What Drives Wage Stagnation: Monopsony or Monopoly?

Shubhdeep Deb ${ }^{1}$ Jan Eeckhout ${ }^{1}$ Aseem Patel ${ }^{2}$ Lawrence Warren ${ }^{3}$
${ }^{1}$ UPF Barcelona
${ }^{2}$ Essex University
${ }^{3}$ US Census Bureau
EEA/ESEM
25 August, 2022

Wage Stagnation

U.S Census: Tradeable sectors

Mechanisms

- Explore two mechanisms behind wage stagnation:

1. Monopsony: direct effect from imperfect labor market
\rightarrow Lower firm-specific wages for own workers
2. Monopoly: output market power affects labor demand - General Equilibrium effect
\rightarrow Lowers aggregate, economy-wide wages

Mechanisms

- Explore two mechanisms behind wage stagnation:

1. Monopsony: direct effect from imperfect labor market
\rightarrow Lower firm-specific wages for own workers
2. Monopoly: output market power affects labor demand - General Equilibrium effect
\rightarrow Lowers aggregate, economy-wide wages
\therefore Objective:
3. Explain mechanism behind decoupling of wages and productivity
4. Decomposition: measure contribution from Monopsony (markdowns) vs. Monopoly (markups)

Motivation

- Evidence on market power:

1. Monopoly power (markups)

De Loecker, Eeckhout, Unger (2020); Hall (2018)
2. Monopsony power: (markdowns)

Berger, Herkenhoff, Mongey (2020); Hershbein, Macaluso, Yeh (2018)

Motivation

- Evidence on market power:

1. Monopoly power (markups)

De Loecker, Eeckhout, Unger (2020); Hall (2018)
2. Monopsony power: (markdowns)

Berger, Herkenhoff, Mongey (2020); Hershbein, Macaluso, Yeh (2018)

- Challenge for measurement: marginal cost directly not observable
- Challenge for measurement: we don't observe who competes
- Our approach: structurally estimate Strategic Competition in GE:

1. Jointly Measure Markups and Markdowns
2. Estimate Market Structure

Findings

1. Competition has decreased over time:

- Markups increase substantially
- Markdowns are stable, increase only marginally

2. Wage stagnation: decoupling wages-productivity
3. Decomposition monopoly vs. monopsony: dominant force is monopoly

Model Setup

Markets

- Continuum of markets $j \in[0, J]$
- Finite number of establishments $i=1, \ldots, l$
- Finite numbers of firms in each market $n=1, \ldots, N$ (set of establishments i in firm $n: \mathcal{I}_{n j}$)

Household Preferences

- maximizes static utility

$$
\max _{C_{i n j}, L_{i n j}} U\left(C-\frac{1}{\bar{\phi}^{\frac{1}{\phi}}} \frac{L^{\frac{\phi+1}{\phi}}}{\frac{\phi+1}{\phi}}\right)
$$

s.t. $P C=L W+\Pi$

- CES preferences over Consumption and Labor

$$
\begin{aligned}
& C=\left(\int_{j} J^{\frac{1}{\theta}} C_{j}^{\frac{\theta-1}{\theta}} d j\right)^{\frac{\theta}{\theta-1}}, \quad C_{j}=\left(\sum_{i} I^{-\frac{1}{\eta}} C_{i n j}^{\frac{\eta-1}{\eta}}\right)^{\frac{\eta}{\eta-1}} \\
& L=\left(\int_{j} J^{\frac{1}{\theta}} L_{j}^{\frac{\hat{\theta}+1}{\theta}} d j\right)^{\frac{\hat{\theta}}{\hat{\theta}+1}}, \quad L_{j}=\left(\sum_{i} I^{\frac{1}{\eta}} L_{i n j}^{\frac{\hat{n}}{\eta}}\right)^{\frac{\hat{\eta}}{\hat{\eta}+1}}
\end{aligned}
$$

Model Setup

Technology

Firm $n \in\{1, \ldots, N\}$ in sector $j \in[0, J]$

$$
\Pi_{n j}=\max _{\left\{Y_{i n j}\right\}_{i \in \mathcal{I}_{n j}}} \sum_{i \in \mathcal{I}_{n j}}[\underbrace{P_{i n j}\left(Y_{i n j}, Y_{-i n j}\right) Y_{i n j}}_{\text {Sales }}-\underbrace{W_{i n j}\left(L_{i n j}, L_{-i n j}\right) L_{i n j}}_{\text {Variable costs }}]
$$

subject to

$$
Y_{i n j}=A_{i n j} L_{i n j}
$$

Market Structure

The same set of N firms compete in goods and labor market

Prices and Equilibrium

Cournot-Nash Competition in goods markets and labor markets

Equilibrium Solution

Producer Optimality

- The firm's first order condition for establishment i can be written as:

$$
P_{i n j} \underbrace{\left(1+\varepsilon_{i n j}^{P}\right)}_{\mu_{i n j}^{-1}} A_{i n j}=W_{i n j} \underbrace{\left(1+\varepsilon_{i n j}^{W}\right)}_{\delta_{i n j}}
$$

