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Motivation

Figure: Path of soybean daily price from 1973 to 1992

Speculative behaviour leads to asymmetric dynamics like phases of local explosiveness.
Limitation of conventional linear process in characterizing nonlinear dynamics.
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Motivation

Predictability of future values given private information held by agents → Incorporate
future components into the model ⇔ ”non-fundamental” time series model (temporal
dependence in both future and past)
Autoregressive-moving-average model

Non-causality, e.g.
Yt = αYt−1 + ut, |α| > 1

nonlinear dynamics: speculative bubbles, asymmetric cycles (Gouriéroux and Zaköıan 2017)
illustration and volatility clustering (Breidt, Davis, Trindade, et al. 2001)

improvement in forecasting accuracy in macroeconomics and finance (Hecq and Voisin 2020;
Lanne, Luoto, and Saikkonen 2012)
alternative to non-invertible processes in modeling forward-looking behaviour (Lanne and Luoto
2013)
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Motivation

Autoregressive-moving-average model
Non-invertibility, e.g.

Yt = ut + βut−1, |β| > 1

economically sensible impulse-response functions (Lippi and Reichlin 1993)
information flow with unusual discounting patterns due to the fiscal foresight of tax policy
(Leeper, Walker, and Yang 2013)
non-revealing equilibrium when agents have heterogeneous information (Kasa, Walker, and
Whiteman 2006; Walker 2007)

Classical time series analysis is restricted to causal and invertible ARMA models
In this paper, I investigate a novel estimation technique of general time series models
which accommodate non-invertibility and non-causality.
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Trajectory of causal/non-causal autoregressions

Figure: Comparison of trajectories of causal v.s. non-causal
non-Gaussian AR(1)

non-causal AR can
generate repetitive
episodes of upward
trends followed by
a sharp drop.
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Obstacle in the identification
Consider two AR(1) models with |ρ| < 1,

Y
(1)

t =ρY
(1)

t−1 + ut, ut ∼ IID(0, σ2)

Y
(2)

t =ρ−1Y
(2)

t−1 + vt ⇔ Y
(2)

t−1 = ρY
(2)

t − ρvt, vt ∼ IID(0, σ2)
They have the same autocorrelation function,

Corr
(
Y

(1)
t , Y

(1)
t−1

)
=
Cov

(
ρY

(1)
t−1 + ut, Y

(1)
t−1

)
Var

(
Y

(1)
t−1

) = ρ

Corr
(
Y

(2)
t , Y

(2)
t−1

)
=
Cov

(
Y

(2)
t , ρY

(2)
t − ρvt

)
Var

(
Y

(2)
t

) = ρ

Failure of estimation methods based on second-order structure for Y
(2)

t
Ordinary Least Square(OLS) or Gaussian Likelihood Estimation(

Y
(1)

t , Y
(2)

t

)
display distinct dynamics, see Figure.2
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Non-Gaussian Estimation

In the Gaussian framework, uncorrelatedness is equivalent to iid, but not in the non-Gaussian
case.
So what other information from iid model innovations can be employed for identification?

Non-Gaussian MLE: Breidt, Davis, Lh, et al. 1991, Lii and Rosenblatt 1992, Lii and
Rosenblatt 1996, Gouriéroux and Zaköıan 2017.
Minimum distance estimation: Gospodinov and Ng 2015,Velasco and Lobato
2018,Velasco 2021, Cabello 2021.
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This paper

Methodology: A new minimum distance estimation method based on a dependence
measure using the cumulative distribution function of the residuals.
Advantages:

Identification of general time series models robust to non-causality and non-invertibility
without prior information on the distribution of the innovations.
Mild conditions on higher order moments for asymptotic analysis of the estimates.
Extension to different dependence structures, e.g. conditional mean independence and
conditional quantile independence.
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Dependence measure: generalized spectral distribution

Given a sequence of random variable {Xt},

Xt ⊥ Xt−j ⇐⇒ P (Xt ≤ x, Xt−j ≤ y) = P (Xt ≤ x) P (Xt−j ≤ y)
∀ (x, y) ∈ R2 for j = ±1, ±2, . . .

General covariance of (Xt, Xt−j):

σj (x, y) = Cov (I (Xt ≤ x) , I (Xt−j ≤ y))
= P (Xt ≤ x, Xt−j ≤ y) − P (Xt ≤ x) P (Xt−j ≤ y)
∀ (x, y) ∈ R2 for j = ±1, ±2, . . .

