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Motivation

• Observational panel data offer opportunities to control for unobserved heterogeneity (UH)

• Workhorse two-way fixed effects linear regression model:

Yit = X ′itβ + αi + ξt + εit , i = 1, ...,N, t = 1, ...,T .

• αi : time-invariant individual-specific effect; ξt : time trend. Interest: β,αi , ξt .

• In many economic settings:
1 parallel trends (αi + ξt) may be overly restrictive.

• Innovation (Y ) and competition (X): 6= trajectories of unobserved technological change across
industries (Aghion, Bloom, Blundell, Griffith, and Howitt, 2005).

• Mental health (Y ) and abortion (X): 6= trajectories of unobserved risky behaviors across young
women (Janys and Siflinger, 2021).

2 a linear model is poorly suited.
• Count data (e.g., number of patents), discrete choice (e.g., developing a mental illness).



Motivation
• Allowing for time-varying UH in nonlinear FE models is challenging.
• Interactive fixed effects α′iξt , αi , ξt ∈ RG0

(Bai, 2009).
• Large number of fixed effects =⇒ incidental parameters problem (small and large-T ).
• Semiparametric FE estimators have non-centered asymp. distributions, inference generally

requires N ≈ T , interpretation of FE is difficult (Bonhomme, Lamadon, and Manresa, 2022; Chen,
Fernández-Val, and Weidner, 2021; Fernández-Val and Weidner, 2016).

• Interesting exception is discrete UH (Bonhomme and Manresa, 2015; Hahn and Moon, 2010).

• Often plausible that UH only takes a restricted number of paths across time.
• innovation clusters, health types (Deb and Trivedi, 1997; Janys and Siflinger, 2021),
• Unobserved clusters = individuals with the same unobserved paths of time-varying UH.
• Interest: data-driven clustering + cluster-specific trends + structural parameters.

• For a large class of discrete outcome models, popular in empirical research:
1 No clear large-N,T nonparametric identification result.
2 Lack of suitable estimators & inference (e.g., allowing T to grow slowly with N).
3 Few empirical evidence on the consequences of neglecting time-varying UH.
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This Paper
• Panel data: random sample {(Yit ,X ′it)′1≤t≤T : 1 ≤ i ≤ N}.
• Static nonlinear grouped fixed effects (NGFE) models with single index:
• Individual i at time t chooses Yit ∈ Y with probability

Pr
(

Yit = y | X t
i , g0

i , α
0
g0

i t

)
= h0

(
y ,X ′itβ0 + α0

g0
i t

)
, (1)

• Xit ∈ Rp : exogeneous/pre-determined explanatory variables, X t
i = (X ′i1, ...,X ′it)′;

• β0 ∈ Rp : unknown common parameter;
• g0

i ∈ {1, ...,G0}: unobserved cluster/group membership variable, γ0 = (g0
1 , ..., g0

N)′;
• α0

gt ∈ R: unobserved cluster-specific time-effect, α0 = {α0
gt : (g , t)};

• h0 ∈ {h : Y × R→ (0, 1),
∑

y∈Y h(y , ·) = 1,
∑

y∈Y |y |h(y , .) < +∞} unknown link function;
• FE approach: X t

i | γ0, α0 is unrestricted.
• Nest popular models in empirical research (e.g., binary, ordered, count outcome). Examples

• Object of interest: θ0
NT := (β0, h0,G0, γ0, α0).

• Research question(s): identification and (parametric rate) estimation as N,T →∞? How
much allowing for time-varying UH can lead to 6= conclusions in practice? Can we learn
meaningful clusters?
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Main Results
• Large-N, T nonparametric identification:
• Provide sufficient conditions for point identification of θ0

NT as N,T →∞.
=⇒ All marginal effects are identified.

• Semiparametric estimation and inference:
• Propose “classification likelihood” estimators (β̂, γ̂, α̂), assuming (h0,G0) known.
• In some strictly concave models (e.g., Probit, Logit, Poisson), under regularity conditions:

• β̂, α̂gt are consistent and root-(NT) (resp. N) asymptotically normal (centered at 0).
• γ̂ is uniformly consistent: maxi∈{1,...,N} |ĝi − g0

i | = op(1).

• Monte Carlo simulations:
• Good finite sample properties of large-T approximations, outperform competing methods in

discrete settings.

• Empirical application:
• Revisit the inverted-U relationship between innovation and competition (Aghion, Bloom,

Blundell, Griffith, and Howitt, 2005, ABBGH hereafter).
• Find evidence of time-varying unobserved heterogeneity, a mildly inverted-U, and provide a

data-driven clustering of industries. Some well-known results do not hold anymore.
=⇒ controlling for unobserved dynamics matters.



