Intergenerational Occupational Mobility and Routine-biased Technological Change

EEA-ESEM Conference 2022

Paul Telemo

August 24, 2022

University of Edinburgh

Motivation

Motivation:

- Acemoglu, Autor, Rodrik etc.: Technological change in the 1980s and 1990s (RBTC) had negative consequences for large groups of workers
- Counterargument: It's just creative destruction! Workers should be happy to accept this as their children will grow up in a more prosperous society

Motivation

Motivation:

- Acemoglu, Autor, Rodrik etc.: Technological change in the 1980s and 1990s (RBTC) had negative consequences for large groups of workers
- Counterargument: It's just creative destruction! Workers should be happy to accept this as their children will grow up in a more prosperous society

This paper:

- Aim: Empirically evaluate welfare consequences of RBTC, explicitly accounting for intergenerational altruism and intergenerational occupational mobility
- How: Estimate an overlapping generations, general equilibrium model using data from PSID, NLSY and CPS
- Perform counterfactual experiments and welfare analysis

Motivating facts

1: Job polarization

(a) Share of Routine/Cognitive Workers

(b) Share of Manual Workers

Notes: Average employment share in each occupational group among 40-year-old men in full-time employment. 3-year moving average. Data from CPS. Occupational classes defined as in Cortes (2016)

Motivating facts

2: Increasing cognitive wage premium

Notes: Average real annual wages and salary in each occupational group among men in full-time employment. 3-year moving average. Calculated using CPS data and deflated by CPI to 2018 dollars.

3: (NEW) Divergence of intergenerational occupational mobility

Notes: Father's and son's occupation taken at highest observed age between 39-41. Data from PSID.

 \rightarrow Key 'puzzle': supply response of routine children surprising given increasing cognitive wage premium

Model

Model summary

Households:

- Young: Draw ability and receive transfer; discrete choice of occupation/education subject to a psychic cost, monetary cost with borrowing constraint and idiosyncratic preferences
- Working age: Earn income according to skills, divide between consumption, savings and **transfer to child**

Model summary

Households:

- Young: Draw ability and receive transfer; discrete choice of occupation/education subject to a psychic cost, monetary cost with borrowing constraint and idiosyncratic preferences
- Working age: Earn income according to skills, divide between consumption, savings and **transfer to child**

Firms:

 Choose input of each worker type as well as 'automation capital', which substitutes routine workers and complements cognitive workers

Model summary

Households:

- Young: Draw ability and receive transfer; discrete choice of occupation/education subject to a psychic cost, monetary cost with borrowing constraint and idiosyncratic preferences
- Working age: Earn income according to skills, divide between consumption, savings and **transfer to child**

Firms:

 Choose input of each worker type as well as 'automation capital', which substitutes routine workers and complements cognitive workers

Dynamics

 Assume steady state until 1980, then MIT-style unexpected RBTC transition (fall in price of automation capital) hits

Lifecycle Overview

Full Model

Model summary: Cost of education

Allow for endogenous link between cognitive wage premium and financial cost of cognitive skill investment

 \rightarrow Stronger poverty trap dynamics

In the data: tuition fees and years of college of cognitive workers increased markedly from 1980 \implies cost of cognitive skills and cognitive wage premium closely correlated

Taking the model to the data

Estimation

Most parameters estimated without solving the model:

– Monetary skill costs, link cog. wage \rightarrow college cost, share paid by parents, production function parameters...

5 parameters in main estimation:

- Altruism factor ($\phi = 0.51$)
- Ability persistence (ho=0.49)
- Psychic costs of routine & cognitive skill investment ($\gamma_R = 0.02$, $\gamma_C = 0.42$)
- Idiosyncratic preference parameter (lpha= 0.17)

Targets:

- Initial steady state joint distribution of occupation, ability and parental occupation in NLSY79
- Intergenerational occupational mobility and aggregate worker shares over transition in CPS/PSID

Model fit: sorting by ability and parental occupation

Model fit: Dynamic moments

(a) Routine/Cognitive share

(b) Manual share

(c) P(Cognitive) by father occupation

0.6 0.5 0.6 0.5 0.6 0.6 0.6 0.7

(d) P(Manual) by father occupation

Counterfactual Analyses

Investigate welfare changes in 3 counterfactual technological growth trends $% \left({{{\left[{{T_{{\rm{s}}}} \right]}}_{\rm{s}}}} \right)$

Counterfactual 1: Welfare and pace of RBTC

Table 1: Causal link cognitive wage premium \rightarrow education cost

	1	950 Coho	ort	1980 Cohort			
	Man	Rou	Cog	Father Man	Father Rou	Father Cog	
No RBTC	1.20%	1.09%	-1.76%	0.37%	-2.09%	-4.07%	
Half Speed	1.63%	1.64%	-0.69%	3.16%	0.54%	-1.00%	

Table 2: Exogenous education cost

	1	950 Coho	rt	1980 Cohort			
	Man	Rou	Cog	Father man	Father rou	Father cog	
No RBTC	-1.72%	-1.2%	-3.38%	-7.08%	-6.61%	-6.84%	
Half Speed	-0.32%	0.16%	-1.75%	-2.25%	-2.32%	-2.44%	

