A Robust Theory of Optimal Capital Taxation

Lukas Mayr

University of Essex

EEA-ESEM Annual Congress

Milan, August 22, 2022

Introduction

- High degree of economic inequality
- Extensive policy debate on the "right" amount of redistribution
- Particular attention on capital taxes due to high wealth concentration
- Large variation in policy prescriptions in economics literature ⇒ depend on underlying modeling framework
- ⇒ Goal: Derive robust policy prescriptions that are invariant across a large set of models

Combine two literatures

1 Parametric dynamic general equilibrium:

Judd 1985, Chamley 1986, Atkeson et al. 1999, Aiyagari 1995, Domej and Heathcote 2004, Conesa et al. 2009, Straub and Werning 2020; Chari et al. 2020, Dyrda and Pedroni 2022, Akcigöz et al. 2022, etc.

 \Rightarrow strong parametric assumptions \Rightarrow large variations in results

Combine two literatures

1 Parametric dynamic general equilibrium:

Judd 1985, Chamley 1986, Atkeson et al. 1999, Aiyagari 1995, Domej and Heathcote 2004, Conesa et al. 2009, Straub and Werning 2020; Chari et al. 2020, Dyrda and Pedroni 2022, Akcigöz et al. 2022, etc.

 \Rightarrow strong parametric assumptions \Rightarrow large variations in results

2 Sufficient statistics:

- Piketty and Saez 2012, 2013; Golosov et al. 2014, Saez and Stantcheva 2018
- \Rightarrow exogenous factor prices \Rightarrow assume away 'trickle down' effects
 - capital taxes $\downarrow \Rightarrow$ investment $\uparrow \Rightarrow$ labor demand $\uparrow \Rightarrow$ wages $\uparrow \Rightarrow$ welfare of working poor \uparrow
 - extensive political discussion on the relevance of these effects

Combine two literatures

1 Parametric dynamic general equilibrium:

Judd 1985, Chamley 1986, Atkeson et al. 1999, Aiyagari 1995, Domej and Heathcote 2004, Conesa et al. 2009, Straub and Werning 2020; Chari et al. 2020, Dyrda and Pedroni 2022, Akcigöz et al. 2022, etc.

 \Rightarrow strong parametric assumptions \Rightarrow large variations in results

2 Sufficient statistics:

- Piketty and Saez 2012, 2013; Golosov et al. 2014, Saez and Stantcheva 2018
- \Rightarrow exogenous factor prices \Rightarrow assume away 'trickle down' effects
 - capital taxes $\downarrow \Rightarrow$ investment $\uparrow \Rightarrow$ labor demand $\uparrow \Rightarrow$ wages $\uparrow \Rightarrow$ welfare of working poor \uparrow
 - extensive political discussion on the relevance of these effects
- ⇒ Derive optimality condition in terms of sufficient statistics in general equilibrium, i.e. with endogenous factor prices

Rich dynamic general equilibrium framework

□ nests many models as special cases: Judd, 1984; Chamley, 1985, Aiyagari, 1994; Piketty and Saez, 2013; Saez and Stantcheva 2018; etc.

- Rich dynamic general equilibrium framework
 - □ nests many models as special cases: Judd, 1984; Chamley, 1985, Aiyagari, 1994; Piketty and Saez, 2013; Saez and Stantcheva 2018; etc.
- Derive optimality condition for time-invariant capital tax rate that is robust across all these frameworks

- Rich dynamic general equilibrium framework
 - □ nests many models as special cases: Judd, 1984; Chamley, 1985, Aiyagari, 1994; Piketty and Saez, 2013; Saez and Stantcheva 2018; etc.
- Derive optimality condition for time-invariant capital tax rate that is robust across all these frameworks
- Apply condition to US income and wealth data
 - □ discipline tax-elasticity of equilibrium capital stock using recent **quasi-experimental evidence** on tax-elasticity of wealth

■ Strong discrepancies to standard (exogenous price) framework

Main Findings

- Strong discrepancies to standard (exogenous price) framework
- Two (main) counteracting effects from endogenous prices
 - wage depressing effect of capital taxes reduces the distributional gain
 - $+\,$ response in gross capital returns reduces elasticity of capital investment \Rightarrow lower excess burden

Main Findings

- Strong discrepancies to standard (exogenous price) framework
- Two (main) counteracting effects from endogenous prices
 - wage depressing effect of capital taxes reduces the distributional gain
 - $+\,$ response in gross capital returns reduces elasticity of capital investment \Rightarrow lower excess burden
- Only second effect is important for the very poorest who live solely from government transfers \Rightarrow optimal Rawlsian tax rate $\approx 90\%$