Discrepancy between the joint cdf and the product of two marginal cdf , see Hoeffding
1948.
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Dependence measure: generalized spectral distribution
Generalized spectral density of the sequence {Xt}, see Hong 2000:

h(x, y, ω) = 1
2π

∞∑
j=−∞

σj(x, y)e−ijω, ω ∈ [−π, π], i =
√

−1

Generalized spectral distribution function:

H(x, y, λ) =2
∫ λπ

0
h(x, y, ω)dω

=λσ0(x, y) + 2
∞∑

j=1
σj(x, y)sin(jπλ)

jπ
, λ ∈ [0, 1]

Take into account all pairwise dependence in {Xt}.
Under iid assumption of {Xt},

h0(x, y, ω) = 1
2π

σ0(x, y)

H0(x, y, λ) =λσ0(x, y), ∀(x, y) ∈ R2 λ ∈ [0, 1]
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The Model

Consider a general linear time series model

Yt =
∞∑

j=−∞
φjut−j (1)

where ut is a sequence of iid innovations with E |ut| < ∞, and
∑∞

j=−∞ |φj | < ∞.
Two-sided moving average in (1) allows non-causality and non-invertibility in time series.
Goal:identification and estimation of θ ∈ Θ ⊂ Rm

φ (θ; L) =
∞∑

j=−∞
φj(θ)Lj

ARMA(p, q): α (L) Yt = β (L) ut, where φ(L) = α−1(L)β(L) with polynomials
α (L) = 1 −

∑p
j=1 αjLj and β (L) = 1 +

∑q
j=1 βjLj having no common roots and all

roots away from unity.
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The Model

Residual {ut(θ)} at any given θ is calculated by

ut(θ) = φ(θ, L)−1Yt = φ(θ, L)−1 φ(θ0, L)ut ≡ ϕ(θ, L)ut

Generalized spectral density and distribution of {ut(θ)}

hθ(x, y; ω) = 1
2π

∞∑
−∞

σθ,j(x, y)e−ijω

Hθ(x, y; λ) = λσθ,0(x, y) + 2
∞∑

j=1
σθ,j(x, y)sin jπλ

jπ

where
σθ,j(x, y) = Cov (I(ut(θ) ≤ x), I(ut−j(θ) ≤ y))

θ0 is the true value of the parameters,i.e. ut(θ0) = ut
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Model Estimation under iid Assumption

θ = θ0: from iid-ness of the innovation, we have

σθ0,j(x, y) = 0 ∀j ̸= 0, ∀(x, y) ∈ R2

Generalized spectral density and distribution :

hθ0(x, y; ω) = 1
2π

σθ0,0(x, y)

Hθ0(x, y; λ) = λσθ0,0(x, y) λ ∈ [0, 1]

Population loss criterion: L2 distance between Hθ(x, y; λ) and Hθ0(x, y; λ)

Q0(θ) =
∫
R2

∫ 1

0
|Hθ(x, y; λ) − Hθ0(x, y; λ)|2dλdW (x, y)

= 2
∞∑

j=1

1
(jπ)2

∫
R2

σ2
θ,j(x, y)dW (x, y). (Parseval’s identity)
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Identification

Under Assumption 1-3 Details , if θ ̸= θ0, {ut(θ)} will not satisfy full or pairwise
independence.

σθ,j(x, y) ̸= 0 ∃j ̸= 0 ∃(x, y) ∈ R2

→
∫
R2

|σθ,j(x, y)|2dW (x, y) > 0

→Q0(θ) > 0

and
Q0(θ) = 0, when θ = θ0,

since σθ0,j(x, y) = 0 for j ̸= 0. Plots
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Consistency

Theorem 1

Assume {ut} is iid with zero mean and E (ut)2 < ∞, θ0 ∈ Θ, under Assumptions 1-5 Details ,
µ0 > 3 as T → ∞,

θ̂T −→p θ0.
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Asymptotic normality: smooth approximation

The approach: approximate indicator function by smoothed cumulative distribution
function.