Equilibrium Solution

Producer Optimality

- The firm's first order condition for establishment i can be written as:

$$
P_{i n j} \underbrace{\left(1+\varepsilon_{i n j}^{P}\right)}_{\mu_{i n j}^{-1}} A_{i n j}=W_{i n j} \underbrace{\left(1+\varepsilon_{i n j}^{W}\right)}_{\delta_{i n j}}
$$

- Markups and Markdowns

$$
\begin{array}{cl}
\mu_{i n j}=\frac{P_{i n j}}{M C_{i n j}}=\frac{1}{1+\varepsilon_{i n j}^{P}} ; \quad & \varepsilon_{i n j}^{P}=-\left[\frac{1}{\theta} s_{n j}+\frac{1}{\eta}\left(1-s_{n j}\right)\right] \\
\delta_{i n j}=\frac{M R P L_{i n j}}{W_{i n j}}=1+\varepsilon_{i n j}^{W} ; & \varepsilon_{i n j}^{W}=\left[\frac{1}{\hat{\theta}} e_{n j}+\frac{1}{\hat{\eta}}\left(1-e_{n j}\right)\right]
\end{array}
$$

Equilibrium Solution

Producer Optimality

- The firm's first order condition for establishment i can be written as:

$$
P_{i n j} \underbrace{\left(1+\varepsilon_{i n j}^{P}\right)}_{\mu_{i n j}^{-1}} A_{i n j}=W_{i n j} \underbrace{\left(1+\varepsilon_{i n j}^{W}\right)}_{\delta_{i n j}}
$$

- Markups and Markdowns

$$
\begin{array}{cl}
\mu_{i n j}=\frac{P_{i n j}}{M C_{i n j}}=\frac{1}{1+\varepsilon_{i n j}^{P}} ; \quad & \varepsilon_{i n j}^{P}=-\left[\frac{1}{\theta} s_{n j}+\frac{1}{\eta}\left(1-s_{n j}\right)\right] \\
\delta_{i n j}=\frac{M R P L_{i n j}}{W_{i n j}}=1+\varepsilon_{i n j}^{W} ; & \varepsilon_{i n j}^{W}=\left[\frac{1}{\hat{\theta}} e_{n j}+\frac{1}{\hat{\eta}}\left(1-e_{n j}\right)\right]
\end{array}
$$

- Mechanism

$$
P_{i n j} A_{i n j} \times \mu_{i n j}^{-1}=W_{i n j} \times \delta_{i n j} \Rightarrow \underbrace{W_{i n j}}_{\text {Wage }}=\underbrace{\frac{R_{i n j}}{L_{i n j}}}_{\text {Rev/worker }} \times \underbrace{\mu_{i n j}^{-1}}_{\text {Markup }} \times \underbrace{\delta_{i n j}^{-1}}_{\text {Markdown }}
$$

Quantitative Exercise

- U.S. Census Bureau Longitudinal Business Database (LBD): Tradeable Sectors
- In the data we observe

1. Employment by establishment: $L_{i n j}$
2. Average Wages by establishment: $W_{i n j}=\frac{\text { Wage } B_{i i l} i_{i j j}}{L_{i n j}}$
3. Revenue: $R_{i n j}$
4. Industry classification NAICS, SIC

- Market Assignment: Randomly assign l_{j} establishments in same industry into a market. Randomly assign l_{j} establishments into N subsets of size l_{j} / N

Quantitative Exercise

Estimation

	Input $/$ data	Output	
1. Common elasticities	$W_{i n j}, L_{i n j}$	$\hat{\theta}, \hat{\eta}$	
2. Firm-specific technology	$L_{i n j}$	$A_{i n j}, \mu_{i n j}, \delta_{i n j}$	system of FOCs given N
3. Market Structure	$R_{i n j} / W_{i n j} L_{i n j}$	N	