Literature and Contributions
• Nonseparable panel data models with (time-varying) unobserved fixed effects
Altonji and Matzkin (2005); Botosaru, Muris, and Pendakur (2021); Chernozhukov, Fernández-Val, Hahn, and
Newey (2013); Evdokimov (2010, 2011); Freyberger (2018); Hoderlein and White (2012); Honore and Lewbel
(2002); Mugnier and Wang (2021); Zeleneev (2020)

↪→ Contribution: point identification of all parameters in a large-T setting, with limited
time-homogeneity conditions; clustering structure; discrete outcome.

• Estimation of nonlinear (interactive) fixed effects with time-varying UH
Ando and Bai (2022); Bonhomme, Lamadon, and Manresa (2022); Chen, Fernández-Val, and Weidner (2021);
Moon and Weidner (2019)

↪→ Contribution: new semiparametric estimator, retain Bonhomme and Manresa (2015)’s GFE
estimator nice asymptotic properties when T/N → 0 (no asymptotic bias).

• Sparsity/finite mixtures as dimension reduction devices to the incid. param. pb
Bester and Hansen (2016); Bonhomme and Manresa (2015); Cheng, Schorfheide, and Shao (2021); Gu and
Volgushev (2019); Hahn and Moon (2010); Kock (2016); Moon and Weidner (2019); Saggio (2012); Su, Shi,
and Phillips (2016); Su, Wang, and Jin (2019); Vogt and Linton (2017); Wang and Su (2021)

↪→ Contribution: allow for time-varying UH; nonlinear & nonparametric setting; no tuning-parameter.
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Identification: Assumptions
• NGFE model: Y is at most countable and

Pr
(

Yit = y | Xi1, ...,Xit , g0
i , α

0
g0

i t

)
= h0

(
y ,X ′itβ0 + α0

g0
i t

)
, (i , t, y) ∈ [N]× [T ]× Y.

• Normalization:
∥∥β0

∥∥ = 1, α0
11 = 0.

Assumption 1 (Random sampling)
There exist sequences of random vectors of fixed dimensions λ0 := {λ0

gt : (g , t)},
µ0 := {µ0

g : g}, ξ0 := {ξ0
i : i}, such that:

(a). (Y ′i ,X ′i , g0
i )′ is i.i.d. across i conditional on α0, λ0, and µ0.

(b). For all i : {(Yit ,X ′it , α0
g0

i t) : t ≥ 2} is a strictly stationary strong mixing process with mixing
coefficient τi (·) conditional on g0

i , µ
0
g0

i
, ξ0

i . Let τ(·) = supi τi (·) satisfy τ(s) ≤ cτms for
some cτ > 0 and m ∈ (0, 1).

(c). For all t: Y1t | X1, g0
1 , α

0, λ0, µ0, ξ0 d= Y1t | X1t , g0
1 , α

0
g0

1 t .



Identification: Assumptions
Assumption 2 (Latent clustering & injectivity condition)
X :=

⋂∞
i=1 Xi is not empty and:

(a). There exist known X 0 ⊂ X , y ∈ Y, and functional φ such that, for all fixed (i , j) ∈ N 2,
letting ρi (x) : X 0 3 x 7→ Pr

(
Yi2 = y | Xi2 = x , g0

i , µ
0
i , ξ

0
i
)
, φ (ρi , ρj) = 1

{
g0

i = g0
j
}

.

(b). For all g ∈ G0, almost surely Pr
(
g0

1 = g | α0, λ0, µ0, ξ0) > 0.

Assumption 3 (Regularity and smoothness)

(a). Conditional on g0
i , µ

0
g0

i
, ξ0

i , Xi2 admits a uniformly continuous density function fXi2|g0
i ,µ

0
g0
i
,ξ0

i

such that 0 < δ ≤ infx∈X 0 fXi2|g0
i ,µ

0
g0
i
,ξ0

i
(x) ≤ supx∈X 0 fXi2|g0

i ,µ
0
g0
i
,ξ0

i
(x) ≤ δ <∞.

(b). Almost surely, E
(∥∥X12

∥∥2 | g0
1 , α

0, λ0, µ0
)

is finite and E
(
X12X ′12 | g0

1 , α
0, λ0, µ0) is

nonsingular.
(c).

∑
y∈Y yh0(y , ·) is differentiable on R and not constant on the support of X ′itβ0 + α0

g0
i t .



Identification: Assumptions

Assumption 4 (Monotonicity)
There exists y ∈ Y such that h0(y , v) is strictly monotonic in v .

Assumption 5 (Compensating variations)
For all fixed (g , g̃ , t), there exist x1, x2 ∈ X such that

α0
g̃t + x ′1β0 = α0

gt + x ′2β0.

Similarly, for all (g , t, t̃), there exist x3, x4 ∈ X such that

α0
gt̃ + x ′3β0 = α0

gt + x ′4β0.



Identification: Main Result

Let W 0
N := (1

{
g0

i = g0
j
}

)(i,j)∈{1,...,N}2 .