σ̃θ,j;h(x, y) = F̃θ,j(x, y; h) − F̃θ,j(x, ∞; h)F̃θ,j(∞, y; h)

where F̃θ,j(x, y; h) is a smoothed empirical joint cdf of residuals ut(θ),

F̃θ,j(x, y; h) = 1
T − j

T∑
t=j+1

Λ
(

x − ut(θ)
h

)
Λ
(

y − ut−j(θ)
h

)
,

where Λ(·) is a distribution defined on unbounded support with differentiable pdfλ(·)
away from zero, making sure it is a total-revealing transformation, see Stinchcombe and
White 1998.
h is a smoothing parameter which tends to 0+ so as to

Λ( z

h
) → I(z > 0) for |z| > 0
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Asymptotic normality: h → 0, T → ∞

Theorem 2

Under Assumptions 1-3 and Assumptions 6-7 Details , {ut} iid with zero mean,
E |ut|3 < ∞, θ0 ∈ Θ, µ0 > 3, µ1 > 1, as T → ∞, h → 0

T 1/2
(
θ̃h

T − θ0
)

−→p N
(
0, H−1

0 H1H−1
0

)
To maintain the

√
T -rate of the asymptotic distribution, the convergence rate of h to zero

needs to be
slower than T −1 and faster than T −1/4.
H0, H1 have components of local identification. Details

Efficiency comparison with Gaussian MLE.
Standard error can be computed by replacement of each components by analogy. Details
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Simulation

AR(1)
Yt = θ0Yt−1 + ut

where {ut} are iid non-Gaussian innovations.
Two approaches of choosing W (·)

empirical distribution of the residuals
standard normal cdf after standardization of the residuals : u∗

t (θ) = ut(θ)√
V̂ar(ut(θ))

θ0 = 0.4(0.4−1) and 0.9(0.9−1) in the causal (noncausal) case.
{ut} follows U , t3 and χ2

5 − 5.
Sample size is 100 and 200 with 100 Monte Carlo replications.
Percentage of correct root identification is reported in both approaches.
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Simulaton result 1: comparison of estimates using two approaches in AR(1)

Table: Proportion of Correct Identification of AR(1)

W : empirical cdf W : standard normal cdf
ut T θ0: 0.4 0.4−1 0.9 0.9−1 0.4 0.4−1 0.9 0.9−1

U[−5,5] 100 PCI 67.00% 84.00% 53.00% 54.00% 62.00% 77.00% 45.00% 41.00%
200 PCI 87.00% 86.00% 64.00% 63.00% 82.00% 78.00% 50.00% 54.00%

t3 100 PCI 60.00% 69.00% 69.00% 57.00% 81.00% 86.00% 75.00% 72.00%
200 PCI 76.00% 75.00% 63.00% 59.00% 90.00% 84.00% 71.00% 76.00%

χ2
5 − 5 100 PCI 94.00% 94.00% 71.00% 69.00% 94.00% 93.00% 78.00% 73.00%

200 PCI 99.00% 98.00% 80.00% 76.00% 99.00% 99.00% 81.00% 77.00%
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Simulation result 1: comparison of estimates using two approaches in AR(1)

Both approaches with different weighting functions work well when the parameter is not
close to unity.
When θ0 approaches unity, it becomes more difficult to distinguish causality and
non-causality.
As sample size increases, PCI gets higher.
Skewness and excess kurtosis provide information in identification.
In general, the approach with standard normal cdf is recommended.
More complicated case when the order of AR is higher. Simulation
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Application : daily trading volume of Microsoft (MSFT) stock

Figure: Microsoft daily trading volume from 6/3/1993 to 5/26/1999
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Application : daily trading volume of Microsoft (MSFT) stock

Our proposed method: ûgsd
t = Yt − 1.7953Yt−1

Noncausal autoregression is chosen.
Compared to AR-ARCH model (

Yt = 0.5854Yt−1 + ut

ut = σtϵt

σ2
t = 0.088 + 0.1667u2

t−1

), both clustering volatility and asymmetric patterns are captured by non-causal AR
model.

Fewer parameters to be estimated.
Dependence across quantiles: Cov (I (ut < Qu(τ1)) , I (ut−j < Qu(τ2))) ̸= 0.
Time irreversibility: Cov (I (Yt1 ≤ x) , I (Yt2 ≤ y)) ̸= Cov (I (Yt2 ≤ x) , I (Yt1 ≤ y)).

