# Heterogeneity in the Multidimensional Child Quality-Quantity Trade-off and Its Consequences for Intergenerational Mobility

Yun XIAO (University of Amsterdam)

EEA-ESEM Congress 2022, Family

August 25, 2022

## Motivation

More than 160 countries have implemented family planning policies (de Silva and Tenreyro, 2017)

### The child quality-quantity (Q-Q) trade-off (Becker and Lewis, 1973)

- $\rightarrow$  Family planning increases the *price* of child quantity
- $\rightarrow$  Parents have fewer children but the average quality of the children improves

### Mixed empirical evidece

- Quantity  $\downarrow \rightarrow$  Quality  $\uparrow$  (Rosenzweig and Wolpin, 1980; Li et al., 2008; Rosenzweig and Zhang, 2009)
- No trade-off (Black et al., 2005; Angrist et al., 2010; Åslund and Grönqvist, 2010; Liu, 2014)
- Quantity  $\downarrow \rightarrow$  Quality  $\downarrow$  (Qian, 2009)

### Heterogeneity in the child quality-quantity trade-off

 $\rightarrow$  Would policies promoting small families amplify or reduce inequalities across generations?

# This paper

### Research questions

- How different dimensions of child quality respond a change in the price of child quantity and whether the responses differ across parents?
  - Multidimensional child quality and heterogeneity across parental occupations
  - E.g. education is a less expensive investment to teachers; health is a more valuable investment to farmers
  - A test of the Becker-Lewis's (1973) Q-Q model
- What are the consequences for labor market outcomes and intergenerational income mobility?

### Identification

- Variation in the enforcement of the One-Child Policy (OCP) in rural China since 1979
  - Second-child penalty: the "price" of an unauthorized second child (García, 2020)
  - Varying across ethnic groups and family types, provinces, and time  $\rightarrow$  a triple-difference strategy

### **Related literature**

Reconcile with existing evidence using OCP to test the Q-Q model

- Q-Q trade-off exists only for health and not for education in rural China (Liu, 2014)
- Family planning policies less effective to raise the education of farmers' children (Qian, 2009; Li and Zhang, 2017)
- Reducing family size might affect child quality negatively when a larger family is desired (Guo et al., 2021)

#### Introduction

# Related literature

Factors explaining socioeconomic inequalities in human capital investments in the children

- Credit constraints (e.g. Caucutt and Lochner, 2020)
- Parental beliefs about returns to different investments (e.g. Kaufmann, 2014; Boneva and Rauh, 2018)
- Land rights and cultural norms (La Ferrara and Milazzo, 2017; Jensen and Miller, 2017; Congdon Fors et al., 2019; Bau, 2021)

### • Parental occupations affect the expected costs and returns on investment in children's education

Intergenerational tranmission of human capital, physical capital, and income

- In China (Alesina et al., 2020; Fan et al., 2021; Jia et al., 2021; Yu et al., 2021) and in other societies (e.g. Björklund et al., 2006; Pekkarinen et al., 2009; Black and Devereux, 2011; Lefgren et al., 2012; Chetty et al., 2014; Grönqvist et al., 2017; Adermon et al., 2018)
- Family size reduction associated with upward mobility only for middle class or elite families in pre-transition Europe (Van Bavel et al., 2011)
- Family planning policies contributing to the recent increase of intergenerational income persistence in China (Fan et al., 2021)

### Outline









### Data

China Family Panel Studies (CFPS)

- Sample: 2894 firstborn children born between 1966 and 1990 in rural China
- Outcomes:
  - Family size, health, education, farmland and other assets, occupational outcomes measured in 2010
  - Lifetime income constructed from the income data in the 2010, 2012, 2014 waves (Fan et al., 2021)

### • Father's occupation at age 12 of the firstborn:

- Farmers (67%)
- Low-skill workers: physical laborer, salespersons (26%)
- High-skill workers: doctors, teachers, accountants (7%)

Enforcement of the OCP at the province level between 1979 and 2000

- Fine rates in a multiple of household annual income for unauthorized births (Ebenstein, 2010)
- "Free" second-child granted to certain groups (Scharping, 2013)

Data and context

## Fines for unauthorized births under OCP



#### Source: Ebenstein (2010).

Yun Xiao (UvA) (EEA ESEM 2022)

Data and context

## Exemptions granted to rural couples' second child



### Source: Scharping (2013).

Yun Xiao (UvA) (EEA ESEM 2022)

# Second-child penalty

Consider a couple with the first child born in year t and province p, what's the penalty of a second child in year t + s in province p?

- $Fine_{t+s,p}$ : generic fine rates in year t + s in province p
- *Permit*<sub>t+s,g,p</sub>: eligibility to a "free" second child applied to group g in year t + s in province p
  - Group g defined by gender of the firstborn and ethnicity
- The penalty for having a second child when the firstborn is aged *s* 
  - Zero if  $Permit_{t+s,g,p} = 1$
  - $Fine_{t+s,p}$  if  $Permit_{t+s,g,p} = 0$

The average penalty of a second child in the 10 years following the birth of the first child

$$Penalty_{tgp}^{(1-10)} = \frac{1}{10} \sum_{s=1}^{10} Fine_{t+s,p}(1 - Permit_{t+s,g,p})$$

ummary statistics Variation Example: gender Example: ethnicity

### Outline









# A triple-difference strategy

The second-child penalty  $Penalty_{tgp}^{(1-10)}$  varies across groups g (gender and minority status), provinces p, and cohorts t

$$y_{itgp} = \gamma$$
Penalty $_{tgp}^{(1-10)} + X_{it}eta + Z_{itp} + \lambda a_{itgp} + V_{pt} + W_{gp} + \kappa_{gt} + \epsilon_{itgp}$ 

- $y_{itgp}$  = outcome of a firstborn child *i* born in year *t* and province *p* who belongs to group *g*
- $V_{pt}$  = province-cohort fixed effects,
- $\kappa_{gt}$  = group-cohort fixed effects
- $W_{gp}$  = group-province fixed effects
- $X_{it}$  = individual controls:
- $Z_{itgp}$  = group fixed effects interacted with pre-birth OCP intensity
- $\gamma$ : reduced-form effect of the second-child penalty on the firstborn of the family
- **Common trends assumption:** inter-group differences trend similarly across provinces if there were no changes in the second-child penalty specific to one group

# Identification validity

Common trends assumption

- The second-child penalty uncorrelated with pre-determined charateristics Balancing table
- Similar trends among untreated firstborn children in older cohorts Event study
- Exposure to second-child penalty determines not only quantity but also timing of siblings TIME

No gender selection among the firstborn Summary statistics

Restrictions on internal cross-province migration: limited selection through migration

### Outline

Data and context







Results

## Total effect of the second-child penalty on the firstborn

Family size, health, education, and wealth

|                      | (1)<br>Any sibling (0/1) | (2)<br>Height (sd) | (3)<br>Secondary education (0/1) | (4)<br>Land <sup>a</sup> | (5)<br>Non-land <sup>ab</sup> |
|----------------------|--------------------------|--------------------|----------------------------------|--------------------------|-------------------------------|
| Second-child Penalty | -0.145***                | 0.199*             | 0.008                            | 0.936                    | 8.516                         |
|                      | (0.044)                  | (0.112)            | (0.051)                          | (0.871)                  | (6.444)                       |
|                      | [0.006]                  | [0.137]            | [0.534]                          | [0.270]                  | [0.231]                       |
| R <sup>2</sup>       | 0.589                    | 0.383              | 0.437                            | 0.377                    | 0.590                         |
| Mean dep var         | 0.771                    | 0.015              | 0.245                            | 4.663                    | 48.767                        |
| Observations         | 2894                     | 2807               | 2894                             | 2851                     | 2763                          |

<sup>a</sup> Household wealth per capita in 1,000 yuan

<sup>b</sup> Housing properties, savings, stock market shares, and valuables Sharpened FDR q-values in brackets (Anderson, 2008).