Theorem (Identification)
Let Assumptions 1, 2 and 3(a) hold, and let N and T diverge jointly to infinity. Then,

1 {W 0
N : N ∈ N∗} and G0 are identified.

2 If Assumptions 3(b)-5 further hold, then
• β0 is identified.
• For all (g , t) ∈ {1, ...,G0} × N∗, α0

gt is identified up to cluster relabeling.
• h0 is identified.



Identification: Sketch of Proof

1 Fix N ∈ N∗ and let y ∈ Y, X 0 ⊂ X verifying 2(a) and x ∈ X 0.
• Pooling individual i ’s choices over time when (Yit ,Xit) = (y , x), Assumption 1(b) and 3(a)

ensure that

E
[

1 {Yi2 = y} | Xi2 = x , g0
i , µ

0
g0

i
, ξ0

i

]
= Pr

(
Yi2 = y | Xi2 = x , g0

i , µ
0
g0

i
, ξ0

i

)
= ρi (x)

is identified.
• φ known =⇒ W 0

N = (φ(ρi , ρj ))(i,j)∈{1,...,N}2 is identified.

2 Under 1(a) and 2(b): G0 = lim supN→∞ rank(W 0
N) is identified.

3 Let (i , t) ∈ N∗2. Under 1(a) and 2(b), conditional on (γ0, α0, λ0, µ0), {Yjt ,Xjt : g0
j = g0

i }
is an identified infinite sequence of i.i.d. random variables. Theorem 4.1 in Ichimura
(1993) with ϕ(·) =

∑
y∈Y yh0(y , ·+ α0

g0
i t) =⇒ β0/

∥∥β0
∥∥ = β0 is identified.
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Identification: Sketch of Proof
4 Let y such that h0(y , ·) is strictly monotonic.

• Pooling units in clusters (g , g̃) ∈ {1, ...,G0}2 such that (Yit ,Xit) = (y , x1) one identifies:

Pr(Y1t = y | X1t = x1, g0
1 = g , α0

gt) = h0(y , x ′1β0 + α0
gt),

Pr(Y1t = y | X1t = x1, g0
1 = g̃ , α0

g̃t
) = h0(y , x ′1β0 + α0

g̃t
).

• Compensating variations: x2 ∈ X is identified from

Pr(Y1t = y | X1t = x2, g0
1 = g , α0

gt) = Pr(Y1t = y | X1t = x1, g0
i = g̃ , α0

g̃t
)

⇐⇒ h0(y , x ′1β0 + α0
g̃t

) = h0(y , x ′2β0 + α0
gt).

• Inverting h(y , ·), α0
g̃t
− α0

gt = (x2 − x1)′β0 is identified for all g , g̃ , t. Same reasoning fixing g
yields identification of α0

gt − α0
g̃t

for all (g , t, t̃).
• Result follows since α0

11 = 0 implies that (α0
1t) is identified for all t and (α0

g1) is identified for
all g so that, for all g 6= 1, t 6= 1,

α0
gt = α0

gt − α0
1t︸ ︷︷ ︸

:=a

+ α0
1t︸︷︷︸

:=b

, where a, b are identified.

5 Identify h0(·, ·) as a function of y ∈ Y and identified single index X ′itβ0 + α0
g0

i t .
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Estimation: Semiparametric NGFE Estimators
• Nonparametric estimation based on constructive identification: possible but hard in practice.
• Estimate ρ̂i with ML, prove

∥∥ŴN −W 0
N
∥∥
∞

p→ 0...
• Slow convergence rates might be deterrent, no inference.

• Instead, propose a practically useful approach, assuming (h0,G0) is known (e.g., Probit).

• Semiparametric Classification Maximum Likelihood Estimator:

(β̂, α̂, γ̂) = arg min
(β,α,γ)∈B×AG0T×{1,...,G0}N

1
NT

N∑
i=1

T∑
t=1
− log h0(Yit ,X ′itβ + αgi t),

where γ = (g1, ..., gN)′.
• Extend Bonhomme and Manresa (2015); Bryant and Williamson (1978).
• Non-smooth non-convex discrete optimization problem, but computation for small values of G0 is

feasible (up to local minima). Alternative minimization algorithm

• Choice of G0: AIC/BIC or report results for multiple choices.
• Mugnier (2022): computationally trivial estimator + estimation of G0, but guarantees only in

linear/multiplicative models.
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Consistency and Large-T Inference: Binary Outcome
• Strong concavity of the log-likelihood function with respect to (β, α) is key.

• Semiparametric NGFE model with binary outcome (|Y| = 2):

Yit = 1
{

X ′itβ0 + α0
g0

i t − εit ≥ 0
}
, i = 1, ...,N, t = 1, ...,T . (2)

• For any Z = (Z11, ...,Z1T , ...,ZN1, ...,ZNT )′, denote Z(t)
− = {Zis : 1 ≤ i ≤ N, 1 ≤ s ≤ t},

Z(t)
+ = {Zis : 1 ≤ i ≤ N, t ≤ s ≤ T}. β0 ∈ B ⊂ Rp, α0

gt ∈ A ⊂ R.