Estimating Labor Elasticities

Estimating Within and Between Market Substitutability

$$
\ln W_{i n j t}^{*}=\mathrm{c}_{j t}+\gamma \ln L_{j t}+\beta \ln L_{i n j t}+\underbrace{\alpha_{i n j}+\epsilon_{i n j t}}_{\varepsilon_{i n j t}}
$$

where we define $\beta=\frac{1}{\hat{\eta}}$ and $\gamma=\left(\frac{1}{\hat{\theta}}-\beta\right)$
Use Two-Stage Least Squares to estimate β and γ, sequentially.
Rely on Berger, Herkenhoff and Mongey (2021) and Giroud and Rauh (2019)

- Exploit variation in state corporate taxes as instruments for employment

Preference Estimates and Parameters

Variable	Value		Source
$\hat{\theta}$	1.71	Input market: Between-market elasticity	estimated
$\hat{\eta}$	3.49	Input market: Within market elasticity	estimated
θ	1.2	Output market: Between-market elasticity	DLEM (2021)
η	5.75	Output market: Within market elasticity	DLEM (2021)
ϕ	0.25	Elast. Aggregate LS	Chetty e.a. (2011)
\boldsymbol{l}	32	Establishments in each market	Externally set

Backing out $\left\{A_{i n j}, \mu_{i n j}, \delta_{i n j}\right\}$

- For given market structure (N) and preferences $\{\eta, \theta, \hat{\eta}, \hat{\theta}\}$, using data on $\left\{L_{i n j}\right\}$ we can recover $\left\{A_{i n j}, \mu_{i n j}, \delta_{\text {inj }}\right\}$.
- System of / equations and / unknowns for all establishments i, n in each market j

$$
P_{i n j} \underbrace{\left(1+\varepsilon_{i n j}^{P}\right)}_{\mu_{i n j}^{-1}} A_{i n j}=W_{i n j} \underbrace{\left(1+\varepsilon_{i n j}^{W}\right)}_{\delta_{i n j}}
$$

Backing out $\left\{A_{i n j}, \mu_{i n j}, \delta_{i n j}\right\}$

- For given market structure (N) and preferences $\{\eta, \theta, \hat{\eta}, \hat{\theta}\}$, using data on $\left\{L_{\text {inj }}\right\}$ we can recover $\left\{A_{i n j}, \mu_{i n j}, \delta_{i n j}\right\}$.
- System of I equations and $/$ unknowns for all establishments i, n in each market j

$$
\begin{aligned}
& \frac{1^{\frac{1}{\theta}}}{} \frac{1}{l} \frac{1}{\eta}\left(A_{i n j} L_{i n j}\right)^{\frac{1}{\eta}}\left[\left(\frac{1}{l}{ }^{\frac{1}{\eta}} \sum_{i}\left(A_{i n j} L_{i n j}\right)^{\frac{\eta-1}{\eta}}\right)^{\frac{\theta-\eta}{(\eta-1) \theta}}\right] \underbrace{\left[1-\frac{1}{\theta} \frac{\sum_{i \in \mathcal{I}_{n j}}\left(A_{i n j} L_{i n j}\right)^{\frac{\eta-1}{\eta}}}{\sum_{i}\left(A_{i n j} L_{i n j}\right)^{\frac{\eta-1}{\eta}}}-\frac{1}{\eta}\left[1-\frac{\sum_{i \in \mathcal{I}_{n j}}\left(A_{i n j} L_{i n j}\right)^{\frac{\eta-1}{\eta}}}{\sum_{i}\left(A_{i n j} L_{i n j}\right)^{\frac{\eta-1}{\eta}}}\right]\right]} \\
& \text { Inverse Markup: } \mu_{i n j}^{-1} \\
& =\frac{1}{Z} \frac{1}{J} \frac{-1}{\hat{\theta}}_{\frac{1}{l}}^{\frac{-1}{\hat{\eta}}} \frac{\left(L_{i n j}\right)^{\frac{1}{\eta}}}{A_{i n j}}\left[\left(\frac{1}{l}{ }^{\frac{-1}{\hat{\eta}}} \sum_{i}\left(L_{i n j}\right)^{\frac{\hat{\eta}+1}{\hat{\eta}}}\right)^{\frac{\hat{\eta}-\hat{\theta}}{(\hat{\eta}+1) \hat{\theta}}}\right] \underbrace{\left[1+\frac{1}{\hat{\theta}} \frac{\sum_{i \in \mathcal{I}_{n j}}\left(L_{i n j}\right)^{\frac{\hat{\eta}+1}{\hat{\eta}}}}{\sum_{i}\left(L_{i n j}\right)^{\frac{\hat{\eta}+1}{n}}}+\frac{1}{\hat{\eta}}\left[1-\frac{\sum_{i \in \mathcal{I}_{n j}}\left(L_{i n j}\right)^{\frac{\hat{\eta}+1}{\hat{\eta}}}}{\sum_{i}\left(L_{i n j}\right)^{\frac{\hat{\eta}+1}{n}}}\right]\right]}_{\text {Markdown: } \delta_{i n j}}
\end{aligned}
$$

where $Z=W^{-1} L^{\frac{1}{\theta}} Y^{\frac{1}{\theta}}$ and the aggregate price P is normalized to 1 .