# Effect of the second-child penalty by father's occupation

Family size and human capital



Notes: Coefficients on Second-child Penalty and 90% confidence interval by father's occupation

 Sibling composition
 Health
 Education
 Expenditure
 Quantile regression education

 Yun XIAO (UvA)
 (EEA ESEM 2022)
 Heterogeneity in the Q-Q trade-off and intergenerational mobility

# Effect of the second-child penalty by father's occupation

Household wealth per capita



# Effect of the second-child penalty by father's occupation

Labor market outcomes



Occupational score: Treiman's Standard International Occupational Prestige Scale (1977) ranging from 1 to 100, a higher score means more power and privilege

mates 1 Intergenerational income mobility 1 Income distribution

Yun Xiao (UvA) (EEA ESEM 2022)

### Robustness checks

- Estimates with CFPS sampling weights Weighted estimates
- Only provinces without strong son preference Son preference
- Controlling for group-specific effects of provincial socioeconomic development
   Socioeconomic development
- Heterogeneity by paternal education Paternal education
- Alternative measures of Second-child Penalty Alternative measures
  - Ineligibility to second-child permits only: fine rates may reflect local fertility demand (Zhang, 2017)
  - A minimum 3-year birth-spacing requirement
  - Exploiting variation in high Second-child Penalty only: less prone to negative weights than a continuous measure in two-way fixed effects model (de Chaisemartin and D'Haultfoeuille, 2020)

### Outline









# What explains the gradient in the effect on education?

- The returns to education are higher when the father is a high-skill worker
  - Parental networks and skills complement child education
  - Parental perceptions
- The opportunity cost of education is higher for the only child in farming families
  - Land with insecure tenure allocated based on household labor supply and the ability/desire to engage in agricultural production (Brandt et al., 2002)
  - Two-child farming family: the older child goes to school and the younger child stays on the farm
  - One-child farming family: the only child stays on the farm

#### Mechanisms

### Returns to education

|                                               | (1)                | (2)         |
|-----------------------------------------------|--------------------|-------------|
|                                               | Mincerian re       | eturns      |
| Measures of human capital:                    | Years of schooling | Height (sd) |
| Dependent variable:                           | Log(incor          | ne)         |
| Panel A.                                      |                    |             |
| Human capital (Education or health)           | 0.059***           | 0.035***    |
|                                               | (0.003)            | (0.013)     |
| $R^2$                                         | 0.223              | 0.152       |
| Panel B. Heterogeneity by father's occupation |                    |             |
| Human capital                                 | 0.056***           | 0.038       |
|                                               | (0.007)            | (0.026)     |
| Low-skill × Human capital                     | 0.001              | -0.004      |
| *                                             | (0.008)            | (0.030)     |
| High-skill $	imes$ Human capital              | 0.025**            | 0.004       |
|                                               | (0.011)            | (0.054)     |
| R <sup>2</sup>                                | 0.224              | 0.152       |
| Observations                                  | 3353               | 3322        |

Heterogeneous returns by father's education

Yun Xiao (UvA) (EEA ESEM 2022)

## Opportunity cost of education

### "Use-it-or-lose-it" land rights in rural China

- Land with insecure tenure allocated based on household labor supply and the ability/desire to engage in agricultural production (Brandt et al., 2002)
- Education promotes nonfarm employment and permanent migration to cities (Zhao, 1999, 1997)

### **Pre-OCP:**

- Youngest son stays home and inherit the land from the parents (Unger, 2006)
- Higher opportunity cost of secondary education for the younger child who stays
- Older children more likely to attend secondary school Education by birth order

### **Post-OCP:**

- Higher opportunity cost of secondary education for the first and only child who stays
- The firstborn in farming families less likely to finish secondary education when family size reduces
  Quantile regression education

### Conclusion

### How OCP penalty affects the quantity and quality of children and intergenerational mobility

- The second-child penalty due to the OCP successfully reduced family size
- Depending on parental occupation, different components of child quality respond differently to the second-child penalty
- Stricter enforcement of OCP accounted for one-third of the increase in intergenerational income elasticity

### **Implications:**

- Why the effect on education varies by parental occupation
  - Different expected costs and returns to education rather than different ability to finance children's education
- What to expect under the two-child or three-child policy
  - Farmers and low-skill workers more responsive than high-skill workers
  - Relaxation of the one-child restriction not enough to increase mobility

Thank you! If you have more questions and comments, reach me at y.xiao@uva.nl.

#### Mechanisms

### Reference I

- Adermon, A., Lindahl, M., and Waldenström, D. (2018). Intergenerational wealth mobility and the role of inheritance: Evidence from multiple generations. *The Economic Journal*, 128(612):F482–F513.
- Alesina, A. F., Seror, M., Yang, D. Y., You, Y., and Zeng, W. (2020). Persistence despite revolutions. Working Paper 27053, National Bureau of Economic Research.
- Angrist, J., Lavy, V., and Schlosser, A. (2010). Multiple experiments for the causal link between the quantity and quality of children. *Journal of Labor Economics*, 28(4):773–824.
- Bau, N. (2021). Can policy change culture? government pension plans and traditional kinship practices. *American Economic Review*, 111(6):1880–1917.
- Becker, G. S. and Lewis, H. G. (1973). On the interaction between the quantity and quality of children. *Journal of Political Economy*, 81(2):S279–S288.
- Björklund, A., Lindahl, M., and Plug, E. (2006). The Origins of Intergenerational Associations: Lessons from Swedish Adoption Data\*. *The Quarterly Journal of Economics*, 121(3):999–1028.
- Black, S. E. and Devereux, P. J. (2011). Recent Developments in Intergenerational Mobility. In Ashenfelter, O. and Card, D., editors, Handbook of Labor Economics, volume 4 of Handbook of Labor Economics, chapter 16, pages 1487–1541. Elsevier.
- Black, S. E., Devereux, P. J., and Salvanes, K. G. (2005). The More the Merrier? The Effect of Family Size and Birth Order on Children's Education\*. *The Quarterly Journal of Economics*, 120(2):669–700.