Assumption (Mod.)
Eq. (2) holds and:
(a). (Weak exogeneity) (X(t)

− , γ
0, α0, ε

(t−1)
− ) and ε

(t)
+ are independent.

(b). (Parametric noise) The {εit : (i , t)} are identically distributed with known cumulative
distribution function Ψ that is fully supported on R, three times continuously differentiable,
strictly increasing, and such that (log Ψ)′′ < 0 and Ψ′ is symmetric around 0.



Consistency of NGFE Estimators

Assumption (Cons.)

(a) (Compactness) B and A are compact convex subsets of Rp and R, respectively.
(b) (Bounded covariates) There exists a constant M > 0 such that

∥∥Xit
∥∥ ≤ M almost surely.

(c) (Noncollinearity) Let X g∧g̃,t denotes the mean of Xit in the intersection of clusters
g0

i = g , and gi = g̃ . For all partitions γ = {g1, ..., gN} ∈ ΓG0N , let ρ̂(γ) denote the
minimum eigenvalue of the following matrix:

1
NT

N∑
i=1

T∑
t=1

(Xit − X g0
i ∧gi ,t)(Xit − X g0

i ∧gi ,t)′.

Then, plimN,T→∞minγ∈ΓG0 ρ̂(γ) = ρ > 0.



Consistency of NGFE Estimators

Theorem (Consistency)
Let Assumptions Mod. and Cons. hold. Then, as N and T tend to infinity:
• β̂ p−→ β0, and

• 1
NT
∑N

i=1
∑T

t=1

(
α̂ĝi t − α

0
g0

i t

)2 p−→ 0.



Inference
• Under reg. conditions (well-separation of groups, time-dependence, noncollinearity):
• Uniformly consistent classification of individuals: supi

∣∣ĝi − g0
i
∣∣ p→ 0,

• Asymptotic equivalence to the infeasible oracle MLE which knows the clustering (β̃, α̃). Details

• Asymptotic distributions in nonlinear settings → typically non-centered.

• If there exists ν > 0 such that N/T ν → 0 and T/N → 0 as N,T →∞, then:
• Static case: under cross-sectional and time independence of Yit given X, γ0, α0 +

regularity conditions, we have
√

NT (β̃ − β0) d−→ N (0,Σ),
√

N(α̃gt − α0
gt) d−→ N (0, σ2),

using asymptotic expansions from Arellano and Hahn (2007); Hahn and Newey (2004).
• If T/N → c as N,T →∞:
• Adapt Chen, Fernández-Val, and Weidner (2021) to derive analytic expressions of

asymptotic biases.
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Monte Carlo Simulations: Static Logit Model
• N = 90 and T = 7; 50 replications, 200 iterations (should be both increased in near future).

• The data generating process is

Yit = 1 {Xitβ + αgi t ≥ εit} , i = 1, ...,N, t = 1, ...,T ,

where, β = 1, εit ∼Logit(0, π2/3), and gi ∼Unif
{

1, ...,G0} for G0 ∈ {2, 3, 5}.
• DGP 1: grouped patterns of time-varying UH (AR(1) processes)
• DGP 2: grouped patterns of time-invariant UH.
• DGP 3: continuous time-invariant UH.
• DGP4 : No UH.

In all DGPs: (Xit , αgi t) ⊥⊥ εit , and Xit is continuous with limited independent variation.

• Results:
• Competing methods have significant small-T biases, higher RMSE ,and less coverage in more

adversarial settings (correlated time-varying effects): CMLE, Bonhomme, Lamadon, and Manresa
(2022)’s 2-step GFE, Bonhomme and Manresa (2015)’s GFE, linear TWFE, nonlinear TWFE,
pooled OLS.

• Also consider a dynamic model in paper: results are similar.



Monte Carlo Simulations: Bias and RMSE of β̂

NGFE CMLE NLTWFE 2STEPGFE Pooled OLS LTWFE GFE
DGP G0 Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
1 2 -0.072 0.268 -0.104 0.551 0.217 0.950 -0.252 1.516 -0.407 0.411 -0.790 0.812 -0.798 0.814

3 -0.089 0.294 0.294 0.637 0.669 1.000 0.355 0.893 -0.363 0.366 -0.724 0.734 -0.853 0.874
5 -0.022 0.264 0.167 0.538 0.359 0.824 0.104 0.779 -0.369 0.373 -0.766 0.776 -0.784 0.839

2 2 0.106 0.171 0.010 0.161 0.223 0.302 -0.278 0.309 -0.779 0.780 -0.831 0.831 -0.816 0.818
3 0.236 0.289 0.014 0.160 0.238 0.309 -0.300 0.345 -0.768 0.769 -0.867 0.867 -0.837 0.841
5 0.601 0.637 -0.004 0.169 0.250 0.332 -0.324 0.358 -0.747 0.747 -0.916 0.916 -0.853 0.860

