Self-Insurance and Welfare in Turbulent Labour Markets

Isaac Baley (UPF, CREI, BSE, CEPR)
Ana Figueiredo (ERASMUS ROTTERDAM)
Cristiano Mantovani (UPF, BSE)
Alireza Sepahsalari (U BRISTOL)

EEA MILAN August, 2022

MOTIVATION

• Job loss entails long-lasting negative consequences ("earnings scarring")

Jacobson, LaLonde and Sullivan (93), Davis and von Wachter (11), Jarosch (21)

• Specially for workers that switch occupation

Kamburov Manovskii (02, 08, 09), Fujita (18), Huckfeldt (22), Postel-Vinay and Sepahsalari (21)

Consequence of persistent loss of skills/experience ("turbulence")

Ljungqvist and Sargent (98, 07, 08), Jung and Kuhn (2019), Baley, Figueiredo, Ulbricht (22)

- Literature focuses on earnings scars, less attention on insurance and welfare Rogerson and Schindler (01)
- We ask:
 - Which insurance mechanisms do workers use to cope with these risks?
 - What are the welfare consequences of job loss?

This Paper

1. New facts on long-term consequences of job loss

- unemployment and reemployment dynamics
- joint role of liquid wealth and skill loss
- 2. Directed search model with rich worker heterogeneity
 - **Risks:** transitory (unemployment) + persistent (skill loss)
 - Self-insurance mechanisms:
 - (I) precautionary savings
 - (II) precautionary search

3. Welfare consequences

- * Persistent welfare effects arise primarily from "wealth scarring"
- * Role of unemployment insurance and retraining programs (in progress)

Empirical Evidence

Data

- Data: NLSY79, monthly worker panel 1979-2016
- Labor Market Information:
 - worker's labor history:
 - EUE' transitions: non-employed at workers at time t-1 but employed at t
 - unemployment duration, wage growth at reemployment $(\Delta w = log(w'/w))$
 - time-consistent occupation codes $(Dorn, 09) \rightarrow occupation$ tenure & switching
- Sample: EUE' transitions with occupation tenure at separation > 2 years

Key Heterogeneity Dimensions

1. skill loss Fujita (18), Huckfeldt (22)

- turbulent workers: occup. tenure > 2 years \times occ. switcher
- tranquil workers: occup. tenure > 2 years \times occ. stayer

turbulence shock

2. wealth upon separation Rendón (06), Lise (12), Herkenhoff, Phillips and Cohen-Cole (16)

- net liquid wealth = financial assets

- + farm and business assets + vehicles, all net of debts
- debt on residential property.
- split wealth distribution into three groups: < P33, P33 P66, > P66

turbulence & wealth

SUMMARY STATISTICS

	Tranquil	Turbulent
Worker characteristics at separation		
Female (%)	57.2	57.7
White (%)	84.7	80.1
College Degree (%)	22.0	19.7
Age	36.6	36.0
Job tenure	3.0	3.6
Occupational tenure	7.2	5.8
Labor market experience	14.8	13.5
Liquid wealth (000's, 2000 dollars)	43.0	35.2
Quitcomes at reemployment		
	09/	100/
vvage growth	0%	-12%
Unemployment duration (months)	4	12
% of total transitions	62.2	37.8

UNEMPLOYMENT DURATION & WAGE GROWTH $_{\rm Residuals}$

- Turbulent: longer duration and negative wage growth
- Wealth: amplifies duration and wage growth

(controls = past wage, age, age², gender, race, education, ability, industry, year and month)

LONG-TERM SCARRS ON WAGES

• Focus on the first separation recorded for each individual in the sample

$$\log w_{it} = \sum_{p \in \{<33,>66\}} \sum_{k=-24}^{62} \delta_{tranq,p}^{k} \mathbf{1}_{tranq,p}^{k} + \sum_{p \in \{<33,>66\}} \sum_{k=-24}^{62} \delta_{turb,p}^{k} \mathbf{1}_{turb,p}^{k} + \lambda_{t} + \beta' X_{it} + \epsilon_{it}$$

- $\mathbf{1}_{tranq,p}^{k} = 1$: displaced worker in k^{th} year after job loss that was at wealth percentile p and had a tranquil transition
- $\mathbf{1}_{turb,p}^{k} = 1$: displaced worker in k^{th} year after job loss that was at wealth percentile p and suffered a turbulent transition
- control group = non-displaced workers with occ tenure > 2 years old
- $X_{it} =$ **past wage**, age, age², gender, race, education, ability, industry, occupation

