Bounding Program Benefits When Participation is Misreported

Denni Tommasi* and Lina Zhang⁺

*University of Bologna and IZA, +University of Amsterdam and Tinbergen Institute

EEA-ESEM 2022

Tommasi - Zhang Bounding Program Benefits When Participation is Misreported

Introduction

Aim: Program benefits under endogenous participation

Problem: participation is endogenously misreported

- Stigma of welfare program, privacy concern, social bads
- \rightarrow This paper: measure program benefits on "those who really take it up"

Model setup

۲

$$Y = DY_1 + (1 - D)Y_0,$$

$$D = \sum_{k=0}^{K} 1[Z = z_k]D_k,$$

$$T = DT_1 + (1 - D)T_0$$

- Z binary, discrete and multiple discrete IV(s)
 - Mogstad-Torgovitsky-Walters (2020) more than 50% papers in top journals "use multiple IVs"
- $D \in \{0,1\}$ true treatment
- $T \in \{0, 1\}$ misreported treatment
- $(T_0, T_1) \in \{0, 1\}^2$ misclassification and $(Y_1, Y_0) \not\perp (T_1, T_0)$

Target Estimands

• Local average treatment effect (Imbens-Angrist, 1994)

$$LATE_{k} = \alpha_{k}^{*} = E[Y_{1} - Y_{0}|C_{k}]$$

Compliers = $C_{k} = \{D_{k} = 1, D_{k-1} = 0\}$

IV estimand

$$\alpha^* = \frac{\operatorname{Cov}(Y,g(Z))}{\operatorname{Cov}(D,g(Z))} = \sum_{k=1}^K \gamma_k^* \alpha_k^*$$

where known fun $g: \Omega_Z \mapsto \mathbb{R}$ and weight $\gamma_k^* \geq 0$ and $\sum_k \gamma_k^* = 1$

Bias due to misclassification

Identifiable estimand

$$\alpha = \frac{\mathsf{Cov}(Y, g(Z))}{\mathsf{Cov}(\mathbf{T}, g(Z))}$$

		false positive w^p					
Rel. Bias $\frac{\alpha}{\alpha^*}$ –	- 1	0	0.05	0.10	0.20	0.30	0.40
	0	0	0.05	0.11	0.25	0.43	0.67
	0.05	0.05	0.11	0.18	0.33	0.54	0.82
	0.10	0.11	0.18	0.25	0.43	0.67	1.00
Taise negative w	0.20	0.25	0.33	0.43	0.67	1.00	1.50
	0.30	0.43	0.54	0.67	1.00	1.50	2.33
	0.40	0.67	0.82	1.00	1.50	2.33	4.00

Note: $w^n = \Pr(T = 0 | D = 1); w^p = \Pr(T = 1 | D = 0)$

- Misreporting inflates treatment effect: $|\alpha^*| < |\alpha|$
- Severe bias even with infrequent errors

Contribution

- Partial identification of LATE and IV estimand with discrete IV(s)
- External information of misreporting rates to tighten bounds
- Se-examine benefits of the 401(k) pension plan on savings
 - improve comparable bound in the literature by 36%
- \rightarrow STATA package "ivbounds" (Lin-Tommasi-Zhang, 2021)

Literature

- Exogenous treatment & exogenous misclassification
 - Point id. (e.g., Mahajan (2006), Lewbel (2007), and Hu (2008))
 - Partial id. (e.g., Klepper (1988), Bollinger (1996))
- Endogenous treatment & exogenous misclassification
 - Point id. (e.g., Battistin-Nadai-Sianesi (2014), Yanagi (2017), DiTraglia-Garcia Jimeno (2018), Calvi-Lewbel-Tommasi (2021))
 - Partial id. (e.g., Calvi-Lewbel-Tommasi (2021))
- Endogenous treatment & endogenous misclassification
 - Point id. (e.g., Nguimkeu-Denteh-Tchernis (2018))
 - Partial id. (e.g., Ura (2018))
- External information/administrative data
 - e.g., Dushi-Iams (2010), Kreider-Gundersen-Jolliffe (2012), Meyer-Mittag-Goerge (2018), Meyer-Mittag (2019)

Assumptions

Assumption 1. Imbens and Angrist (1994)

Valid IV and Monotonicity

Note: monotonicity under multiple IVs \Rightarrow homogeneous treatment choice across individuals

Assumption 2. Treatment misclassification

- $Z \perp (T_1, T_0)$
- (T is better than pure guess on D) For $d = \{0, 1\}$,

$$Pr(T = 0|C_k, D = 1) < 0.5, Pr(T = 1|C_k, D = 0) < 0.5$$

Bias in α

Theorem. Naive IV estimand

Let Assumptions 1-2 hold:

$$\alpha = \frac{\operatorname{Cov}(Y, g(Z))}{\operatorname{Cov}(T, g(Z))} = \sum_{k=1}^{K} \gamma_k \alpha_k^*,$$