Full Table

Counterfactual 2: Structural decomposition

Decompose intergenerational mobility by **ability persistence** and **financial friction**

Figure 5: Intergenerational mobility to cognitive, by father occupation

 \rightarrow Role of borrowing constraint increased from 1/3 of persistence to over half

Counterfactual 3: The rise in manual jobs

Investigate the role of the financial friction for the rise of manual jobs

Figure 6: Transition of manual occupation share under varying degrees borrowing constraint

- Build a quantitative model that can capture salient features of the intergenerational response to RBTC
- Find that routine workers in 1950 cohort were 1.09% worse off on average from RBTC, even after taking altruism towards their children into account
- Find that the relative role of financial frictions in explaining intergenerational occupational mobility increased between 1950-1980 cohorts
- Find that rise in manual jobs can partly be attributed to financial frictions

Appendix

Overview of lifecycle dynamics

Back

More dynamics decompositions

Table 3: Endogenous link cognitive wage \rightarrow education cost T_C

	Cohort: 1950-1964		Cohort: 1965-1979			Cohort: 1980-1994			
	Man	Rou	Cog	Man	Rou	Cog	Father Man	Father Rou	Father Cog
No RBTC	1.20%	1.09%	-1.76%	1.50%	2.67%	-4.88%	0.37%	-2.09%	-4.07%
Double Speed	-2.13%	-2.64%	-0.17%	-1.14%	-3.08%	2.93%	-7.26%	-3.87%	-1.60%
Half Speed	1.63%	1.64%	-0.69%	1.50%	3.12%	-2.92%	3.16%	0.54%	-1.00%

Table 4: Exogenous education cost

	Cohort: 1950-1964		Cohort: 1965-1979			Cohort: 1980-1994			
	Man	Rou	Cog	Man	Rou	Cog	Father man	Father rou	Father cog
No RBTC	-1.72%	-1.2%	-3.38%	-2.18%	-0.92%	-6.46%	-7.08%	-6.61%	-6.84%
Double Speed	0.0%	-0.62%	1.31%	0.0%	-1.23%	2.85%	0.02%	-0.06%	0.06%
Half Speed	-0.32%	0.16%	-1.75%	-0.43%	1.11%	-3.69%	-2.25%	-2.32%	-2.44%

Transition matrix of Boomers indicates they were close to steady state:

Boomers							
	М	R	С				
М	0.13	0.64	0.23				
R	0.06	0.63	0.3				
С	0.03	0.45	0.51				

ightarrow Steady state levels: $M_{ss}=$ 0.05, $R_{ss}=$ 0.57, $C_{ss}=$ 0.38

Actual levels in 1980: M = 0.08, R = 0.56, C = 0.36

back

Endowment:

- Learning ability: ℓ where $\ell' = \rho \ell + \epsilon$, $\epsilon \sim N(\mu_{\ell}, \sigma_{\ell})$
- Wealth transfer from parent: x
- Idiosyncratic occupation preference: $\nu_s \sim \text{Gumbel}(\alpha)$

Key Choice:

- Skill level $s \in \{M, R, C\}$ (discrete)

Value function:

$$V_t^1(x, \ell, \nu) = \max_{s \in \{M, R, C\}, c} u(c) - \kappa_s(\ell) + \nu_s + \beta E_{\nu', \ell' \mid \ell} \left[V_{t+1}^2(s, \ell', \nu') \right]$$

s.t. $c = x - \tau \times T_s(w_t)$

Key Choice:

- Give in-kind transfer, x' to child
- $-\phi :=$ Altruism parameter

Value function:

$$V_t^2(s, \ell', \nu') = \max_{a', x', c} u(c) + \beta \left[\phi V_{t+1}^1(x', \ell', \nu') + V_{t+1}^3(s, a') \right]$$

s.t. $c + a' + x' = w_t^s - (1 - \tau)(1 + r) \times T_s(w_{t-1})$
 $a' \ge 0$

Final period:

$$V_t^3(s,a) = u(w_t^s + (1+r)a)$$

Back

Occupational choice

Occupational Choice

(a) Father Routine

(b) Father Cognitive

Notes: Solid lines represent the low- τ specification and dashed lines represent the high- τ specification.

Firm's problem

Production function:

$$Y = A(\mu_g Y_g^{\eta} + (1 - \mu_g) Y_s^{\eta})^{1/\eta}$$
$$Y_g = T_A^{\xi} T_R^{1-\xi}$$
$$T_R = (\mu_R R^{\sigma} + (1 - \mu_R) K^{\sigma})^{1/\sigma}$$
$$Y_s = \alpha_M M$$

Maximization problem:

$$\max_{M,R,C,K} Y(K,M,R,C) - p_k K - w_M M - w_R R - w_C C$$

Estimation:

- RBTC Modelled as exogenous $p_K \downarrow$ following ICT capital price
- Elasticities estimated à la Katz, Murphy (1992)

'Costs' of skill investment

Average Tuition Fees

(a) Cost of College

Notes: Data taken from the College Board and CPS.