### Reference II

- Boneva, T. and Rauh, C. (2018). Parental Beliefs about Returns to Educational Investments—The Later the Better? *Journal of the European Economic Association*, 16(6):1669–1711.
- Brandt, L., Huang, J., Li, G., and Rozelle, S. (2002). Land rights in rural china: Facts, fictions and issues. *The China Journal*, (47):67–97.
- Caucutt, E. M. and Lochner, L. (2020). Early and late human capital investments, borrowing constraints, and the family. *Journal of Political Economy*, 128(3):1065–1147.
- Chetty, R., Hendren, N., Kline, P., and Saez, E. (2014). Where is the land of Opportunity? The Geography of Intergenerational Mobility in the United States \*. *The Quarterly Journal of Economics*, 129(4):1553–1623.
- Congdon Fors, H., Houngbedji, K., and Lindskog, A. (2019). Land certification and schooling in rural ethiopia. *World Development*, 115:190–208.
- de Chaisemartin, C. and D'Haultfoeuille, X. (2020). Two-way fixed effects estimators with heterogeneous treatment effects. *American Economic Review*, forthcoming.
- de Silva, T. and Tenreyro, S. (2017). Population control policies and fertility convergence. *Journal of Economic Perspectives*, 31(4):205–28.
- Ebenstein, A. (2010). The "missing girls" of China and the unintended consequences of the one child policy. *Journal of Human Resources*, 45(1):87–115.
- Fan, Y., Yi, J., and Zhang, J. (2021). Rising intergenerational income persistence in china. *American Economic Journal: Economic Policy*, 13(1):202–30.

## Reference III

- García, J. L. (2020). Pricing children, curbing daughters: Fertility and the sex ratio during china's one-child policy. Working paper.
- Grönqvist, E., Öckert, B., and Vlachos, J. (2017). The intergenerational transmission of cognitive and noncognitive abilities. *Journal of Human Resources*, 52(4):887–918.
- Guo, R., Yi, J., and Zhang, J. (2021). Rationed fertility: Treatment effect heterogeneity in the child quantity-quality tradeoff. Technical report. Unpublished Manuscript.
- Jensen, R. and Miller, N. H. (2017). Keepin' 'em down on the farm: Migration and strategic investment in children's schooling. Working Paper 23122, National Bureau of Economic Research.
- Jia, R., Lan, X., and Miquel, G. P. I. (2021). Doing business in China: Parental background and government intervention determine who owns businesses. Working Paper 28547, National Bureau of Economic Research.
- Kaufmann, K. M. (2014). Understanding the income gradient in college attendance in mexico: The role of heterogeneity in expected returns. *Quantitative Economics*, 5(3):583–630.
- La Ferrara, E. and Milazzo, A. (2017). Customary norms, inheritance, and human capital: Evidence from a reform of the matrilineal system in ghana. *American Economic Journal: Applied Economics*, 9(4):166–85.
- Lefgren, L., Lindquist, M. J., and Sims, D. (2012). Rich dad, smart dad: Decomposing the intergenerational transmission of income. *Journal of Political Economy*, 120(2):268–303.
- Li, B. and Zhang, H. (2017). Does population control lead to better child quality? Evidence from China's one-child policy enforcement. *Journal of Comparative Economics*, 45(2):246 – 260.

#### Mechanisms

### Reference IV

- Li, H., Zhang, J., and Zhu, Y. (2008). The quantity-quality trade-off of children in a developing country: Identification using chinese twins. *Demography*, 45(1):223–243.
- Liu, H. (2014). The quality–quantity trade-off: Evidence from the relaxation of China's one-child policy. *Journal of Population Economics*, 27(2):565–602.
- Pekkarinen, T., Uusitalo, R., and Kerr, S. (2009). School tracking and intergenerational income mobility: Evidence from the finnish comprehensive school reform. *Journal of Public Economics*, 93(7):965–973.
- Qian, N. (2009). Quantity-quality and the one child policy:the only-child disadvantage in school enrollment in rural China. Working Paper 14973, National Bureau of Economic Research.

Åslund, O. and Grönqvist, H. (2010). Family size and child outcomes: Is there really no trade-off? Labour Economics, 17(1):130–139.

- Rosenzweig, M. R. and Wolpin, K. I. (1980). Testing the quantity-quality fertility model: The use of twins as a natural experiment. *Econometrica*, 48(1):227–240.
- Rosenzweig, M. R. and Zhang, J. (2009). Do population control policies induce more human capital investment? twins, birth weight and China's "one-child" policy. *Review of Economic Studies*, 76(3):1149–1174.
- Scharping, T. (2013). Birth Control in China 1949-2000: Population policy and demographic development. Routledge.
- Unger, J. (2006). Family customs and farmland reallocations in contemporary chinese villages. *Social Transformations in Chinese Societies*, 1:113–130.

### Reference V

- Van Bavel, J., Moreels, S., Van de Putte, B., and Matthijs, K. (2011). Family size and intergenerational social mobility during the fertility transition: Evidence of resource dilution from the city of Antwerp in nineteenth century Belgium. *Demographic Research*, S10(14):313–344.
- Yu, Y., Fan, Y., and Yi, J. (2021). One-child policy, differential fertility, and intergenerational transmission of inequality in china. Working paper.
- Zhang, J. (2017). The evolution of China's one-child policy and its effects on family outcomes. *Journal of Economic Perspectives*, 31(1):141–60.
- Zhao, Y. (1997). Labor migration and returns to rural education in china. *American Journal of Agricultural Economics*, 79(4):1278–1287.
- Zhao, Y. (1999). Labor migration and earnings differences: The case of rural china. *Economic Development and Cultural Change*, 47(4):767–782.

## Summary statistics of the firstborn

|                                    | All    | Mean<br>Boy | Girl   | Gender difference <i>p</i> -value |
|------------------------------------|--------|-------------|--------|-----------------------------------|
| Panel A. Individual charateristics |        |             |        |                                   |
| Boy (0/1)                          | 0.503  | 1.000       | 0.000  |                                   |
| Minority (0/1)                     | 0.089  | 0.087       | 0.090  |                                   |
| Age (years)                        | 31.663 | 31.749      | 31.576 | 0.601                             |
| Father's age (years)               | 57.256 | 57.368      | 57.141 | 0.565                             |
| Mother's age (years)               | 55.031 | 55.147      | 54.912 | 0.528                             |
| Mother's age at birth (years)      | 23.482 | 23.539      | 23.425 | 0.548                             |
| Father middle school (0/1)         | 0.374  | 0.367       | 0.381  | 0.497                             |
| Father high school (0/1)           | 0.119  | 0.124       | 0.114  | 0.964                             |
| Mother middle school (0/1)         | 0.192  | 0.191       | 0.192  | 0.328                             |
| Mother high school $(0/1)$         | 0.042  | 0.037       | 0.046  | 0.528                             |
| Father farmers $(0/1)$             | 0.660  | 0.666       | 0.654  | 0.609                             |
| Father low-skill occupation (0/1)  | 0.277  | 0.276       | 0.278  | 0.917                             |
| Father high-skill occupation (0/1) | 0.063  | 0.058       | 0.068  | 0.412                             |
| Panel B. Treatment variable        |        |             |        |                                   |
| Penalty                            | 0.735  | 0.982       | 0.485  |                                   |
| Observations                       | 2895   | 1310        | 1585   |                                   |