3 2 0.352 0.385 -0.001 0.169 0.221 0.313 -0.110 0.211 -0.776 0.777 -0.857 0.857 -0.826 0.827
3 0.432 0.486 -0.002 0.170 0.219 0.308 -0.066 0.192 -0.788 0.789 -0.859 0.859 -0.845 0.846
5 0.471 0.499 0.011 0.156 0.235 0.309 -0.057 0.186 -0.787 0.788 -0.858 0.858 -0.833 0.836

4 2 0.040 0.151 -0.002 0.152 0.195 0.269 0.085 0.221 -0.789 0.789 -0.783 0.784 -0.788 0.789
3 0.095 0.159 0.016 0.124 0.223 0.269 0.109 0.213 -0.776 0.776 -0.778 0.779 -0.790 0.792
5 0.114 0.178 0.018 0.118 0.222 0.266 0.094 0.204 -0.775 0.775 -0.778 0.779 -0.803 0.809

• Small bias in DGPs 1 and 4 (≈ CMLE/2 and 2CMLE resp.)
• Small RMSE in DGPs 1 and 4 (≈ CMLE/2 and CMLE resp.).
• If time-invariant heterogeneity (DGPs 2 and 3), CMLE is better.
• 2STEPGFE is dominated by the union of both methods.



Monte Carlo Simulation: Classification Accuracy and CPU time

NGFE 2STEPGFE GFE

DGP G0 P R RI M CPU P R RI M CPU Ĝ P R RI M CPU
1 2 0.51 0.87 0.51 0.44 10.62 0.54 0.24 0.51 0.77 10.19 5.38 0.54 0.55 0.54 0.38 29.27

3 0.35 0.81 0.42 0.57 11.42 0.37 0.24 0.60 0.75 11.34 5.48 0.36 0.38 0.57 0.55 29.63
5 0.21 0.80 0.35 0.70 14.75 0.24 0.25 0.69 0.71 11.73 5.88 0.24 0.25 0.69 0.63 83.18

2 2 0.56 0.86 0.57 0.36 8.02 0.64 0.45 0.60 0.53 3.57 3.06 0.61 0.61 0.61 0.29 21.95
3 0.40 0.85 0.49 0.51 8.52 0.57 0.49 0.70 0.44 4.70 3.64 0.46 0.49 0.64 0.42 22.00
5 0.22 0.87 0.34 0.69 10.15 0.44 0.53 0.77 0.44 5.78 4.44 0.35 0.40 0.74 0.54 20.93

Notes: Static logit model with β = 1, N = 90, and T = 7. G0 = true number of groups, P = Precision rate, R
= Recall rate, RI = Rand Index, M = Misclassification Rate = minimum of

∑N
i=1 1

{
ĝi 6= g0

i
}
/N over all

possible cluster relabelings, CPU = CPU time in seconds computed with Python’s time command
time.perf counter(), Ĝ = number of groups estimated by 2STEPGFE.

• Classification performance is uniformly poor.

• Accuracy of NGFE improves with number of initialization points (only 200 here), with
T →∞, or less stringent UH.



Monte Carlo Simulations: Inference and Coverage
NGFE CMLE

DGP G0 SE SD .95 SE SD .95
1 2 0.16 0.26 0.86 0.15 0.54 0.38

3 0.17 0.28 0.80 0.16 0.56 0.40
5 0.17 0.26 0.84 0.15 0.51 0.42

2 2 0.12 0.13 0.82 0.06 0.16 0.52
3 0.12 0.17 0.46 0.07 0.16 0.62
5 0.14 0.21 0.08 0.08 0.17 0.66

3 2 0.12 0.16 0.22 0.06 0.17 0.52
3 0.12 0.22 0.18 0.06 0.17 0.52
5 0.12 0.16 0.04 0.06 0.16 0.56

4 2 0.12 0.15 0.92 0.05 0.15 0.38
3 0.13 0.13 0.92 0.05 0.12 0.56
5 0.13 0.14 0.88 0.05 0.12 0.56

• Small under-coverage in discrete DGP (1, 2, 4), improves as N,T →∞.
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Innovation and Competition: an Inverted-U Relationship?
• Does competition lead to more innovation?
• Longstanding debate (Griffith and Van Reenen, 2021).
• Schumpetarian effect (-) v.s. “escape-competition” effect (+).
• How to measure competition? innovation?

• Influential QJE’s paper: Aghion, Bloom, Blundell, Griffith, and Howitt (2005)
• 17 UK industries i over 22 years t (1973-1994): large-T , moderately large N.
• Yit=citation-weigthed patentsit ; Xit=(1-Lerner)it , (1-Lerner)2

it .
• Main specification: Yit |Xi1, ...,Xit , αi , ξt ∼ Poiss(X ′itβ + αi + ξt), delivers an “inverted-U”

relationship: β̂∗∗∗1 > 0 and β̂∗∗∗2 < 0.
• Model: neck-to-neck and leader-laggard firms, incremental incentives.