Weifeng Jin (Department of Economics, Universidad Carlos III de Madrid)Estimation of Time Series Models Using Generalized Spectral DistributionAugust 25, 2022 22 / 24



Diagnostic check

Figure: Sample autocorrelation function of squared residuals from
causal/non-causal AR(1) models
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Discussion

Choice of smoothing parameter h.
Working on the application of modelling speculative bubbles.
Extension to dependence under martingale difference innovations.
Comparison of this method with other alternatives in terms of efficiency, like Gaussian
PMLE and MLE assuming the distribution of innovation is known.
Efficiency improvement by adding higher order dependence, i.e. triple dependence
(ut, ut−j , ut−i).
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Local identification and global identification

(a) errors follow chi distribution (b) errors follow uniform distribution

Figure: Loss function for both causal and noncausal AR(1)

Back to Identification
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Two-step Estimation

Noncausal Autoregression AR(p) model:

α
(
L−1

)
Yt = ut, ut ∼ IID(0, σ2)

⇔ α (L) α
(
L−1

)
Yt = α (L) ut

⇔ α (L) Yt = α (L)
α (L−1)ut = ϵt ϵt ∼ WN(0, σ̃2)

Causal AR(p) driven from ϵt

{ϵt} is a white noise sequence but not independent (all-pass time series model), where the
roots to the AR polynomial are the reciprocals of the roots to the MA polynomial.

Back to main page
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Related literature

Test for serial dependence of a sequence:
Generalized covariance σj(x, y):

Nonparametric test for independence of two random variables (Hoeffding 1948)
First-order (Skaug and Tjøstheim 1993) and p serial dependence (Delgado 1996) in time series
context

Generalized spectral density and distribution:
Serial dependence of residuals (Hong 2000, Du and Escanciano 2015)
Martingale difference hypothesis (Escanciano and Velasco 2006)

Capture dynamic features of variable of interest:
conditional shape, time irreversibility and dependence in extremes or across quantiles (Kley
et al. 2016, Lee and Rao 2011)
cyclical behaviours (Hagemann 2011)
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Model Estimation under iid Assumption: Identification

Assumption 1
1 Given a compact Θ, for any

θ ̸= θ0, ϕ (θ, z) ̸= a0zj0 , in a subset of C with positive measure such that |z| = 1.
2 If |ϕ (θ, z) |2 = 1 a.e.for z ∈ C such that |z| = 1 for some θ ̸= θ0, then ut is non-Gaussian.

This assumption guarantees that the true innovation is only recovered at θ = θ0.

Assumption 2

For compact Θ and µ0 > 1,

sup
θ∈Θ

|φj(θ)| + sup
θ∈Θ

∣∣∣φ−1
j (θ)

∣∣∣ ≤ C|j|−µ0 , j = ±1, ±2, . . .

The Assumption.2 imposes weak dependence structure on the residual sequence ut(θ).
For ARMA(p, q), Assumption 1.1 is fulfilled and Assumption 2 is satisfied for any µ0 > 0.
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Model Estimation under iid Assumption: Identification

Assumption 3

W (x, y) = W (x, ∞)W (∞, y) where W (·) is a probability distribution defined on R2,
continuous and strictly increasing.

Identification
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Model Estimation under iid Assumption: Consistency

Assumption 4

ut admits a density function f(u) with the first order derivative f (1)(u) that is Lebesgue
integrable and has ath order bounded moment, i.e.

∫
R

∣∣∣f (1)(u)
∣∣∣ du < ∞ and∫

R

∣∣∣uaf (1)(u)
∣∣∣ du < ∞, a ≥ 2.

Assumption 5

The filter ϕ(θ; z) is differentiable with the first order derivative
ϕ(1)(θ; z) := ∂

∂θ ϕ−1(θ; z) =
∑∞

j=−∞ ϕ
(1)
j (θ)zj such that there exists a µ1 > 1,

sup
θ∈Θ

∥∥∥ϕ(1)
j (θ)

∥∥∥ ≤ C|j|−µ1 , j = ±1, ±2, . . .

Back to Theorem
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Model Estimation under iid Assumption: Asymptotic Normality

Assumption 6

The filter ϕ(θ) =
∑∞

j=−∞ ϕj(θ) with three derivatives ϕ(a)(θ) satisfies following condition:

sup
θ∈Θ

∥∥∥ϕ(a)
j (θ)

∥∥∥ < C |j|−ηa with ηa > 1

for a=1,2,3.

Assumption 7
1 {ut} admits uniformly bounded probability density function f(u) with differentiable

derivatives f (a)(u) of order a uniformly bounded by some constants C for a =1,2.
2 H0 is positive definite (local identification).