Second-child Penalty Identification validity

# Variation in the second-child penalty

Exempted groups: groups ever subject to exemptions between 1979 and 2000



Second-child Penalty

# Balancing test

Table 1: Balancing test

|              | (1)          | (2)          | (3)                | (4)                | (5)                   | (6)<br>Fathe | (7)<br>r's occupation a | (8)<br>t age 12 |
|--------------|--------------|--------------|--------------------|--------------------|-----------------------|--------------|-------------------------|-----------------|
|              | Father's age | Mother's age | Father's education | Mother's education | Mother's age at birth | Farm         | Low-skill               | High-skill      |
| Penalty      | 0.415        | 0.230        | -0.034             | 0.012              | 0.117                 | -0.043       | 0.068                   | -0.025          |
|              | (0.495)      | (0.453)      | (0.041)            | (0.032)            | (0.384)               | (0.042)      | (0.046)                 | (0.029)         |
| $R^2$        | 0.753        | 0.785        | 0.250              | 0.252              | 0.267                 | 0.328        | 0.335                   | 0.214           |
| Mean dep var | 58.306       | 55.950       | 0.117              | 0.038              | 23.385                | 0.677        | 0.257                   | 0.066           |
| Observations | 2856         | 2823         | 2862               | 2834               | 2794                  | 2894         | 2894                    | 2894            |

# Support for common trends assumption

How much **more likely the parents would have a second child** when they face a sudden decrease in the second-child penalty at age *a* instead of age 13 of the first child?



# Double difference Event study

- First difference: group × province
- Second difference: cohort



# Histogram of Second-child Penalty



Second-child Penalty

## Example: gender of the firstborn

|                              | •             |             | -        | •     |          |       |
|------------------------------|---------------|-------------|----------|-------|----------|-------|
| Panel A.                     |               |             |          |       |          |       |
| Province                     | Liaoning      | Hubei       | Liaoning | Hubei | Liaoning | Hubei |
| Year firstborn girl eligible | 1985          | 1991        | 1985     | 1991  | 1985     | 1991  |
| Birth year                   | 1971          | 1971        | 1979     | 1979  | 1990     | 1990  |
| Fine age 1                   | 0             | 0           | 1.21     | 1.21  | 1.21     | 2.83  |
| Fine age 2                   | 0             | 0           | 1.21     | 1.21  | 5        | 2.83  |
| Fine age 3                   | 0             | 0           | 1.21     | 1.21  | 5        | 2.83  |
| Fine age 4                   | 0             | 0           | 1.21     | 1.21  | 5        | 2.83  |
| Fine age 5                   | 0             | 0           | 1.21     | 1.21  | 5        | 2.83  |
| Fine age 6                   | 0             | 0           | 1.21     | 1.21  | 5        | 2.83  |
| Fine age 7                   | 0             | 0           | 1.21     | 1.21  | 5        | 2.83  |
| Fine age 8                   | 1.21          | 1.21        | 1.21     | 0.94  | 5        | 2.83  |
| Fine age 9                   | 1.21          | 1.21        | 1.21     | 0.94  | 5        | 2.83  |
| Fine age 10                  | 1.21          | 1.21        | 1.21     | 0.94  | 5        | 2.83  |
|                              |               |             |          |       |          |       |
| Panel B. Second-child Pena   | ılty by gende | er of the f | irstborn |       |          |       |
| Girl                         | 0.36          | 0.36        | 0.61     | 1.13  | 0.00     | 0.00  |
| Boy                          | 0.36          | 0.36        | 1.21     | 1.13  | 4.62     | 2.83  |

Table 2: Examples of constructing the second-child penalty



## Example: ethnicity

|                        | •             | 0           |                |       |          |       |
|------------------------|---------------|-------------|----------------|-------|----------|-------|
| Panel A.               |               |             |                |       |          |       |
| Province               | Liaoning      | Hubei       | Liaoning       | Hubei | Liaoning | Hubei |
| Year minority eligible | 1988          | 2001        | 1988           | 2001  | 1988     | 2001  |
| Birth year             | 1971          | 1971        | 1979           | 1979  | 1990     | 1990  |
| Fine age 1             | 0             | 0           | 1.21           | 1.21  | 1.21     | 2.83  |
| Fine age 2             | 0             | 0           | 1.21           | 1.21  | 5        | 2.83  |
| Fine age 3             | 0             | 0           | 1.21           | 1.21  | 5        | 2.83  |
| Fine age 4             | 0             | 0           | 1.21           | 1.21  | 5        | 2.83  |
| Fine age 5             | 0             | 0           | 1.21           | 1.21  | 5        | 2.83  |
| Fine age 6             | 0             | 0           | 1.21           | 1.21  | 5        | 2.83  |
| Fine age 7             | 0             | 0           | 1.21           | 1.21  | 5        | 2.83  |
| Fine age 8             | 1.21          | 1.21        | 1.21           | 0.94  | 5        | 2.83  |
| Fine age 9             | 1.21          | 1.21        | 1.21           | 0.94  | 5        | 2.83  |
| Fine age 10            | 1.21          | 1.21        | 1.21           | 0.94  | 5        | 2.83  |
|                        |               |             |                |       |          |       |
| Panel B. Second-child  | Penalty by et | thnicity of | f the firstbor | n boy |          |       |
| Minority boy           | 0.36          | 0.36        | 0.97           | 1.13  | 0.00     | 2.83  |
| Majority boy           | 0.36          | 0.36        | 1.21           | 1.13  | 4.62     | 2.83  |

Table 3: Examples of constructing the second-child penalty: ethnicity



## Total effects

|                       | (1)       | (2)         | (3)         | (4)         | (5)                 | (6)        | (7)           |
|-----------------------|-----------|-------------|-------------|-------------|---------------------|------------|---------------|
|                       | Siblings  | Any sibling | Good health | Height (sd) | Height top quintile | Schooling  | HS completion |
| Farm × Penalty        | -0.206*   | -0.133***   | 0.099*      | 0.220**     | 0.144***            | 0.156      | -0.026        |
|                       | (0.109)   | (0.046)     | (0.056)     | (0.109)     | (0.052)             | (0.367)    | (0.049)       |
| Low-skill × Penalty   | -0.248**  | -0.162***   | 0.081       | 0.172       | 0.139**             | 0.257      | 0.048         |
|                       | (0.113)   | (0.047)     | (0.059)     | (0.120)     | (0.055)             | (0.415)    | (0.057)       |
| High-skill × Penalty  | -0.137    | -0.109      | 0.145       | 0.206       | 0.181 * *           | 0.962      | 0.128*        |
|                       | (0.162)   | (0.067)     | (0.089)     | (0.190)     | (0.090)             | (0.585)    | (0.076)       |
| R <sup>2</sup>        | 0.540     | 0.590       | 0.270       | 0.383       | 0.303               | 0.549      | 0.440         |
| Mean dep var          | 1.471     | 0.771       | 0.589       | 0.015       | 0.216               | 8.351      | 0.245         |
| Observations          | 2894      | 2894        | 2893        | 2807        | 2807                | 2894       | 2894          |
|                       | (8)       | (9)         | (10)        | (11)        | (12)                | (13)       | (14)          |
|                       | Cognition | Land        | Non-land    | Employed    | Occu score          | High-skill | Urban hukou   |
| Farm $\times$ Penalty | 0.059     | 1.592*      | 2.657       | 0.112*      | -0.619              | -0.093     | 0.055         |
|                       | (0.091)   | (0.886)     | (6.060)     | (0.062)     | (2.556)             | (0.095)    | (0.037)       |
| Low-skill × Penalty   | 0.106     | 0.063       | 18.203***   | 0.070       | 1.813               | -0.044     | 0.042         |
|                       | (0.100)   | (0.974)     | (6.925)     | (0.065)     | (2.753)             | (0.102)    | (0.037)       |
| High-skill × Penalty  | 0.219     | 0.282       | -7.643      | 0.096       | 5.153               | 0.049      | 0.176**       |
|                       | (0.148)   | (1.541)     | (15.534)    | (0.090)     | (3.945)             | (0.133)    | (0.080)       |
| R <sup>2</sup>        | 0.542     | 0.379       | 0.593       | 0.346       | 0.433               | 0.432      | 0.422         |
| Mean dep var          | 0.000     | 4.663       | 48.767      | 0.618       | 39.941              | 0.113      | 0.174         |
| Observations          | 2893      | 2851        | 2763        | 2845        | 1785                | 1757       | 2894          |

ntity and quality Health Education Wealth

Yun Xiao (UvA) (EEA ESEM 2022)