• Fragile relationship, sensitive to:
• Country (Askenazy, Cahn, and Irac, 2013; Correa and Ornaghi, 2014; Hashmi, 2013), structural breaks

(Correa, 2012), controls (Aghion, Van Reenen, and Zingales, 2013).
• Unobserved (confounding) dynamics?



ABBGH’s Inverted-U Relationship (TWFE Poisson)
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Summary Statistics

Competition = 1-Lerner index Innovation = Citation-weighted patents Technology gap

Mean 0.95 6.66 0.49
SD 0.02 8.43 0.16
p10 0.92 0 0.28

Median 0.95 3.35 0.51
p90 0.98 20.19 0.69

Notes: There are 17 industries, 354 observations and the time period covers 1973-94. Industries

• Point mass at zero & positivity motivate a Poisson-type model
• though conditional mean 6= conditional variance here.

• Identification theorem: in theory valid to relax this parametric assumption.
• E.g.: the negative-binomial model verifies our monotonicity and smoothness conditions.



Innovation and Competition Revisited

• I challenge “permanent unobserved technological change” + common trend assumptions.
• E.g., Telecom/internet revolution might not have affected all industries the same way.

• I substitute ABBGH’s common trend assumption with that of a finite number of
unobserved clustered trends and find

1 Evidence of time-varying UH (low-, increasing-, and high-innovation).

2 Stable and transitioning data-driven clusters of industries.

3 Mildly inverted-U.

• Clusters effects and cluster memberships can be used as dependent variables for studies
aimed at exploring factors which determine the quality or performance of technological change
(or the clustering of firms).



Exercise #1: Evidence of Unobserved Time-Varying Heterogeneity?

• Suppose we trust ABBGH’s estimate β̂.

• Do we find evidence of a latent clustering structure in the data? Time-varying UH?

• Apply a smooth exploration method, the tetrad pairwise distance (TPWD) estimator,
developed in companion paper, to the panel of residuals Details TPWD

Yit − exp(X ′it β̂ + α̂i + ξ̂t).

• Unconstrained number of clusters, estimate Ĝ .
• Polynomial time (no optimization).
• Input: regularization parameter c ∈ (0,+∞).
• Outputs:

• regularization path {Ĝ(c) : c ∈ (0,+∞)}.
• cluster-specific time-varying effects.



Exercise #1: ABBGH’s Residuals
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Exercise #1: TPWD Regularization Path
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Exercise #1: Three Clusters

Noisy data, few industries.
→ In progress: use Correa and
Ornaghi (2014) and Hashmi
(2013)’s U.S. data with more
digits to increase number of
industries per clusters.

2 clusters 4 clusters



Exercise #2: Fitting a NGFE Poisson model

• Suppose we do not trust ABBGH’s β̂ anymore.

• Allow for unobserved clusters of time-varying heterogeneity, estimate:

Pr
(
patwit = p | compit , comp2

it , gi , αgi t
)

= exp(−λit)λp
it/p!,

where λit = exp(compitβ1 + comp2
itβ2 + αgi t) and G ∈ {2, 3, 4}.

• We obtain a mildly inverted-U. Table



Excercise #2: A mildly Inverted-U
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Exercise #2: Unobserved Clustered Dynamics of UH

Figure: Time Effects
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Notes: Solid line=High-Innovation, dotted line=Low-Innovation, dashed line=Steady-Catchers, dashdotted
line=Noisy-Catchers.

Visiualize Clusters



Exercise #2: Data-driven Industries Clustering Go back

0 2 4

Metal manufacturing
Manufacture of non-metallic mineral products

Manufacture of metal goods n.e.s.
Mechanical engineering
Instrument engineering

Food industry
Textile industry

Manufacture of paper and paper products/printing and publishing
Processing of rubber and plastics

Extraction of minerals n.e.s.
Chemical industry

Manufacture of office machinery and data processing equipment
Electrical and electronic engineering

Manufacture of motor vehicles and parts therof
Manufacture of other transport equipment

Food, drink industries and tobacco manufacturing industries
Other manufacturing industries

0 2 4 0 2 4

Notes: High-Innovation, Low-Innovation, Steady-Catchers, Noisy-Catchers. From left to right: G0 = 2, 3, 4.



Exercise #2: Time Effects, Competition, and Innovation (G = 4)
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Exercise #3: Robustness to Endogeneity and Structural Break
• Simultaneity is a key issue here. ABBGH use a control function approach based on a set
of policy instruments (deregulation policies).

• Structural break? Establishment of CAFC courts in 1981-1982: granting patents becomes
easier (Correa, 2012).

• We replicate each analysis, letting G = 4.