LONG-TERM SCARRS ON WAGES By skill loss

• Scarring effects of unemployment: concentrated among turbulent (Huckfeldt, 22)

LONG-TERM SCARRS ON WAGES

By skill loss \times wealth upon separation

• Scarring effects of unemployment: concentrated among turbulent and poor

Model

Environment Demographics

- Continuum of ex-ante identical risk-averse workers
 - ex-post heterogenous (s, x, a, y)
 - status s: employed (e) or unemployed (u)
 - skills x: low (1) or high (h)
 - wealth a
 - income y: after-tax wages (w) or unemployment benefits (b)

- Continuum of one-worker homogenous firms
 - linear production f(x) = x

ENVIRONMENT KEV ELEMENTS

Key elements

1. Directed search

Shi, (09), Menzio and Shi (11), Eeckhout and Sepahsalari (21)

- submarkets $\theta(x, a, b)$: trade-off between wage and finding rate
- random search within submarket $m(\theta)$
- $\circ\,$ vacancies: free entry, posted at cost $\kappa,$ zero profits

$2. \ {\sf Skill \ dynamics}$

Ljungqvist and Sargent (98, 07)

- while employed, skill upgrades w/prob γ^u $(x_l \to x_h)$
- exogenous separation w/prob λ_x : skill downgrades w/prob γ^d $(x_h \to x_l)$
- 3. Imperfect financial market: borrowing constraint $a \ge -\underline{a}$
 - one risk-free bond that pays r

CALIBRATION

• Assigned:

- o standard values: discount factor β , interest rate r, risk aversion σ
- separation rates λ_h , λ_l (NLSY) + upgrading probability γ^u (Fujita, 18)

• Estimation via SMM:

- $\circ\;$ vacancy cost $\kappa,$ matching elasticity α and efficiency $\chi_{\rm X},$ replacement rate ϕ
- $\circ~$ productivity gap, turbulence risk γ^d
- borrowing constraint <u>a</u>

Targeted Moments	Source	Data	Model
Experience premium $\mathbb{E}[w_h]/\mathbb{E}[w_l]$	NLSY	1.18	1.15
Proportion of turbulent transitions EUE'	NLSY	0.12	0.12
Elasticity of job finding to tightness	Shimer (2005)	0.72	0.66
Excess duration $\mathbb{E}[\tau_{lh}]/\mathbb{E}[\tau_{hh}]$	NLSY	3	2.1
Excess duration $\mathbb{E}[\tau_{lh}]/\mathbb{E}[\tau_{ll}]$	NLSY	1.6	1.5
Avg. unemployment duration (months)	NLSY	7.7	6.4
Assets/Annual Income (Median)	PSID	0.62	0.63
Fraction with negative assets	NLSY	0.16	0.15
OLS coefficient (assets of jobfinding on assets)	Lise (2013)	-0.08	-0.03

EQ'M SEARCH POLICIES

- Assets and skills:
 - decrease job finding rate (increase duration)
 - increase reemployment wage

EQ'M SAVINGS POLICIES

- To smooth consumption across states:
 - Employed accumulate and unemployed deplete assets

WAGE SCARRING EFFECTS

By skill loss \times wealth upon separation

- Track worker earnings (log wages) after separation, regression as in data
 - Tranquil transitions entail wage increases only for rich
 - Turbulent transitions entail wage losses, recover faster for rich

WEALTH SCARRING

• Poverty feedback loop:

- Assets depletion during unemployment for both types $a\downarrow$
- Lower reemployment wage $w'(a) \downarrow$
- Slower asset accumulation during employment $a \downarrow$

Welfare Analysis

Welfare Costs of Job Loss By initial wealth

• Life-time consumption equivalent $\lambda(a_0)$: compensation for avoiding job loss at t = 0

• Welfare costs decreasing with initial wealth

Welfare Costs of Job Loss

DECOMPOSITION: WAGE VS. WEALTH SCARRING

MOVING FORWARD

- Uncovered key role for self-insurance
 - "w scars": wage, wealth and welfare
 - precautionary savings and search
 - feedback loop
- Potential directions:
 - endogenous occupational attachment Baley, Figueiredo, Ulbricht (22)
 - on-the-job search