Estimated Technology Distribution
$A_{i n j}$

Estimated N

Average Markups and Markdowns

Decoupling Wages-Productivity

(a) Data

(b) Model

Decoupling Wages-Productivity

$$
W=\text { GDP } / \text { Worker } \times \mu^{-1} \times \delta^{-1} \times \Omega
$$

Counterfactual Economies

Wage Decomposition

Counterfactual Economies

Wage Growth/Stagnation

Conclusion

- We propose a novel method to:

1. Jointly model and measure monopsony and monopoly
2. Back out market structure

- Our Main Findings:

1. Market Power has increased over time:

- Markups increase from 1.45 to 1.93
- Markdowns are stable, increase only marginally from 1.33 to 1.38

2. Wage stagnation: decoupling wages-productivity
3. Decomposition: indirect effect from monopoly dominates direct effect from monopsony 69% of wage level; 80% of the wage stagnation

What Drives Wage Stagnation: Monopsony or Monopoly?

Shubhdeep Deb ${ }^{1}$ Jan Eeckhout ${ }^{1}$ Aseem Patel ${ }^{2}$ Lawrence Warren ${ }^{3}$
${ }^{1}$ UPF Barcelona
${ }^{2}$ Essex University
${ }^{3}$ US Census Bureau
EEA/ESEM
25 August, 2022

Producer Optimality

$$
\begin{gathered}
P_{i n j}+\frac{\partial P_{i n j}}{\partial Y_{i n j}} Y_{i n j}+\sum_{i^{\prime} \in \mathcal{I}_{n j} / i}\left(\frac{\partial P_{i^{\prime} n j}}{\partial Y_{i n j}} Y_{i^{\prime} n j}\right)=\frac{1}{A_{i n j}}\left[W_{i n j}+\frac{\partial W_{i n j}}{\partial L_{i n j}} L_{i n j}+\sum_{i^{\prime} \in \mathcal{I}_{n j} / i}\left(\frac{\partial W_{i^{\prime} n j}}{\partial L_{i n j}} L_{i^{\prime} n j}\right)\right] \\
P_{i n j}[1-\underbrace{1-\frac{1}{\theta} s_{n j}-\frac{1}{\eta}\left(1-s_{n j}\right)}_{\epsilon_{i n j}^{P}}] A_{i n j}=W_{i n j}[1+\underbrace{\frac{1}{\hat{\theta}} e_{n j}+\frac{1}{\hat{\eta}}\left(1-e_{n j}\right)}_{\epsilon_{i n j}^{W}}]
\end{gathered}
$$

We define our markup $\mu_{i n j}=\frac{P_{i n j}}{M C_{i n j}}$ and markdown $\delta_{i n j}=\frac{M R P L_{i n j}}{W_{i n j}}$

$$
\mu_{i n j}=\frac{1}{1+\epsilon_{i n j}^{P}}=\left[1-\frac{1}{\theta} s_{n j}-\frac{1}{\eta}\left(1-s_{n j}\right)\right]^{-1} \quad \text { and } \quad \delta_{i n j}=1+\epsilon_{i n j}^{W}=\left[1+\frac{1}{\hat{\theta}} e_{n j}+\frac{1}{\hat{\eta}}\left(1-e_{n j}\right)\right] .
$$