Corollary. Bias of α

Let Assumptions 1-2 hold:

$$lpha^* = \xi lpha, ext{ where } \xi = \sum_{k=1}^{K} \gamma_k^* \xi_k,$$

denote

$$\xi_k = 1 - Pr(T = 0 | C_k, D = 1) - Pr(T = 1 | C_k, D = 0)$$

$$\xi = 1 - w^n - w^p \in [0, 1].$$

Bounding Probability of Compliers

• Why
$$Pr(C_k)$$
??
$$\mathsf{LATE} = \alpha_k^* = \frac{ITT_k}{Pr(C_k)}$$

where

$$\begin{split} ITT_k = & E[Y|Z=z_k] - E[Y|Z=z_{k-1}] \quad \text{identifiable} \\ Pr(C_k) = & E[D|Z=z_k] - E[D|Z=z_{k-1}] \quad \text{unknown.} \end{split}$$

• Solution: Total variation distance

$$TV_k = \frac{1}{2} \int \left| f_{(Y,T)|Z=z_k}(x) - f_{(Y,T)|Z=z_{k-1}}(x) \right| dx.$$

- distributional "ITT" effect of IV(s) on observables (Y,T)

Bounding Probability of Compliers

Lemma (Ura, 2018) Use subpopulation $Z = z_k$ and $Z = z_{k-1}$, $TV_k < Pr(C_k) < 1$.

Lemma 1. Multiple and multi-valued IV(s) Under Assumptions 1-2, for $\forall k = 1, 2, ..., K$, $TV_k \leq Pr(C_k) \leq 1 - \sum_{k' \neq k} TV_{k'}.$

• We gain identification power by using multiple total variation distances

Bounding LATE
$$\alpha_k^* = E[Y_1 - Y_0|C_k] = ITT_k/Pr(C_k)$$

Theorem

(1) Bound of LATE for C_k :

$$\alpha_k^* \in \begin{cases} \left[\frac{ITT_k}{1 - \sum_{k' \neq k} TV_{k'}}, \frac{ITT_k}{TV_k}\right], & \text{if } ITT_k > 0, \\ \{0\}, & \text{if } ITT_k = 0, \\ \left[\frac{ITT_k}{TV_k}, \frac{ITT_k}{1 - \sum_{k' \neq k} TV_{k'}}\right], & \text{if } ITT_k < 0; \end{cases}$$
(1)

(2) Set in (1) is sharp if $TV_k > 0$ and $TV_{k'} = 0$ for $\forall k' \neq k$

Bounding LATE $\alpha_k^* = E[Y_1 - Y_0|C_k]$

• Our bounds \subseteq two-value IV bounds (Ura, 2018) \subseteq [ITT_k, α_k], where

$$\alpha_k = \frac{E[Y|Z = z_k] - E[Y|Z = z_{k-1}]}{E[T|Z = z_k] - E[T|Z = z_{k-1}]}$$

Tommasi - Zhang Bounding Program Benefits When Participation is Misreported

Partial identification of α^*

Strategy 1 & 2 + no external info.

Strategy 1. $\alpha^* = \sum_{k=1}^{K} \gamma_k^* \alpha_k^*$ Because $\min_k \{\alpha_k^*\} \le \alpha^* \le \max_k \{\alpha_k^*\}$ $\alpha^* \in \bigcup_k \{\text{bounds of } \alpha_k^*\}.$

Strategy 2. $\xi = \sum_{k=1}^{K} \gamma_k^* \xi_k$, where $\xi_k = \frac{E[T|Z=z_k] - E[T|Z=z_{k-1}]}{Pr(C_k)}$ Because $\min_k \{\xi_k\} \le \xi \le \max_k \{\xi_k\}$ and $\alpha^* = \xi \alpha$ $\alpha^* \in \alpha \times \bigcup_k \{\text{bounds of } \xi_k\}.$

• Strategy 2 is better than 1, if less heterogeneous in ξ_k across k.

Partial identification of α^*

Strategy 3 + external info.

External information

• Administrative records, small validation studies, or repeated measures

Strategy 3. $\alpha^* = \xi \alpha$

Suppose $\xi \in [\underline{\xi}, \overline{\xi}] \in [0, 1]$ with known $\underline{\xi}$ and $\overline{\xi}$.

(1) If
$$\alpha \ge 0$$
, then $0 < \xi \alpha \le \alpha^* \le \overline{\xi} \alpha$.

(2) If
$$\alpha \leq 0$$
, then $\overline{\xi}\alpha \leq \alpha^* \leq \underline{\xi}\alpha < 0$.