# Timing of siblings

|                                | (1)          | (2)         |
|--------------------------------|--------------|-------------|
|                                | First si     | bling       |
|                                | before age 5 | after age 5 |
| Penalty ages 1-5               | -0.109*      | 0.031       |
|                                | (0.063)      | (0.044)     |
| Penalty ages 6–10              | 0.021        | -0.089***   |
|                                | (0.035)      | (0.025)     |
| Penalty birth year             | 0.099        | -0.037      |
|                                | (0.073)      | (0.081)     |
| Penalty 1–2 years before birth | -0.153       | 0.174       |
|                                | (0.129)      | (0.111)     |
| Penalty 3-4 years before birth | 0.060        | -0.100      |
|                                | (0.223)      | (0.138)     |
| R <sup>2</sup>                 | 0.470        | 0.279       |
| Mean dep var                   | 0.644        | 0.115       |
| Observations                   | 2894         | 2894        |

## Effects on family size

|                                                | (1)<br>Number o        | (2)<br>f siblings             | (3)<br>Any s           | (4)<br>sibling                  | (5)<br>Any male sib    | (6)<br>Any female sib  |
|------------------------------------------------|------------------------|-------------------------------|------------------------|---------------------------------|------------------------|------------------------|
| Penalty                                        | -0.222**<br>(0.108)    | -0.206*<br>(0.109)<br>[0.234] | -0.145***<br>(0.044)   | -0.133***<br>(0.046)<br>[0.036] | -0.071*<br>(0.042)     | -0.080<br>(0.053)      |
| Low-skill × Penalty                            |                        | -0.042<br>(0.061)             |                        | -0.029<br>(0.030)<br>[0.836]    |                        |                        |
| High-skill × Penalty                           |                        | 0.069<br>(0.127)<br>[0.859]   |                        | 0.024<br>(0.054)<br>[0.859]     |                        |                        |
| R <sup>2</sup><br>Mean dep var<br>Observations | 0.540<br>1.471<br>2894 | 0.540<br>1.471<br>2894        | 0.589<br>0.771<br>2894 | 0.590<br>0.771<br>2894          | 0.473<br>0.553<br>2894 | 0.378<br>0.478<br>2894 |

Note: Sharpened FDR q-values in brackets.



Yun Xiao (UvA) (EEA ESEM 2022)

# Effects on children's health

|                            | (1)<br>Good | (2)<br>health | (3)<br>Heig | (4)<br>ht (sd) | (5)<br>Height to | (6)<br>p quintile |
|----------------------------|-------------|---------------|-------------|----------------|------------------|-------------------|
| Penalty                    | 0.093*      | 0.099*        | 0.199*      | 0.220**        | 0.143***         | 0.144***          |
|                            | (0.054)     | (0.056)       | (0.112)     | (0.109)        | (0.050)          | (0.052)           |
|                            |             | [0.250]       |             | [0.204]        |                  | [0.036]           |
| Low-skill × Penalty        |             | -0.018        |             | -0.047         |                  | -0.005            |
|                            |             | (0.035)       |             | (0.060)        |                  | (0.039)           |
|                            |             | [0.859]       |             | [0.838]        |                  | [1.000]           |
| High-skill $	imes$ Penalty |             | 0.046         |             | -0.014         |                  | 0.037             |
|                            |             | (0.074)       |             | (0.133)        |                  | (0.072)           |
|                            |             | [0.859]       |             | [1.000]        |                  | [0.859]           |
| $R^2$                      | 0.270       | 0.270         | 0.383       | 0.383          | 0.302            | 0.303             |
| Mean dep var               | 0.589       | 0.589         | 0.015       | 0.015          | 0.216            | 0.216             |
| Observations               | 2893        | 2893          | 2807        | 2807           | 2807             | 2807              |

Note: Sharpened FDR q-values in brackets.



# Effects on children's schooling

|                              | (1)<br>Years of | (2)<br>schooling             | (3)<br>Complete | (4)<br>e high school           | (5)<br>Cognitive | (6)<br>e score (sd)         |
|------------------------------|-----------------|------------------------------|-----------------|--------------------------------|------------------|-----------------------------|
| Penalty                      | 0.215 (0.376)   | 0.156 (0.367)                | 0.008 (0.051)   | -0.026<br>(0.049)              | 0.082 (0.092)    | 0.059<br>(0.091)            |
| Low-skill × Penalty          |                 | [0.859]<br>0.102             |                 | [0.859]<br>0.074**             |                  | [0.859]<br>0.047            |
| High-skill $\times$ Penalty  |                 | (0.223)<br>[0.859]<br>0.806* |                 | (0.036)<br>[0.204]<br>0.154*** |                  | (0.058)<br>[0.838]<br>0.160 |
|                              |                 | (0.432)<br>[0.234]           |                 | (0.052)<br>[0.036]             |                  | (0.115)<br>[0.436]          |
| $R^2$                        | 0.549           | 0.549                        | 0.437           | 0.440                          | 0.542            | 0.542                       |
| Mean dep var<br>Observations | 8.351<br>2894   | 8.351<br>2894                | 0.245<br>2894   | $0.245 \\ 2894$                | 0.000<br>2893    | 0.000<br>2893               |

Note: Sharpened FDR q-values in brackets.



# Effects on children's household wealth per capita

|                      | (1)     | (2)       | (3)     | (4)       | (5)       | (6)       |
|----------------------|---------|-----------|---------|-----------|-----------|-----------|
|                      |         |           |         | Nonla     | nd assets |           |
|                      | Lan     | d value   | ]       | Fotal     | Housing   | Financial |
| Penalty              | 0.936   | 1.592*    | 8.516   | 2.657     | 1.947     | 0.709     |
|                      | (0.871) | (0.886)   | (6.444) | (6.060)   | (6.051)   | (2.326)   |
|                      |         | [0.249]   |         | [0.869]   | [0.995]   | [0.836]   |
| Low-skill × Penalty  |         | -1.529*** |         | 15.547*** | 12.640*** | 2.906     |
|                      |         | (0.555)   |         | (4.072)   | (3.745)   | (1.776)   |
|                      |         | [0.036]   |         | [0.001]   | [0.018]   | [0.436]   |
| High-skill × Penalty |         | -1.310    |         | -10.300   | -11.618   | 1.318     |
|                      |         | (1.080)   |         | (13.177)  | (13.036)  | (2.410)   |
|                      |         | [0.567]   |         | [0.838]   | [0.838]   | [1.000]   |
| $R^2$                | 0.377   | 0.379     | 0.590   | 0.593     | 0.585     | 0.349     |
| Mean dep var         | 4.663   | 4.663     | 48.767  | 48.767    | 42.776    | 5.991     |
| Observations         | 2851    | 2851      | 2763    | 2763      | 2763      | 2763      |

Outcomes measured in 1,000 yuan (≈ 150 USD). Sharpened FDR q-values in brackets.