Model Solution

Rearranging FOC, we get:

$$
\begin{gathered}
P_{i n j}=\frac{\left[1+\frac{1}{\hat{\theta}} e_{n j}+\frac{1}{\hat{\eta}}\left(1-e_{n j}\right)\right]}{\left[1-\frac{1}{\theta} s_{n j}-\frac{1}{\eta}\left(1-s_{n j}\right)\right]} \frac{W_{i n j}}{A_{i n j}} \\
\left.s_{i n j}=\frac{P_{i n j}^{1-\eta}}{\sum_{i, n} P_{i n j}^{1-\eta}}=\frac{\left[\frac{1+\frac{1}{\hat{\theta}} e_{n j}+\frac{1}{\hat{\eta}}\left(1-e_{n j}\right)}{1-\frac{1}{\theta} s_{n j}-\frac{1}{\eta}\left(1-s_{n j}\right)} \frac{e_{i n j}^{\frac{1}{1+\hat{\eta}}}}{A_{i n j}}\right]^{1-\eta}}{\sum_{i^{\prime}, n^{\prime}}\left[\frac{1+\frac{1}{\hat{\theta}} e_{n^{\prime} j}+\frac{1}{\hat{\eta}}\left(1-e_{n^{\prime} j}\right)}{1-\frac{1}{\theta} s_{n^{\prime} j}-\frac{1}{\eta}\left(1-s_{n^{\prime} j}\right)} e_{i^{\prime} n^{\prime} n^{\prime}}^{\frac{1}{1+\hat{\eta}}}\right]_{i^{\prime} n^{\prime} j}^{1-\eta}}\right]^{1-\eta}
\end{gathered}
$$

where

$$
e_{i n j}=\left[\sum_{i^{\prime}, n^{\prime}}\left(\left(\frac{s_{i^{\prime} n^{\prime} j}}{s_{i n j}}\right)^{\frac{\eta}{\eta-1}} \frac{A_{i n j}}{A_{i^{\prime} n^{\prime} j}}\right)^{\frac{\hat{\eta}+1}{\hat{\eta}}}\right]^{-1}=\frac{\left(s_{i n j}^{\frac{-\eta}{1-\eta}} / A_{i n j}\right)^{\frac{1+\hat{\eta}}{\hat{\eta}}}}{\sum_{i^{\prime}, n^{\prime}}\left(s_{i^{\prime} n^{\prime} n^{\prime} j}^{\frac{-\eta}{1-\eta}} / A_{i^{\prime} n^{\prime} n^{\prime} j}\right)^{\frac{1+\hat{\eta}}{\hat{\eta}}}} .
$$

Regression Specification

We use Two-Stage Least Squares (2SLS) on the following equations to get the estimate of $\hat{\eta}$ and $\hat{\theta}$.

- $\hat{\eta}$ Estimation

$$
\begin{equation*}
\ln W_{i n j t}^{*}=k_{j t}+\gamma \ln L_{j t}+\beta \ln L_{i n j t}+\underbrace{\alpha_{i n j}+\epsilon_{i n j t}}_{\varepsilon_{i n j t}} \tag{1}
\end{equation*}
$$

- $\hat{\theta}$ Estimation

$$
\begin{equation*}
\bar{\Omega}_{S j t}=k_{j t}+\gamma_{S} \ln S_{j t}+\bar{\varepsilon}_{S j t} \tag{2}
\end{equation*}
$$

where we define $\beta=\frac{1}{\hat{\eta}}$ and $\gamma=\left(\frac{1}{\hat{\theta}}-\beta\right)$.

First and Second Stage Results

Table: Estimates of reduced-form parameters: Tradeables

A. OLS and Second-Stage IV Estimates					
	OLS	IV		OLS	IV
	(1)	(2)		(3)	(4)
$\frac{1}{\hat{\eta}}$	$\begin{gathered} -0.187 \\ (3.8 \mathrm{e}-4) \end{gathered}$	$\begin{gathered} 0.287 \\ (0.048) \end{gathered}$	$\frac{1}{\hat{\theta}}-\frac{1}{\hat{\eta}}$	$\begin{gathered} 0.180 \\ (1.3 \mathrm{e}-4) \end{gathered}$	$\begin{gathered} 0.298 \\ (0.001) \end{gathered}$
Sector \times Year FE	Yes	Yes	Sector FE	Yes	Yes
Establishment FE	Yes	Yes	Year FE	Yes	Yes
B. First-Stage Regressions for the IV					
$\tau_{X(i) t}$		$\begin{gathered} -0.003 \\ (1.9 \mathrm{e}-4) \end{gathered}$	$\bar{\tau}_{j t}$	-	$\begin{gathered} -0.138 \\ (3.8 \mathrm{e}-4) \end{gathered}$
Sector \times Year FE	-	Yes	Sector FE	-	Yes
Establishment FE	-	Yes	Year FE	-	Yes
No. of obs.	3,921,000	3,921,000	No. of obs.	3,921,000	3,921,000

Wage Distribution

Wage Distribution 1997

Wage Distribution 2016

N Estimation Fit

Figure: Model Fit-N estimation

