclosure.
- Intuition. a fee proportional to prices with a fixed fee is highly distortionary.
- #3. Monopolist's power is weakened by adding the option of minimum disclosure and a cap on a proportional fee.
- Intuition. an active coarse matching market makes demand for full disclosure more elastic to fees.

- Notivation
- Model ●000

#1 Positive analysis

#2 Normative analysis

- Firms heterogeneous in **non-tradeable** X and tradeable A.
- Full disclosure of A is possible by paying fees.
- Each firm has 3 options {Stand-alone, Target, Bidder}:

SA. Use initial skill X and project of quality A:

$$\Pi_{SA}(A,X)=AX.$$

Target. Pay fees f(A, P) to disclose A and sell it for P, and exit:

$$\Pi_{T}(A) = P(A) - f(A, P(A)).$$

Bidder. Buy a new \widetilde{A} and abandon A:

$$\Pi_{B}(X) = \max_{\widetilde{A}} \left\{ \widetilde{A}X - P\left(\widetilde{A}\right) \right\}.$$

• P(A) is determined by a market-clearing condition.

Model 0000 #1 Positive analysis 0000000 #2 Normative analysis

Conclusion O

Discussion of the model setup

Firms heterogeneous in (A, X) solve

Interpretation of X: Non-tradeable organization capital.

• Li et al. (2018) find only bidder OC matters for M&A.

Other (restrictive) features:

- f (A, P, **AX**) and fees for bidders can be studied.
- $\left< \text{Sell } A \text{ and buy } \widetilde{A} \right>$ can be studied.
- Production technology $A^{\alpha}X^{\beta}$ can be studied.
- (A, X) independent uniform. This is hard to dispense with.

Model 00●0

#1 Positive analysis

#2 Normative analysis

Conclusion O

Welfare benchmark: no disclosure

- A single price **P** must clear the market for all A (i.e., pooling).
- Selection determines the average quality $\mathbf{a} \equiv E |\widetilde{A}|$ for sale.

SA.
$$\Pi_{SA}(A, X) = AX.$$

Target. Sell A and exit: $\Pi_{\mathcal{T}}(A) = \mathbf{P}.$

Bidder. Buy a new \widetilde{A} with $E\left[\widetilde{A}|\text{for sale}\right] \equiv \mathbf{a}$ and abandon A: $\Pi_B(X) = \mathbf{a}X - \mathbf{P}.$ Model 000● #1 Positive analysis 0000000 #2 Normative analysis

Conclusion O

Benchmark: No disclosure

• Plot
$$\underbrace{AX \leq P}_{\text{Targets}}$$
 and $\underbrace{AX \leq aX - P}_{\text{Bidders}}$.

(b) Sorting in equilibirum.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Model 0000 #1 Positive analysis

#2 Normative analysis

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Conclusion O

#1 Positive analysis

N

#1 Positive analysis •000000 #2 Normative analysis

Conclusion O

Full disclosure equilibrium with fees (1) $\max_{\widetilde{A}} \left\{ \widetilde{A}X - P\left(\widetilde{A}\right) \right\} \rightarrow A$ is matched to skill $P'(A) \equiv m(A)$. (2) Supply and demand for A = a.

• Targets with A = a determine the supply density at a

$$\Pi_{SA}(a, X) \leq \Pi_{T}(a) \quad \Leftrightarrow \quad X \leq \frac{P(a) - f(a, P(a))}{a} \equiv \mathbf{S}(a).$$

• Bidders with X = m(a) determine the **demand density at** a

$$\Pi_{SA}\left(A, m\left(a\right)\right) \leq \Pi_{B}\left(m\left(a\right)\right) \quad \Leftrightarrow \quad A \leq a - \frac{P\left(a\right)}{P'\left(a\right)} \equiv \mathbf{D}\left(a\right)$$

• Market-clearing condition: for any $a \in (0, 1]$,

$$\int_{0}^{a} S(A) \, dA = \int_{0}^{m(a)} D(m^{-1}(X)) \, dX, \text{ or } \mathbf{S}(a) = \mathbf{D}(a) \, \mathbf{P}''(a) \, dX$$

Model 0000 #1 Positive analysis 000000 #2 Normative analysis

Conclusion O

Full disclosure equilibrium with fees

• Plot m(A), $\underbrace{AX \leq \Pi_T(A)}_{\text{Targets}}$, and $\underbrace{AX \leq \Pi_B(X)}_{\text{Bidders}}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Motivation 00000

Nodel 2000

#1 Positive analysis

#2 Normative analysis 0000000

Conclusion O

Empirical measures

- For a matched pair of A (target) and skill m(A) (bidder),
- 1. Relative target value $RV(A) \equiv \frac{\Pi_T(A)}{\Pi_B(m(A))}$.