Main Findings

- Strong discrepancies to standard (exogenous price) framework
- Two (main) counteracting effects from endogenous prices
 - wage depressing effect of capital taxes reduces the distributional gain
 - $+\,$ response in gross capital returns reduces elasticity of capital investment \Rightarrow lower excess burden
- Only second effect is important for the very poorest who live solely from government transfers \Rightarrow optimal Rawlsian tax rate $\approx 90\%$
- 'Optimal' capital tax rate strongly declining in labor income ⇒ status quo about optimal for the 70th income percentile

Simplified Model - Households

- Infinitely lived agents with time-constant idiosyncratic working ability η and initial wealth k_0 ; joint distribution $\Gamma(k_0, \eta)$
- Households optimize

$$\begin{split} & \max_{c_t, k_{t+1}, l_t} \sum_{t=0}^{\infty} \beta^t u(c_t, l_t) \\ \text{s.t.} \ & k_{t+1} + c_t = (1 + (1 - \tau_k) r_t) k_t + w_t \eta l_t - \tau_l(w_t \eta l_t) + T_t \quad \forall t \end{split}$$

Firms optimize

$$\max_{K_t \ge 0, L_t \ge 0} \{ F(K_t, L_t) - (r_t + \delta) K_t - w_t L_t \}$$

Factor prices

$$r_t = F_k(K_t, L_t) - \delta$$
 and $w_t = F_l(K_t, L_t)$

 \blacksquare Standard assumptions on F

 \Box nested case with constant factor prices: $F_{kl}(K,L) = 0$

- Government announces one-off change in τ_k at t = 0
- \blacksquare Transfer T adjusts to ensure period-by-period budget clearing
- Agents have perfect foresight

Optimal Capital Taxation

Planner's problem

$$(P) \qquad \max_{\tau_k \le 1} W = \int \omega(k_0, \eta) \sum_{t=0}^{\infty} \beta^t u\big(c_t(k_0, \eta), l_t(k_0, \eta)\big) d\Gamma$$

Optimal Capital Taxation

Planner's problem

$$(P) \qquad \max_{\tau_k \le 1} W = \int \omega(k_0, \eta) \sum_{t=0}^{\infty} \beta^t u\big(c_t(k_0, \eta), l_t(k_0, \eta)\big) d\Gamma$$

Marginal social welfare weights

$$g(k_0,\eta) = \omega(k_0,\eta)u_c(k_0,\eta)$$

Normalization

$$\bar{g} = \int g(k_0, \eta) d\Gamma = 1$$

Welfare Effects of Capital Tax Increases

Local welfare change

$$dW = \left[EQ - MEB\right]Y_k d\tau_k$$

• Equity effect (EQ): redistributional gain

■ Marginal excess burden (*MEB*): loss in revenue through behavioral responses

Welfare Effects of Capital Tax Increases

Local welfare change

$$dW = \left[EQ - MEB\right]Y_k d\tau_k$$

- Equity effect (*EQ*): redistributional gain
- Marginal excess burden (*MEB*): loss in revenue through behavioral responses

Current tax is optimal only if

$$\frac{dW}{d\tau_k} = 0 \iff EQ = MEB$$

Assume $F_{kl} = 0$ (Piketty and Saez 2013; Golosov et al. 2014; Saez and Stantcheva 2018)

- Assume $F_{kl} = 0$ (Piketty and Saez 2013; Golosov et al. 2014; Saez and Stantcheva 2018)
- Equity effect consists only of mechanical effect

$$EQ = EQ_M = 1 - \bar{g}^k$$

- Assume $F_{kl} = 0$ (Piketty and Saez 2013; Golosov et al. 2014; Saez and Stantcheva 2018)
- Equity effect consists only of mechanical effect

$$EQ = EQ_M = 1 - \bar{g}^k$$

Marginal excess burden

$$MEB = \underbrace{\tau_k \bar{\varepsilon}_{K,1-\tau_k}}_{MEB_K} + \underbrace{\frac{\alpha^l}{\alpha^k} \bar{\varepsilon}_{L,1-\tau_k} \left[E_{\Gamma}[\tau_l'] + \operatorname{Cov}_{\Gamma} \left(\tau_l', \frac{y^l}{Y^l} \frac{\bar{\varepsilon}_{l,1-\tau_k}}{\bar{\varepsilon}_{L,1-\tau_k}} \right) \right]}_{MEB_L}$$