• Strategy 3 is at least the same or better than Strategy 2

• Point identification if $\xi = 1 - w^n - w^p$ is known

Numerical Illustration

Table: Identified Sets of LATE ($w^n = 0.1, w^p = 0.05$)

IV	α_1^*	$[ITT_1, \ \alpha_1]$	two-value IV bound	our bound	
strength				single proxy	multi proxy
low	5	[0.68, 6.54]	[0.68, 5.21]	[1.91, 5.21]	[1.93, 5.13]
high	0	[1.42, 6.31]	[1.42, 5.19]	[3.74, 5.19]	[3.77, 5.12]
IV	α_2^*	$[ITT_2, \alpha_2]$	two-value IV bound	our bound	
strength				single proxy	multi proxy
low	5	[1.70, 6.02]	[1.70, 5.16]	[2.48, 5.16]	[2.49, 5.09]
high	5	[2.67, 5.76]	[2.67, 5.15]	[3.72, 5.15]	[3.76, 5.08]

• our bound \subseteq two-value IV bound \subseteq $[ITT_k, \alpha_k]$

• Stronger IV strength \implies narrower bounds

Numerical Illustration

Table: Bounds of α^* ($\alpha^* = 5, w^n \approx 0.1, w^p \approx 0.05$)

IV	α	S1	S 2	S3	S3
strength				$\xi \in [1 - 2w^n, 1 - w^n]$	$\xi = 1 - w^n - w^p$
low	6.2	[1.91, 5.21]	[1.84, 5.37]	[4.80, 5.34]	5.10
high	5.9	[3.72, 5.19]	[3.61, 5.31]	[4.71, 5.30]	5.00

• Biased point identification (red) with information of ξ

- Inference
 - Testing moment inequalities (Chernozhukov-Chetverikov-Kato, 2019)
 - Intersecting bounds and bias correction (Chernozhukov-Lee-Rosen, 2013)

Conclusion

- Measure the program benefits when participation is misclassified
- Our method has several applications
 - leading identification strategy
 - robustness check
 - sensitivity analysis

Empirical example

• Benefit of 401(k) pension plan on savings?

- Aim: increase savings via tax deduction
- IVs: firm eligibility + duration of exposure to the plan (from 1981)
- Endogenous participation frequently misreported
- In SIPP:

 w^n =17% of participants self-report as non-participants w^p =10% of non-participants self-report as participants

Table: Empirical Results (Panel A: Binary instrument)

Naiv	εα		Bounds LATE α^*				
2SLS Abadie	$\frac{cov(Y,Z)}{cov(T,Z)}$	Ura	Strategy $1 \equiv 2$	Strategy 3			
(2003)		(2018)		$\xi \in [1-2w^n, 1-w^n]$	$\xi = 1 - w^n - w^p$		
9.4 (5.3, 13.5)	16.3 (6.0, 27.6)	(4.4, 28.3)	(4.4, 28.3)	(4.7, 21.2)	11.9 (5.2, 18.6)		

Note: 95% CI is in parentheses.

• Compared Ura's, our bounds in Strategy 3 is $1 - \frac{(21.2-4.7)-(28.3-4.4)}{28.3-4.4} = 36\%$ narrower in width

Table: Empirical Results (Panel B: Discrete instrument)

	Naive α	Bounds WLATE α^*				
		Strategy 1	Strategy 2	Strategy 3		
				$\xi \in [1-2w^n,1-w^n]$	$\xi = 1 - w^n - w^p$	
Stratum 1	21.8 (16.3, 27.3)	(2.5, 42.4)	(2.9, 29.4)	(11.2, 23.0)	15.9 (12.2, 20.2)	
Stratum 2	<mark>23.1</mark> (19.2, 27.0)	(2.3, 70.1)	(4.6, 28.2)	(12.7, 22.4)	16.9 (14.0, 19.7)	
Stratum 3	<mark>54.5</mark> (44.3, 64.8)	(19.2, 120.9)	(15.5, 68.2)	(29.6, 53.2)	<mark>39.8</mark> (32.8, 46.7)	

<u>Note</u>: 95% CI is in parentheses. In Panel B, stratify samples based on Pr(T = 1|X).

 Compare two point estimates: naive α (red) is 37% larger than that in Strategy 3 (blue)

Inference

Testing for moment inequalities (Chernozhukov-Chetverikov-Kato (2019))

Theorem: CI of LATEs

Denote $C_k(\beta)$ as the confidence interval of α_k .

(i) (Size) $C_k(\beta)$ controls the asymptotic size uniformly over \mathcal{P}_0

(ii) (Power) For any $\alpha_k \notin \Theta_k$, $\Pr[\alpha_k \notin C_k(\beta)] \to 1$.

Corollary. CI of α^*

Denote $\mathcal{C}(\beta)$ as the confidence interval of α^* . For all three strategies,

$$\liminf_{n \to \infty} \inf_{\mathbf{P} \in \mathcal{P}_0, \ \alpha^* \in \Theta(\mathbf{P})} \Pr\left[\alpha^{IV} \in \mathcal{C}(\beta)\right] \ge 1 - \beta,$$

with significance level β .

low IV strength, $\alpha^* = 5$, $\alpha \approx 6$

Figure: Coverage Rates of the 95% Confidence Intervals

high IV strength, $\alpha^* = 5$, $\alpha \approx 6$