Table: The Effect of Competition on Innovation (Control Function Approach)

TWFE Poisson NGFE Poisson
Dependent Variable: Citation-weighted patentsit Annual Before 1983 After 1983 Annual Before 1983 After 1983
Competitionit 386.59∗∗∗ 229.18∗ 113.42 394.23∗∗∗ 265.86∗∗∗ 9.69

(67.61) (122.68) (100.73) (77.10) (128.18) (124.73)
Competition squaredit -205.32∗∗∗ -114.89∗ -60.85 -212.35∗∗∗ -144.18∗∗∗ -9.41

(36.11) (66.49) (53.37) (41.14) (67.95) (67.46)

Relationship steep inv-U increasing mildly inv-U mildly inv-U

• Mildly inverted-U robust to control function approach, no structural break.



Outline

Large-N,T Nonparametric Identification

Semiparametric Estimation and Inference

Monte Carlo Simulations

Empirical Application: Revisiting the Inverted-U Relationship Between Innovation and
Competition

Conclusion



Conclusion
• Derive sufficient conditions for nonparametric identification of all structural parameters of
a class of nonlinear GFE single-index panel data models with large-N, large-T .
• Cover binary choice, ordered choice, count data... Extension to heterogeneous slope, multinomial

choice in the paper.
• Nonparametric estimation of the link function is theoretically justified.

• Propose and study semiparametric NGFE estimators.
• Consistent & asymptotically normal under regularity conditions.
• Accurate large-N,T inference in small sample.

• Revisit ABBGH’s “inverted-U” relationship between innovation and competition.
• Evidence of significant unobserved time-varying heterogeneity, mildly inverted-U curve.

• Future research:
• Estimation of h0, G0.
• Reducing computational burden.
• Robustness to increasing sample size in empirical application (e.g., using U.S. data).



Thank you!

martin.mugnier@ensae.fr

mailto:martin.mugnier@ensae.fr


Examples Go Back

• Binary outcome: Yit = 1
{

X ′itβ0 + α0
g0

i t − εit ≥ 0
}
, where the (εit )i,t are independent from (Xi , γ0, α0) and

i.i.d. with (unknown) cumulative distribution function Ψ0. Then,
h0(y ,X ′itβ0 + α0

g0
i t ) = 1 {y = 1}Ψ0(X ′itβ0 + α0

g0
i t ) + 1 {y = 0} (1−Ψ0(X ′itβ0 + α0

g0
i t )).

• Ordered outcome:

Yit =


0 if X ′itβ0 + α0

g0
i t − εit < d0

1 .

1 if d0
1 ≤ X ′itβ0 + α0

g0
i t − εit < d0

2 .

2 if X ′itβ0 + α0
g0

i t − εit ≥ d0
2 ,

(3)

where d0
2 > d0

1 , and the (εit )i,t are independent from (Xi , γ0, α0) and i.i.d. with (unknown) cumulative
distribution function Ψ0. Then,

h0(y ,X ′itβ0 + α0
g0

i t ) =


1−Ψ0(X ′itβ0 + α0

g0
i t − d0

1 ) if y = 0.

Ψ0(X ′itβ0 + α0
g0

i t − d0
1 )−Ψ0(X ′itβ0 + α0

g0
i t − d0

2 ) if y = 1.

Ψ0(X ′itβ0 + α0
g0

i t − d0
2 ) if y = 2.

• Count outcome: Y = {0, 1, 2, ...}. A Poisson parametrization assumes

h0(y ,X ′itβ0 + α0
g0

i t ) =
(λ0

it )y exp(−λ0
it )

y !
,

where λ0
it = exp(X ′itβ0 + α0

g0
i t ).



Estimation: Computation Go Back

An Iterative (Heuristic) Algorithm

1 Let (β(0), α(0)) ∈ B ×AG0
N T be some starting value. Set s = 0.

2 Compute for all i ∈ {1, ...,N}:

g (s+1)
i = argmin

g∈{1,...,G0
N}

T∑
t=1
− ln h0

(
Yit ,X ′itβ(s) + α

(s)
gt

)
.

3 Compute:

(
β(s+1), α(s+1)

)
= argmin

(β,α)∈B×AG0
N T

N∑
i=1

T∑
t=1
− log h0

(
Yit ,X ′itβ + αg (s+1)

i t

)
.

4 Set s = s + 1 and go to Step 2 (until numerical convergence).

(straightforward adaptation of Bonhomme and Manresa, 2015)



Inference: Asymptotic Equivalence to the Oracle MLE Go Back

• The infeasible oracle MLE (β̃, α̃) verifies:

(β̃, α̃) = arg min
(β,α)∈B×AG0T

1
NT

N∑
i=1

T∑
t=1
− ln Ψ

(
(2Yit − 1)(X ′itβ + αg0

i t)
)
.

=⇒ MLE with known group dummies.