- Assume $F_{kl} = 0$ (Piketty and Saez 2013; Golosov et al. 2014; Saez and Stantcheva 2018)
- Equity effect consists only of mechanical effect

$$EQ = EQ_M = 1 - \bar{g}^k$$

Marginal excess burden

$$MEB = \underbrace{\tau_k \bar{\varepsilon}_{K,1-\tau_k}}_{MEB_K}$$

• Assume no income effects on labor supply $\Rightarrow MEB_L = 0$

- Assume $F_{kl} = 0$ (Piketty and Saez 2013; Golosov et al. 2014; Saez and Stantcheva 2018)
- Equity effect consists only of mechanical effect

$$EQ = EQ_M = 1 - \bar{g}^k$$

Marginal excess burden

$$MEB = \underbrace{\tau_k \bar{\varepsilon}_{K,1-\tau_k}}_{MEB_K}$$

- Assume no income effects on labor supply $\Rightarrow MEB_L = 0$
- Optimal tax rate satisfies

$$\tau_k = \frac{1 - \bar{g}^k}{\bar{\varepsilon}_{K, 1 - \tau_k}}$$

- Assume F_{kl} = 0 (Piketty and Saez 2013; Golosov et al. 2014; Saez and Stantcheva 2018)
- Equity effect consists only of mechanical effect

$$EQ = EQ_M = 1 - \bar{g}^k$$

Marginal excess burden

$$MEB = \underbrace{\tau_k \bar{\varepsilon}_{K,1-\tau_k}}_{MEB_K}$$

- Assume no income effects on labor supply $\Rightarrow MEB_L = 0$
- Optimal tax rate satisfies

$$\tau_k = \frac{1 - \bar{g}^k}{\bar{\varepsilon}_{K, 1 - \tau_k}}$$

Discounted average semi-elasticity

$$\bar{\varepsilon}_{K,1-\tau_k} = (1-\beta) \sum_{t=0}^{\infty} \beta^t \varepsilon_{K_t,1-\tau_k}, \text{ where } \varepsilon_{K_t,1-\tau_k} = \frac{d \ln K_t}{d(1-\tau_k)}$$

$$P = EQ_P - MEB_P$$

$$= \underbrace{\frac{\alpha^l}{\alpha^k} \left[(1 - \tau_k) \bar{g}^k - (1 - \bar{\tau}_l') \tilde{g}^l \right] \bar{\varepsilon}_{w, 1 - \tau_k}}_{EQ_P} - \underbrace{\frac{\alpha^l}{\alpha^k} \left[\bar{\tau}_l' - \tau_k \right] \bar{\varepsilon}_{w, 1 - \tau_k}}_{MEB_P},$$

$$P = EQ_P - MEB_P$$

$$= \underbrace{\frac{\alpha^l}{\alpha^k} \left[(1 - \tau_k) \bar{g}^k - (1 - \bar{\tau}'_l) \tilde{g}^l \right] \bar{\varepsilon}_{w, 1 - \tau_k}}_{EQ_P} - \underbrace{\frac{\alpha^l}{\alpha^k} \left[\bar{\tau}'_l - \tau_k \right] \bar{\varepsilon}_{w, 1 - \tau_k}}_{MEB_P},$$

•
$$\tau_k \uparrow \Rightarrow w \downarrow r \uparrow$$

• increases net capital income

$$P = EQ_P - MEB_P$$

$$= \underbrace{\frac{\alpha^l}{\alpha^k} \left[(1 - \tau_k) \bar{g}^k - (1 - \bar{\tau}_l') \tilde{g}^l \right] \bar{\varepsilon}_{w, 1 - \tau_k}}_{EQ_P} - \underbrace{\frac{\alpha^l}{\alpha^k} \left[\bar{\tau}_l' - \tau_k \right] \bar{\varepsilon}_{w, 1 - \tau_k}}_{MEB_P},$$

$$\bullet \ \tau_k \uparrow \Rightarrow w \downarrow r \uparrow$$

- □ increases net capital income
- reduces net labor income

$$P = EQ_P - MEB_P$$

$$= \underbrace{\frac{\alpha^l}{\alpha^k} \left[(1 - \tau_k) \bar{g}^k - (1 - \bar{\tau}_l') \tilde{g}^l \right] \bar{\varepsilon}_{w, 1 - \tau_k}}_{EQ_P} - \underbrace{\frac{\alpha^l}{\alpha^k} \left[\bar{\tau}_l' - \tau_k \right] \bar{\varepsilon}_{w, 1 - \tau_k}}_{MEB_P},$$

$$\bullet \ \tau_k \uparrow \Rightarrow w \downarrow r \uparrow$$

- □ increases net capital income
- $\hfill\square$ reduces net labor income
- □ has an ambiguous effect on revenue