Krusell, Mukoyama and Sahin (10), Chaumont and Shi (18)

o unemployment insurance and retraining programs

APPENDIX

SUMMARY STATISTICS

All EUE' TRANSITIONS

	All Transitions	Non-Tenured	Tranquil	Turbulent
Observations	37,324	25,910	7,102	4,212
% of total transitions	100	69.4	19.0	11.6
Worker characteristics at separation				
Age	29.7	26.8	36.6	36.0
Job tenure	1.4	0.5	3.0	3.6
Occupational tenure	2.5	0.7	7.2	5.8
Total experience	8.3	5.7	14.8	13.5
Liquid wealth (000's, 2000 dollars)	28.9	20.1	43.0	35.2
Outcomes at reemployment				
Wage growth	1%	4%	0%	-12%
Unemployment duration (months)	7.7	8	4	12

Source: NLSY79.

TURBULENCE SHOCK Definition

• Switching propensity decreases during the first 2.5 years, then flat

TURBULENCE SHOCK

• Probability of being hit by a turbulence shock not correlated with wealth

FIGURE: Turbulence Shock

VALUE FUNCTIONS Appendix: Workers

• Unemployed

$$U(a, x, b) = \max_{a', \theta} u(c) + \beta [m(\theta)E(a', x, w(\theta)) + (1 - m(\theta))U(a', x, b)]$$

$$c + a' = Ra + b, \quad a' \ge \underline{a}$$

• Inexperienced Employed, x₁

$$E(a, x_I, w) = \max_{a'} u(c) + \beta \lambda U(a', x_I, b_I)$$

+ $\beta (1 - \lambda) [(1 - \gamma^u) E(a', x_I, w) + \gamma^u E(a', x_h, w)]$
 $c + a' = Ra + (1 - \tau_a)w$ and $a' \ge \underline{a}$

• Experienced Employed, *x_h*

$$E(a, x_h, w) = \max_{a'} u(c) + \beta(1 - \lambda)E(a', x_h, w)$$

+ $\beta\lambda[\gamma^d U(a', x_l, b_h) + (1 - \gamma^d)U(a', x_h, b_h)]$
 $c + a' = Ra + (1 - \tau_a)w$ and $a' \ge \underline{a}$

VALUE FUNCTIONS

APPENDIX: FIRMS

Value of a vacant job

$$V = -\kappa + \beta \max_{w} \{q(\theta)J(w(\theta), x_i) + (1 - q(\theta))V\} \quad \forall i$$

Value of a filled job

$$\begin{aligned} J(w, x_h) &= x_h - w + \beta \left[\lambda V + (1 - \lambda) J(w, x_h) \right] \\ J(w, x_l) &= x_l - w + \beta \left[\lambda V + (1 - \lambda) (\gamma^u J(w, x_h) + (1 - \gamma^u) J(w, x_l)) \right] \end{aligned}$$

back

CALIBRATION

APPENDIX: FUNCTIONAL FORMS

• Utility funtion (CRRA)

$$u(c)=\frac{c^{1-\sigma}-1}{1-\sigma}$$

• Matching function (CES)

$$m(\theta) = \chi \theta (1 + \theta^{\alpha})^{\frac{-1}{\alpha}}$$

• Production function (linear)

$$f(x) = x$$

• One period is one month

back

CALIBRATION

APPENDIX

Parameter	Definition	Value	Source
pre-calibrated			
β	discount factor	0.9965	monthly frequency
ρ _r	retirement probability	0.0021	avg. worklife $=$ 40 years
$\beta \equiv \hat{\beta}(1 - \rho_r)$	adjusted discount	0.9944	0.93 annual
σ	relative risk aversion	2	standard in the literature
r	interest rate	0.003	yearly risk-free rate $=4\%$
λ_h	separation tenured	0.01	NLSY
λ_l	separation untenured	0.045	NLSY
γ^{u}	experience upgrade	0.0417	experience $= 2$ years
calibrated			
$\Delta = x_h - x_l$	productivity gap	0.1	
α	matching elasticity	0.6	
γ^d	experience depreciation	0.1	
$\chi_{II},\chi_{Ih},\chi_{hh}$	matching efficiencies	0.17, 0.25, 0.30	
ϕ	replacement rate	0.1	
κ	vacancy creation cost	0.20	
a	borrowing constraint	-8	

ASSET DISTRIBUTION

WAGE DISTRIBUTION

MODEL PREDICTIONS

APPENDIX: UNCONDITIONAL AVERAGES

- For turbulen workerst:
 - Average reemployment wage growth $\mathbb{E}[\Delta w']$ is lower
 - $\circ~$ Average unemployment duration $\mathbb{E}[\tau]$ is longer