Yun Xiao (UvA) (EEA ESEM 2022)

## Education and health investments

$$y_{itp} = \delta Anysibling_i + X_i \beta + V_t + W_p + \epsilon_{itp}$$



*Notes*: Coefficients on *Anysibling<sub>i</sub>* and 90% confidence interval by father's occupation Sample: firstborn children aged between 10 and 15 in 2010 with a rural *hukou* at age 3 and at most one sibling

Education and health

Yun Xiao (UvA) (EEA ESEM 2022)

# Estimates adjusted by CFPS sample weights

|                      | (1)<br>Siblings | (2)<br>Any sibling | (3)<br>Exacilant health | (4)<br>Haight (ad) | (5)<br>Height top quintile |
|----------------------|-----------------|--------------------|-------------------------|--------------------|----------------------------|
|                      | Sibilitigs      | Any storing        | Excellent nearth        | Height (su)        | Height top quintile        |
| Penalty              | -0.260*         | -0.123**           | 0.147**                 | 0.131              | 0.148**                    |
|                      | (0.137)         | (0.057)            | (0.069)                 | (0.121)            | (0.060)                    |
| Low-skill × Penalty  | 0.016           | -0.015             | -0.008                  | -0.048             | -0.041                     |
|                      | (0.086)         | (0.049)            | (0.045)                 | (0.075)            | (0.041)                    |
| High-skill × Penalty | 0.078           | 0.055              | 0.032                   | 0.191              | 0.105                      |
|                      | (0.166)         | (0.061)            | (0.099)                 | (0.184)            | (0.087)                    |
|                      | (6)             | (7)                | (8)                     | (9)                | (10)                       |
|                      | Schooling       | HS completion      | Cognition               | Land               | Nonland                    |
| Penalty              | -0.000          | -0.035             | 0.066                   | 1.391*             | 1.408                      |
|                      | (0.443)         | (0.062)            | (0.120)                 | (0.837)            | (6.216)                    |
| Low-skill × Penalty  | -0.020          | 0.065              | 0.074                   | -0.848             | 11.043***                  |
|                      | (0.269)         | (0.044)            | (0.077)                 | (0.647)            | (4.258)                    |
| High-skill × Penalty | 1.020*          | 0.138**            | 0.246*                  | -0.899             | 4.657                      |
|                      | (0.569)         | (0.069)            | (0.149)                 | (1.043)            | (12.807)                   |
|                      | (11)            | (12)               | (13)                    | (14)               | (15)                       |
|                      | Employed        | Occu score         | High-skill              | Urban hukou        | Income                     |
| Penalty              | 0.116           | -2.527             | -0.189*                 | 0.016              | 3.066                      |
|                      | (0.075)         | (3.195)            | (0.106)                 | (0.049)            | (2.274)                    |
| Low-skill × Penalty  | -0.051          | 1.996              | 0.034                   | -0.021             | 1.282                      |
|                      | (0.045)         | (1.706)            | (0.046)                 | (0.030)            | (1.245)                    |
| High-skill × Penalty | -0.018          | 6.925**            | 0.171*                  | 0.147*             | 5.008*                     |
| - · ·                | (0.081)         | (3.056)            | (0.099)                 | (0.086)            | (2.796)                    |



### Robustness checks

|                                                              | (1)         | (2)              | (3)         | (4)           | (5)       | (6)       | (7)      | (8)        | (9)     |
|--------------------------------------------------------------|-------------|------------------|-------------|---------------|-----------|-----------|----------|------------|---------|
|                                                              | Siblings    | Any sibling      | Height (sd) | HS completion | Land      | Assets    | Employed | High-skill | Income  |
| Panel A. Group-specific effects of socioeconomic development |             |                  |             |               |           |           |          |            |         |
| Penalty                                                      | -0.216*     | -0.111**         | 0.244**     | -0.030        | 2.104 **  | 3.816     | 0.125*   | -0.077     | 1.844   |
|                                                              | (0.114)     | (0.047)          | (0.116)     | (0.051)       | (1.005)   | (5.527)   | (0.065)  | (0.093)    | (1.912) |
| Low-skill × Penalty                                          | -0.039      | -0.027           | -0.042      | 0.076**       | -1.561*** | 15.155*** | -0.043   | 0.048      | 1.187   |
|                                                              | (0.061)     | (0.030)          | (0.061)     | (0.036)       | (0.563)   | (4.038)   | (0.042)  | (0.038)    | (1.070) |
| High-skill × Penalty                                         | 0.067       | 0.023            | -0.011      | 0.153***      | -1.326    | -10.240   | -0.016   | 0.142*     | 4.214*  |
|                                                              | (0.128)     | (0.055)          | (0.133)     | (0.052)       | (1.073)   | (13.380)  | (0.079)  | (0.084)    | (2.490) |
| $R^2$                                                        | 0.542       | 0.592            | 0.386       | 0.442         | 0.381     | 0.595     | 0.348    | 0.433      | 0.501   |
| Panel B. Interactions of th                                  | e penalty w | vith paternal ea | lucation    |               |           |           |          |            |         |
| Penalty                                                      | -0.214*     | -0.137***        | 0.215*      | -0.038        | 1.689*    | 0.361     | 0.118*   | -0.096     | 2.350   |
|                                                              | (0.114)     | (0.049)          | (0.118)     | (0.053)       | (0.984)   | (6.973)   | (0.065)  | (0.098)    | (1.833) |
| Low-skill × Penalty                                          | -0.037      | -0.028           | -0.051      | 0.074 * *     | -1.499*** | 15.568*** | -0.041   | 0.059      | 1.296   |
|                                                              | (0.060)     | (0.029)          | (0.059)     | (0.036)       | (0.563)   | (4.126)   | (0.042)  | (0.039)    | (1.103) |
| High-skill × Penalty                                         | 0.097       | 0.026            | -0.041      | 0.150***      | -1.108    | -11.515   | -0.003   | 0.160 **   | 4.819*  |
|                                                              | (0.133)     | (0.055)          | (0.145)     | (0.056)       | (1.179)   | (12.844)  | (0.081)  | (0.079)    | (2.593) |
| Middle school × Penalty                                      | 0.017       | 0.008            | 0.008       | 0.029         | -0.257    | 4.914     | -0.012   | 0.033      | -0.792  |
|                                                              | (0.055)     | (0.023)          | (0.057)     | (0.036)       | (0.606)   | (6.219)   | (0.049)  | (0.038)    | (1.172) |
| High school × Penalty                                        | -0.078      | -0.009           | 0.057       | 0.006         | -0.511    | 0.977     | -0.031   | -0.092     | -1.542  |
|                                                              | (0.135)     | (0.049)          | (0.117)     | (0.053)       | (0.825)   | (8.160)   | (0.059)  | (0.069)    | (1.749) |
| R <sup>2</sup>                                               | 0.540       | 0.590            | 0.384       | 0.441         | 0.380     | 0.594     | 0.347    | 0.435      | 0.501   |
| Mean dep var                                                 | 1.471       | 0.771            | 0.015       | 0.245         | 4.663     | 48.767    | 0.618    | 0.113      | 15.675  |
| Observations                                                 | 2894        | 2894             | 2807        | 2894          | 2851      | 2763      | 2845     | 1757       | 2724    |