2. Fee ratio
$$FR(A) \equiv \frac{f(A, P(A))}{P(A)}$$
.

3. Skill gap (bidder skill m(A) minus average target skill $\frac{S(A)}{2}$).

$$SG(A) \equiv m(A) - \frac{1}{2}S(A)$$

4. Skill premium $\frac{SG(A)}{m(A)} \in (0, 1)$ can be identified by 1 and 2:

$$\frac{SG\left(A\right)}{m\left(A\right)} = 1 - \frac{RV\left(A\right)}{2} \frac{1 - FR\left(A\right)}{RV\left(A\right) + 1 - FR\left(A\right)}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

#1 Positive analysis

#2 Normative analysis

Conclusion O

Market-clearing condition with fees

• Rearranging
$$\mathbf{S}(a) = \mathbf{D}(a) \mathbf{P}''(a)$$
,

$$\left(\frac{P'(A)}{P(A)}A - 1\right)\frac{P''(A)}{P'(A)}A = 1 - \frac{f(A, P(A))}{P(A)}$$
(1)

- With f(A, P) = 0, $P(A) = \frac{1}{2}A^2$ solves this.
 - efficient matching m(A) = P'(A) = A.

• With $f(A, P) \neq 0$, $P'(A) \neq A$ and we must solve (1).

Motivation	Model	#1 Positive analysis	#2 Normative analysis	Conclusion
00000	0000	0000●00	0000000	O

Proposition Assume
$$f(A, P) = \phi + \tau P$$
.

(a) The matching function is $m(A) = \mathbf{A}^{\sqrt{1-\tau}}$.

(b) Target firm value is
$$\Pi_T(A) = \frac{1-\tau}{1+\sqrt{1-\tau}} \left(\mathbf{A}^{1+\sqrt{1-\tau}} - \frac{\phi}{1-\tau} \right).$$

- τ is more distortionary for better deals.
- τ with $\phi > 0$ is more distortionary than without.

Motivation

#2 Normative analysis

Positive implications #2 (empirical measures)

PropositionAssume $f(A, P) = \phi + \tau P$.(c1) $RV(A) \equiv \frac{\Pi_T(A)}{\Pi_B(m(A))} = \sqrt{1 - \tau}$.(c2) $FR(A) \equiv \frac{f(A, P(A))}{P(A)}$ is decreasing in A and increasing in ϕ , τ .(c3) $SG(A) \equiv m(A) - \frac{1}{2}S(A)$ is increasing in A, ϕ , τ .(c4) $\frac{SG(A)}{m(A)}$ is decreasing in A and increasing in ϕ , τ .

Interpretations: **Deals with high disclosure cost** should have low RV(A), high FR(A), and high SG(A).

- (c1) Moeller et al. (2005): Cross-border deals have low RV(A).
- (c1) Chang (1998): **Privately held targets** have low RV(A).
- (c3) Li et al. (2018): Higher **OC gap** \rightarrow better deals.

Model 0000 #1 Positive analysis 0000000 #2 Normative analysis

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Conclusion O

#2 Normative analysis

 Motivation
 Model
 #1 Positive analysis

 00000
 0000
 0000000

#2 Normative analysis •000000

(日)、

æ

Conclusion O

Intermediary's profit as a function of fees

Model 0000 #1 Positive analysis 0000000 #2 Normative analysis 000000

Conclusion O

Monopoly choice of fees

Optimal choice of fees and sorting with (ϕ^*, τ^*) .

M	0	ti	V	а	t	0	n	
0	0	0	C)			

Model 0000 #1 Positive analysis

#2 Normative analysis

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Conclusion O

Policy proposal

Trade-off:

• The intermediary has a valuable skill, but uses distortionary fees.

Policy proposal:

- Regulator offers a free, minimum disclosure service, and let firms match randomly.
- I construct an equilibrium, where firms choose between:
 - In the upper market, pay fees for a full disclosure service, and **match assortatively**.
 - In the lower market, use a free minimum disclosure service, and **match randomly**.

Model 0000 #1 Positive analysis 0000000 #2 Normative analysis

Conclusion O

Hybrid market structure

• $\phi > 0$ necessary to make the marginal target indifferent between full disclosure and pooling with lower types.

Regulation to support a hybrid market structure

- The monopolist will set $\phi = 0$ to kill the lower market, and charges a high τ .
- $\rightarrow\,$ Need to make it choose $\phi>0$ so that the lower market is a viable competitor.
 - We show that **imposing a cap on** *τ* does this.
 - The welfare gains can be made quite close to the full disclosure case.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Μ	ot	iv	a	ti	0	n
0)C)		

Mode 0000 #1 Positive analysis 0000000 #2 Normative analysis

Conclusion O

(a) With the optimal cap.

くして 「「」 (山下) (山下) (山下) (山下)

Motivation	Model	#1 Positive analysis	#2 Normative analysis	Conclusion
00000	0000	000000	000000	0

Welfare gains relative to the no disclosure benchmark

- Full disclosure = 340%.
- Firms' gain = Welfare gain Intermediary's profit.

	Single r	market	Hybrid market		
	Welfare gain	Firms' gain	Welfare gain	Firms' gain	
No regul.	253%	96%	253%	99%	
Cap on $ au$.	252%	106%	330%	256%	

Table. The welfare gain with a monopoly intermediary

#1 Positive analysi: 0000000 #2 Normative analysis

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Concluding remark

• Tractable model of M&As, rich in its empirical implications and applications.

More works:

- Distribution and technology.
- Empirical evidence.
- Multiple intermediaries competing in disclosure design?
- Dynamics?