Optimality Condition with Endogenous Prices

Proposition

The effect of a marginal tax increase $d\tau_k > 0$ on social welfare is given by

$$dW = \left[\underbrace{EQ_M + EQ_P}_{EQ} - \underbrace{\left(MEB_K + MEB_L + MEB_P\right)}_{MEB}\right] Y^k d\tau_k.$$

Optimality Condition with Endogenous Prices

Proposition

The effect of a marginal tax increase $d\tau_k > 0$ on social welfare is given by

$$dW = \left[\underbrace{EQ_M + EQ_P}_{EQ} - \underbrace{\left(MEB_K + MEB_L + MEB_P\right)}_{MEB}\right]Y^k d\tau_k.$$

Consequently, the pre-existing capital income tax rate $\tau_k < 1$ is optimal only if it satisfies

$$\tau_k = \frac{1 - \bar{g}^k - MEB_L + P}{\bar{\varepsilon}_{K, 1 - \tau_k}}$$

	MEB_K	MEB_L	MEB_P	MEB
Exogenous prices ($\sigma = \infty$)	0.8775	0.0000	$0.000 \\ -0.1497$	0.8775
Endogenous prices ($\sigma = 0.6$)	0.2589	0.0196		0.1287

Table: Decomposition of the Marginal Excess Burden: numbers in dollar per mechanical dollar in capital tax revenue raised; MEB_K : loss in capital income tax revenue due to lower savings; MEB_L : loss in labor income tax revenue due to lower labor supply; MEB_P : revenue impact of changing factor prices due to differential taxation of capital and labor; Frisch elasticity: $\gamma_l = 0.5$

- **Problem:** $\bar{\epsilon}_{K,1-\tau_k}$ is unmeasured policy elasticity (Hendren 2016)
- \blacksquare Summarizes overall reaction of K taking joint adjustments in T,w,r into account
- **Solution:** derive mapping of $\bar{\epsilon}_{K,1-\tau_k}$ to actually estimated wealth elasticities (Jakobsen et al. 2020) using envelope conditions of households' and firms' optimization problems

The Tax-Elasticity of Individual Wealth

Figure: Capital Supply Elasticity: net-of-wealth-tax elasticities are translated to net-of-capital-tax elasticities using the return of r = 6.58%; dotted line is model implied individual response if only τ_k changes (fixing T, w, r).

The Elasticity of the Equilibrium Capital Stock

Figure: Capital Elasticities: black solid line and red dotted line as before; red dashed line ($\epsilon_{K_t,1-\tau_k}^{ex}$): policy elasticity in the exogenous price case ($\sigma = \infty$); blue dash-dotted line line ($\epsilon_{K_t,1-\tau_k}$): policy elasticity with endogenous prices ($\sigma = 0.6$); Frisch elasticity of labor supply $\gamma_l = 0.5$.

The Equity Effect

Figure: The Equity Effect: different substitution elasticities σ and Frisch elasticities γ_l ; in USD per dollar of revenue mechanically raised; EQ_M : mechanical effect (red solid line, same for all σ), EQ_P : redistributional effect of factor price changes; value p on x-axis corresponds to the social welfare function that concentrates the whole welfare weight at percentile p of the total gross income distribution.

The Total Welfare Effect

Figure: Welfare Change: in USD per dollar of revenue mechanically raised; EQ: equity effect, MEB: marginal excess burden; value p on x-axis corresponds to the social welfare function that concentrates the whole welfare weight at percentile p of the total gross income distribution; Frisch elasticity of labor supply: $\gamma_l = 0.5$.

The Optimal Capital Tax Rate

Figure: Optimal Capital Tax Rates: value p on the x-axis corresponds to the social welfare function that concentrates the whole welfare weight at percentile p of the total gross income distribution; capital-labor substitution elasticities $\sigma = 0.6$ (endogenous prices) and $\sigma = \infty$ (exogenous prices); benchmark Frisch elasticity of labor supply ($\gamma_l = 0.5$).

- Paper advances sufficient statistic approach to dynamic GE setting
- Strong discrepancies to policy prescriptions from existing formulas with exogenous prices
- Bottom 70% of US income distribution desire significantly higher capital tax rates
- Desired capital tax increases are strongly declining in labor income due to depressing effect on wages