MODEL PREDICTIONS

APPENDIX: REGRESSION TABLES

- Run wage and duration regressions
 - Controls: previous wage
- Same results as in the data
 - **Turbulence shock** associated with **lower** re-employment wages and **longer** unemployment duration
 - Initial wealth associated with higher re-employment wages and longer unemployment duration

Dependent variable:	Δ	w'	1	τ		
	(1)	(2)	(3)	(4)		
(β_1) Turbulent	-0.187 (0.001)	-0.187 (0.002)	0.926 (0.06)	0.928 (0.06)		
(β_2) Initial Wealth		0.0117 (0.0064)		0.21 (0.03)		
Observations R^2	44,571 0.368	44,571 0.161	44,571 0.055	44,571 0.059		

HIGHER TURBULENCE RISK

I. Self-insurance mechanisms (policies)

- Precautionary savings increase
 - Higher risk \Rightarrow more savings
- Precautionary search decreases
 - Higher risk \Rightarrow value of employment falls
 - Search for riskier jobs, lower finding rate, higher wages
 - Stronger effect for wealthy unemployed (unconstrained)

job search decisions 🔪 saving decisions

II. Distributional effects

- More low experience workers x_l
- Lower finding rates, wages, savings and output

FINANCIAL MARKETS

• Lower avg. assets and larger fraction of constrained worker

APPENDIX: JOB SEARCH DECISION

CRISTIANO: UPDATED

FIGURE: Job search policies for high and low turbulence risk γ^d

APPENDIX: SAVING DECISION

FIGURE: Savings policies for high and low turbulence risk

HIGHER TURBULENCE Inequality

Non-monotonic effects on wealth and wage Gini

- Low γ^d : inequality \uparrow , diff btw turb vs. non-turb
- High γ^d : inequality \downarrow , all transitions are turbulent

Welfare Analysis

INCREASE IN TURBULENCE RISK

Higher turbulence reduces welfare:

When turbulance risks \uparrow

- Positive effect: precautionary saving increases
- Negative effects:
 - \circ experience loss \uparrow
 - $\circ~$ value of employment $\downarrow~$
 - probability of job finding \downarrow
- Losses outweigh gains
- Unemployed: Turbulent workers have the lowest welfare loss
- Employed: high skill workers have the highest welfare loss

APPENDIX: LABOUR MARKET

• Higher unemployment rate and duration

MODEL PREDICTIONS

REGRESSION TABLES

	Residual Wage Change	Residual Duration
	(1)	(2)
turbulent	-0.156***	4.355***
	(0.000)	(0.094)
non-turbulent	0.017***	-0.798***
	(0.000)	(0.042)
a _{0,m}	0.007***	0.240***
	(0.000)	(0.037)
a _{0,h}	0.007***	0.370***
	(0.000)	(0.037)
Observations	159745	159745
<i>R</i> ²	0.892	0.062