## Alternative exposure measures

|                                          | (1)<br>Siblings                                                                    | (2)<br>Any sibling | (3)<br>Height (sd) | (4)<br>HS completion | (5)<br>Land | (6)<br>Assets | (7)<br>Employed | (8)<br>High-skill | (9)<br>Income |
|------------------------------------------|------------------------------------------------------------------------------------|--------------------|--------------------|----------------------|-------------|---------------|-----------------|-------------------|---------------|
| Panel A. Measuring Second-c              | Panel A. Measuring Second-child Penalty using only second-child permit eligibility |                    |                    |                      |             |               |                 |                   |               |
| Ineligibility                            | -0.298                                                                             | -0.230**           | 0.440*             | 0.000                | 3.144       | 16.530        | 0.164           | -0.110            | 1.670         |
|                                          | (0.319)                                                                            | (0.108)            | (0.246)            | (0.110)              | (1.933)     | (19.089)      | (0.166)         | (0.145)           | (3.708)       |
| Low-skill × Ineligibility                | -0.124                                                                             | -0.044             | -0.088             | 0.091                | -1.932*     | 31.504***     | -0.110*         | 0.029             | 3.930*        |
|                                          | (0.135)                                                                            | (0.054)            | (0.118)            | (0.069)              | (1.075)     | (9.296)       | (0.065)         | (0.075)           | (2.055)       |
| High-skill × Ineligibility               | 0.135                                                                              | 0.050              | -0.171             | 0.196*               | -0.914      | 10.579        | -0.051          | 0.175             | 7.875**       |
|                                          | (0.234)                                                                            | (0.099)            | (0.222)            | (0.100)              | (1.540)     | (22.418)      | (0.123)         | (0.154)           | (3.868)       |
| R <sup>2</sup>                           | 0.540                                                                              | 0.589              | 0.383              | 0.440                | 0.378       | 0.594         | 0.346           | 0.431             | 0.501         |
| Panel B. Considering the requ            | irement of a                                                                       | minimum 3-y        | ear spacing        |                      |             |               |                 |                   |               |
| Penaltys                                 | -0.206                                                                             | -0.144***          | 0.240*             | -0.030               | 1.786*      | 4.300         | 0.130*          | -0.090            | 1.695         |
|                                          | (0.133)                                                                            | (0.052)            | (0.123)            | (0.058)              | (0.999)     | (6.892)       | (0.070)         | (0.101)           | (2.085)       |
| Low-skill × Penalty <sup>8</sup>         | -0.055                                                                             | -0.042             | -0.031             | 0.083**              | -1.542**    | 16.690***     | -0.040          | 0.056             | 1.379         |
|                                          | (0.066)                                                                            | (0.031)            | (0.063)            | (0.037)              | (0.606)     | (4.501)       | (0.044)         | (0.038)           | (1.135)       |
| High-skill × Penalty <sup>8</sup>        | 0.028                                                                              | -0.004             | -0.029             | 0.162***             | -1.331      | -10.882       | -0.021          | 0.148*            | 4.174*        |
|                                          | (0.130)                                                                            | (0.053)            | (0.137)            | (0.053)              | (1.161)     | (13.990)      | (0.082)         | (0.086)           | (2.518)       |
| R <sup>2</sup>                           | 0.540                                                                              | 0.590              | 0.383              | 0.442                | 0.380       | 0.594         | 0.346           | 0.433             | 0.501         |
| Panel C. Variation in high pen           | alty only                                                                          |                    |                    |                      |             |               |                 |                   |               |
| Penalty $\times I(\text{Penalty} \ge 1)$ | -0.198**                                                                           | -0.088**           | 0.178*             | -0.021               | 0.867       | 4.666         | 0.092*          | -0.020            | 1.148         |
|                                          | (0.099)                                                                            | (0.040)            | (0.095)            | (0.041)              | (0.740)     | (5.492)       | (0.052)         | (0.066)           | (1.598)       |
| Low-skill ×                              | -0.060                                                                             | -0.042             | -0.027             | 0.093***             | -1.234**    | 14.191***     | -0.049          | 0.054*            | 1.018         |
| Penalty $\times I$ (Penalty $\geq 1$ )   | (0.054)                                                                            | (0.027)            | (0.054)            | (0.032)              | (0.503)     | (4.067)       | (0.037)         | (0.033)           | (0.969)       |
| High-skill ×                             | 0.050                                                                              | 0.019              | -0.016             | 0.145***             | -1.116      | -19.174       | -0.027          | 0.182**           | 3.360         |
| Penalty $\times I$ (Penalty $\geq 1$ )   | (0.123)                                                                            | (0.053)            | (0.107)            | (0.047)              | (0.945)     | (13.188)      | (0.074)         | (0.079)           | (2.298)       |
| R <sup>2</sup>                           | 0.540                                                                              | 0.590              | 0.383              | 0.443                | 0.379       | 0.595         | 0.347           | 0.435             | 0.500         |
| Mean dep var                             | 1.471                                                                              | 0.771              | 0.015              | 0.245                | 4.663       | 48.767        | 0.618           | 0.113             | 15.675        |
| Observations                             | 2894                                                                               | 2894               | 2807               | 2894                 | 2851        | 2763          | 2845            | 1757              | 2724          |

Robustness

# Effect on labor market outcomes

|                      | (1)<br>Occupational status | (2)<br>Urban residential status | (3)<br>Income |
|----------------------|----------------------------|---------------------------------|---------------|
| Penalty              | -0.619                     | 0.055                           | 2.051         |
|                      | (2.556)                    | (0.037)                         | (1.815)       |
| Low-skill × Penalty  | 2.432*                     | -0.014                          | 1.210         |
|                      | (1.379)                    | (0.023)                         | (1.072)       |
| High-skill × Penalty | 5.772**                    | 0.121*                          | 4.208*        |
|                      | (2.927)                    | (0.069)                         | (2.485)       |
| R <sup>2</sup>       | 0.433                      | 0.422                           | 0.500         |
| Mean dep var         | 39.941                     | 0.174                           | 15.675        |
| Observations         | 1785                       | 2894                            | 2724          |

<sup>a</sup> Treiman's Standard International Occupational Prestige Scale (1977) ranging from 1 to 100, a higher score means more power and privilege <sup>b</sup> Income measured in 1,000 yuan ( $\approx$  150 USD)

Plot

# Intergenerational income correlation

|                                            | (1)<br>Income of the children |
|--------------------------------------------|-------------------------------|
| Penalty                                    | 0.809                         |
| Computed income of father $\times$ Penalty | (2.122)<br>0.116*             |
| $R^2$                                      | (0.069)<br>0.500              |
| Observations                               | 2724                          |