Assumption (A.N. 1)

(a). (Non-neglible clusters) For all g ∈ {1, ...,G0}: plimN→∞
1
N
∑N

i=1 1
{

g0
i = g

}
= πg > 0.

(b). (Well-separated clusters) For all (g , g̃) ∈ {1, ...,G0}2 such that g 6= g̃ :
plimT→∞

1
T
∑T

t=1(α0
gt − α0

g̃t
)2 = cg ,̃g > 0.

(c). (Mixing) There exist constants a > 0 and d > 0 and a sequence α[t] ≤ exp(−atd ) such
that, for all (g , g̃) ∈ {1, ...,G0}2 such that g 6= g̃ , {α0

gt − α0
g̃t

: t} is a strongly mixing
process with mixing coefficients α[t].

• Same as Bonhomme and Manresa (2015).



Inference: Asymptotic Equivalence to the Oracle MLE

Lemma (Sup-Norm Consistency and Asymptotic Equivalence)
Let Assumptions Mod., Cons., and A.N.1 hold. Then, for all δ > 0 and as N and T tend to
infinity

Pr
(

sup
i∈{1,...,N}

∣∣ĝi − g0
i
∣∣ > 0

)
= o(1) + o(NT−δ),

and
β̂ = β̃ + op(T−δ),

and
α̂gt = α̃gt + op(T−δ) for all g , t.

• If
√

NT−δ → 0 for some δ > 0: sufficient to derive limiting distribution of infeasible MLE!



Industries at the 2 Digits Go Back

SIC 2 Name

22 Metal manufacturing
23 Extraction of minerals not elsewhere specified
24 Manufacture of non-metallic mineral products
25 Chemical industry
31 Manufacture of metal goods not elsewhere specified
32 Mechanical engineering
33 Manufacture of office machinery and data processing equipment
34 Electrical and electronic engineering
35 Manufacture of motor vehicles and parts therof
36 Manufacture of other transport equipment
37 Instrument engineering
41/42 Food, drink and tobacco manufacturing industries
43 Textile industry
47 Manufacture of paper and paper products; printing and publishing
48 Processing of rubber and plastics
49 Other manufacturing industries



Two Clusters
Go Back



Four Clusters
Go Back



Mildly Inverted-U Go Back

Table: The Effect of Competition on Innovation

TWFE Poisson NGFE Poisson
Dependent variable: Citation-weighted patentsit (1) (2) (3) (4) (5)
Competitionit 152.80∗∗∗ 387.46∗∗∗ 171.28∗∗∗ 273.62∗∗∗ 392.23∗∗∗

(55.74) (67.74) (71.51) (70.21) (70.35)
Competition squaredit -80.99∗∗∗ -204.55∗∗∗ -85.15∗∗∗ -147.21∗∗∗ -210.19∗∗∗

(29.61) (36.17) (38.18) (37.62) (37.73)
Year effects Yes Yes
Industry effects Yes
Time-varying clustered effects Yes Yes Yes
Number of clusters 2 3 4

Notes: Analytical standard errors are under parentheses. The sample includes 354 observations from an unbalanced panel of
17 industries over the period 1973-1994. Competitionit is measured by (1-Lerner index)it in the industry-year. NGFE estimates
are computed using Lloyd’s algorithm with 2, 000 random initializers. ∗∗∗, ∗∗, ∗ denote statistical significance at 1, 5, and 10%
respectively.



Tetrad Pairwise Differencing Estimator (1/2) Go Back

• For any tetrad (i , j , k, l), let

SNT (i , j , k, l) := 1
T

T∑
t=1

(yit − yjt)(ykt − ylt).

• The tetrad pairwise differencing (TPWD) estimator is obtained from the following two steps:
1 Let cT ∈ (0,+∞) and compute ŴTPWD ∈ {0, 1}N2 with entries:

Ŵ TPWD
ij = 1

{
max

(k,l)∈({1,...,N}\{i,j})2
|SNT (i , j , k, l)| ≤ cT

}
, i = 1, ...,N, j = 1, ...,N.

Set ĜTPWD = |{ŴTPWD
1,. , ..., ŴTPWD

N,. }| and pick (ĝTPWD
1 , ..., ĝTPWD

N ) ∈ {1, ..., ĜTPWD}N

satisfying constraints:[
ĝTPWD

i = ĝTPWD
j ⇐⇒ ŴTPWD

i,. = ŴTPWD
j,.

]
, i = 1, ...,N, j = 1, ...,N.



Tetrad Pairwise Differencing Estimator (2/2)

2 Compute α̂ := (α̂TPWD
11 , ..., α̂TPWD

1T , ..., α̂TPWD
ĜTPWD1

, ..., α̂TPWD
ĜTPWDT

) from:

α̂ = argmin
α∈AĜTPWD T

N∑
i=1

T∑
t=1

(
yit − αĝTPWD

i t

)2
.

• Asymptotic guarantees under correct (linear) GFE specification (see Mugnier, 2022).
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