Welfare Mechanisms

APPENDIX

$$(1 + \lambda_{u}(a_{0}, w_{0}))^{1-\sigma} = \frac{\sum_{t=0}^{T-1} \beta^{t} u(\tilde{c}_{t}) + \beta^{T} E_{hh}(a_{T}, w_{0})}{\sum_{t=0}^{T-1} \beta^{t} u(c_{t}) + \beta^{T} E_{hh}(a_{T}, w_{0})} \\ (1 + \lambda_{e}(a_{0}, w_{0}))^{1-\sigma} = \frac{\sum_{t=0}^{T-1} \beta^{t} u(c_{t}) + \beta^{T} E_{hh}(\tilde{a}_{T}, \tilde{w}_{T})}{\sum_{t=0}^{T-1} \beta^{t} u(c_{t}) + \beta^{T} E_{hh}(\tilde{a}_{T}, w_{0})} \\ (1 + \lambda_{ew}(a_{0}, w_{0}))^{1-\sigma} = \frac{\sum_{t=0}^{T-1} \beta^{t} u(c_{t}) + \beta^{T} E_{hh}(\tilde{a}_{T}, w_{0})}{\sum_{t=0}^{T-1} \beta^{t} u(c_{t}) + \beta^{T} E_{hh}(a_{T}, w_{0})} \\ (1 + \lambda_{ew}(a_{0}, w_{0}))^{1-\sigma} = \frac{\sum_{t=0}^{T-1} \beta^{t} u(c_{t}) + \beta^{T} E_{hh}(a_{T}, w_{0})}{\sum_{t=0}^{T-1} \beta^{t} u(c_{t}) + \beta^{T} E_{hh}(a_{T}, w_{0})} \\ (1 + \lambda_{ew}(a_{0}, w_{0}))^{1-\sigma} = \frac{\sum_{t=0}^{T-1} \beta^{t} u(c_{t}) + \beta^{T} E_{hh}(a_{T}, w_{0})}{\sum_{t=0}^{T-1} \beta^{t} u(c_{t}) + \beta^{T} E_{hh}(a_{T}, w_{0})} \\ (1 + \lambda_{ew}(a_{0}, w_{0}))^{1-\sigma} = \frac{\sum_{t=0}^{T-1} \beta^{t} u(c_{t}) + \beta^{T} E_{hh}(a_{T}, w_{0})}{\sum_{t=0}^{T-1} \beta^{t} u(c_{t}) + \beta^{T} E_{hh}(a_{T}, w_{0})} \\ (1 + \lambda_{ew}(a_{0}, w_{0}))^{1-\sigma} = \frac{\sum_{t=0}^{T-1} \beta^{t} u(c_{t}) + \beta^{T} E_{hh}(a_{T}, w_{0})}{\sum_{t=0}^{T-1} \beta^{t} u(c_{t}) + \beta^{T} E_{hh}(a_{T}, w_{0})} \\ (1 + \lambda_{ew}(a_{0}, w_{0}))^{1-\sigma} = \frac{\sum_{t=0}^{T-1} \beta^{t} u(c_{t}) + \beta^{T} E_{hh}(a_{T}, w_{0})}{\sum_{t=0}^{T-1} \beta^{t} u(c_{t}) + \beta^{T} E_{hh}(a_{T}, w_{0})} \\ (1 + \lambda_{ew}(a_{0}, w_{0}))^{1-\sigma} = \frac{\sum_{t=0}^{T-1} \beta^{t} u(c_{t}) + \beta^{T} E_{hh}(a_{T}, w_{0})}{\sum_{t=0}^{T-1} \beta^{t} u(c_{t}) + \beta^{T} E_{hh}(a_{T}, w_{0})} \\ (1 + \lambda_{ew}(a_{0}, w_{0}))^{1-\sigma} = \frac{\sum_{t=0}^{T-1} \beta^{t} u(c_{t}) + \beta^{T} E_{hh}(a_{T}, w_{0})}{\sum_{t=0}^{T-1} \beta^{t} u(c_{t}) + \beta^{T} E_{hh}(a_{T}, w_{0})} \\ (1 + \lambda_{ew}(a_{0}, w_{0}))^{1-\sigma} = \frac{\sum_{t=0}^{T-1} \beta^{t} u(c_{t}) + \beta^{T} E_{hh}(a_{T}, w_{0})}{\sum_{t=0}^{T-1} \beta^{t} u(c_{t}) + \beta^{T} E_{hh}(a_{T}, w_{0})} \\ (1 + \lambda_{ew}(a_{0}, w_{0}))^{1-\sigma} = \frac{\sum_{t=0}^{T-1} \beta^{t} u(c_{t}) + \beta^{T} E_{hh}(a_{T}, w_{0})}{\sum_{t=0}^{T-1} \beta^{t} u(c_{t}) + \beta^{T} E_{hh}(a_{T}, w_{0})}$$

back

TURBULENT VS TRANQUIL

APPENDIX: WELFARE LOSSES

UI ANALYSIS

APPENDIX: ACROSS STEADY STATE

			Tranquil					Turbulent		
ϕ	λ	λ_u	λ_e	λ_{ea}	λ_{ew}	λ	λ_{u}	λ_e	λ_{ea}	λ_{ew}
0.05	-11.3%	-2.8%	-9.0%	-9.0%	0.02%	-24.6%	-11.6%	-17.9%	-16.6%	-3.8%
0.1	-9.7%	-2.7%	-7.4%	-7.4%	0.02%	-22.6%	-11.0%	-15.8%	-14.6%	-3.6%
0.3	-7.5%	-3.1%	-4.7%	-4.7%	0.01%	-17.9%	-10.6%	-10.6%	-9.4%	-2.9%

UI ANALYSIS

APPENDIX: ACROSS STEADY STATE

back