Labor market outcomes

# Distributional effects on labor income



Labor market outcomes

## Distributional effects on labor income

|                            | (1)         | (2)                 | (3)         |
|----------------------------|-------------|---------------------|-------------|
|                            | Conditional | percentiles of life | time income |
|                            | 25th        | 50th                | 75th        |
| Farm $\times$ Penalty      | 0.977       | 2.509*              | 3.677**     |
|                            | (1.392)     | (1.393)             | (1.558)     |
| Low-skill $\times$ Penalty | 1.885       | 2.705*              | 5.370***    |
|                            | (1.314)     | (1.444)             | (1.396)     |
| High-skill × Penalty       | 3.833**     | 4.249               | 7.746***    |
|                            | (1.549)     | (2.995)             | (2.255)     |
| Diff (Low-skill - Farm)    | 0.908       | 0.196               | 1.694**     |
|                            | (0.980)     | (0.816)             | (0.761)     |
| Diff (High-skill - Farm)   | 2.857***    | 1.740               | 4.069       |
|                            | (1.071)     | (3.143)             | (2.610)     |
| R <sup>2</sup>             | 0.037       | 0.038               | 0.039       |
| Observations               | 2724        | 2724                | 2724        |

Yun Xiao (UvA) (EEA ESEM 2022)

# Differences in family types and birth order

|                          | (1)     | (2)                    | (3)             | (4)             | (5)         |  |
|--------------------------|---------|------------------------|-----------------|-----------------|-------------|--|
|                          |         | Educational attainment |                 |                 |             |  |
|                          | Years   | Primary                | Lower secondary | Upper secondary | Height (sd) |  |
| Farmer × First child     | 0.766   | 0.055                  | 0.130**         | 0.079           | -0.059      |  |
|                          | (0.512) | (0.050)                | (0.067)         | (0.053)         | (0.116)     |  |
| Non-farmer × First child | -0.299  | -0.021                 | -0.010          | -0.014          | -0.042      |  |
|                          | (0.630) | (0.054)                | (0.076)         | (0.076)         | (0.155)     |  |
| $R^2$                    | 0.284   | 0.192                  | 0.254           | 0.172           | 0.066       |  |
| Mean dep var farm        | 7.141   | 0.770                  | 0.509           | 0.155           | 0.046       |  |
| Mean dep var non-farm    | 9.337   | 0.903                  | 0.760           | 0.314           | 0.208       |  |
| Observations             | 523     | 523                    | 523             | 523             | 513         |  |

Sample: all children born in rural China between 1966 and 1975 in two-child families



# Only provinces without strong son preference

|                      | (1)      | (2)         | (3)          | (4)            | (5)         | (6)           |
|----------------------|----------|-------------|--------------|----------------|-------------|---------------|
|                      | Siblings | Any sibling | Any male sib | Any female sib | Height (sd) | HS completion |
| Penalty              | -0.237   | -0.175***   | -0.101*      | -0.086         | 0.339**     | -0.047        |
|                      | (0.149)  | (0.067)     | (0.057)      | (0.070)        | (0.139)     | (0.060)       |
| Low-skill × Penalty  | 0.005    | -0.005      | -0.048       | 0.022          | -0.018      | 0.093**       |
|                      | (0.068)  | (0.033)     | (0.030)      | (0.032)        | (0.072)     | (0.038)       |
| High-skill × Penalty | 0.087    | 0.035       | 0.010        | -0.000         | 0.010       | 0.149***      |
|                      | (0.135)  | (0.057)     | (0.063)      | (0.066)        | (0.152)     | (0.057)       |
| $R^2$                | 0.599    | 0.640       | 0.496        | 0.421          | 0.433       | 0.467         |
| Mean dep var         | 1.451    | 0.739       | 0.523        | 0.460          | -0.027      | 0.262         |
| Observations         | 1869     | 1869        | 1869         | 1869           | 1816        | 1869          |
|                      | Land     | Assets      | Employed     | Occu. score    | High-skill  | Income        |
| Penalty              | 1.712    | 10.038      | 0.115        | -1.240         | -0.122      | 3.233*        |
|                      | (1.132)  | (8.046)     | (0.085)      | (2.898)        | (0.104)     | (1.855)       |
| Low-skill × Penalty  | -1.764** | 16.047***   | -0.035       | 2.356          | 0.044       | 1.005         |
|                      | (0.687)  | (5.242)     | (0.053)      | (1.610)        | (0.041)     | (1.214)       |
| High-skill × Penalty | -0.975   | -11.624     | 0.001        | 5.146          | 0.083       | 4.667         |
|                      | (1.304)  | (16.620)    | (0.093)      | (3.894)        | (0.102)     | (3.023)       |
| R <sup>2</sup>       | 0.422    | 0.625       | 0.367        | 0.440          | 0.449       | 0.499         |
| Mean dep var         | 4.889    | 52.196      | 0.623        | 39.807         | 0.115       | 16.210        |
| Observations         | 1843     | 1782        | 1830         | 1160           | 1140        | 1759          |



# Distributional effects of OCP on years of schooling

|                                   | (1)                  | (2)         |
|-----------------------------------|----------------------|-------------|
|                                   | Dep var: Log(income) |             |
| Measures of human capital:        | Years of schooling   | Height (sd) |
| Human capital                     | 0.057***             | 0.036       |
|                                   | (0.007)              | (0.029)     |
| Low-skill × Human capital         | 0.001                | -0.003      |
|                                   | (0.008)              | (0.031)     |
| High-skill $	imes$ Human capital  | 0.022*               | 0.006       |
|                                   | (0.012)              | (0.055)     |
| Middle school × Human capital     | -0.009               | 0.001       |
| -                                 | (0.009)              | (0.040)     |
| High school $	imes$ Human capital | 0.022                | -0.020      |
|                                   | (0.014)              | (0.061)     |
| $R^2$                             | 0.225                | 0.152       |
| Observations                      | 3353                 | 3322        |

# Distributional effects on on years of schooling



# Distributional effects of OCP on years of schooling

|                             | (1)     | (2)<br>Years of schooling | (3)      |
|-----------------------------|---------|---------------------------|----------|
|                             | 25th    | Conditional percentile    | 75th     |
| -                           | 0.102   | -0.277                    | -0.679*  |
|                             | (0.264) | (0.378)                   | (0.413)  |
| Low-skill $\times$ Penalty  | 0.571   | 0.131                     | -0.224   |
|                             | (0.367) | (0.414)                   | (0.420)  |
| High-skill $\times$ Penalty | 1.568** | 0.755                     | 0.115    |
|                             | (0.618) | (0.506)                   | (0.436)  |
| Diff (Low-skill - farm)     | 0.468** | 0.408                     | 0.455    |
|                             | (0.232) | (0.312)                   | (0.325)  |
| Diff (High-skill - farm)    | 1.466** | 1.032***                  | 0.794*** |
|                             | (0.635) | (0.318)                   | (0.279)  |
| $R^2$                       | 0.135   | 0.137                     | 0.139    |
| Observations                | 2894    | 2894                      | 2894     |