Back to Theorem
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Asymptotic normality: smooth approximation

Sample loss function:

Q̃T (θ; h) = 2
T −1∑
j=1

(1 − j

T
) 1
(jπ)2

∫
R2

σ̃2
θ,j(x, y; h)dW (x, y)

Smoothed estimator: θ̃h
T = argminθ∈Θ Q̃T (θ; h).

Consistency of θ̃h
T is guaranteed for any h > 0 as Λ

( ·
h

)
is a total-revealing

transformation, see Stinchcombe and White 1998.
Asymptotic properties can be developed based on ∂

∂θ Q̃T (θ0; h) and Hessian matrix
∂2

∂θ∂θ′ Q̃T (θ0; h), see Velasco 2021. Details
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Asymptotic normaliy: h fixed

Assumption 8
1 Λ(u) admits uniformly bounded positive probability density function λ(u) with

differentiable first order and second order derivatives λ̇(u) and λ̈(u) uniformly bounded by
some constants C.

2 H0,h is positive definite (local identification).

Theorem 3

Let {ut} be iid with zero mean, E |ut|3 < ∞ and , µ0 > 3, µ1 > 1, θ0 ∈ Θ, Under
Assumptions 1-3, Assumption 6 and 8, as T → ∞,

T 1/2
(
θ̃h

T − θ0
)

−→d N
(
0, H−1

0,hH1,hH−1
0,h

)
Back
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Asymptotic normality

Σ0,1 :=
∞∑

j=1
j−2ϕ

(1)
j (θ0)ϕ(1)

j (θ0)′ Σ∗
0,1 :=

∞∑
j=1

j−2ϕ
(1)
−j (θ0)ϕ(1)

−j (θ0)′

and Σ†
0,1 :=

∑∞
j=1 j−2ϕ

(1)
j (θ0)ϕ(1)

−j (θ0)′ .

Σ0,2 :=
∞∑

j=1
j−4ϕ

(1)
j (θ0)ϕ(1)

j (θ0)′ Σ∗
0,2 :=

∞∑
j=1

j−4ϕ
(1)
−j (θ0)ϕ(1)

−j (θ0)′

and Σ†
0,2 :=

∑∞
j=1 j−4ϕ

(1)
j (θ0)ϕ(1)

−j (θ0)′.
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Asymptotic normality: h fixed

H0,h =
(
Σ0,1 + Σ∗

0,1

)
ρh

1ρh
2 +

(
Σ†

0,1 + Σ†′

0,1

) (
ρh

12

)2
, where

ρh
1 =

∫
R

(
µh(x)

)2
dW (x), ρh

2 =
∫
R

(
λh(x)

)2
dW (x)

and ρh
12 =

∫
R µh(x)λh(x)dW (x)

φh(x) := E
(
Λ
(x−ut

h

))
, λh(x) := 1

h E
(
λ
(x−ut

h

))
, µh(x) := E

(
utΛ

(x−ut
h

))
.

H1,h =
(
Σ0,2 + Σ∗

0,2

)
σ2

e;hσ2
ν;h +

(
Σ†

0,2 + Σ†′

0,2

)
σ2

eν;h

{σ2
e;h, σ2

ν;h} and σ2
eν;h are the variance and covariance of {eh

t }, {νh
t } respectively.

eh
t :=

∫
R

(
Λ
(

x − ut

h

)
− φh(x)

)
λh(x)dW (x)

νh
t :=

∫
R

(
Λ
(

x − ut

h

)
− φh(x)

)
µh(x)dW (x)
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Asymptotic distribution: h → 0

H0 =
(
Σ0,1 + Σ∗

0,1

)
ρ1ρ2 +

(
Σ†

0,1 + Σ†′

0,1

)
(ρ12)2, where

ρ1 =
∫
R

(µ(x))2 dW (x), ρ2 =
∫
R

f2(x)dW (x)

and ρ12 =
∫
R f(x)λ(x)dW (x), µ(x) = E (utI (ut ≤ x)).

H1 =
(
Σ0,2 + Σ∗

0,2

)
σ2

eσ2
ν +

(
Σ†

0,2 + Σ†′

0,2

)
σ2

eν

{σ2
e , σ2

ν} and σ2
eν are the variance and covariance of {et}, {νt} respectively.

et :=
∫
R

(I (ut ≤ x) − F (x)) f(x)dW (x)

νt :=
∫
R

(I (ut ≤ x) − F (x)) µ(x)dW (x)

Back
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Standard error
Following the expressions of H0 and H1, their components can be replaced by corresponding
sample counterparts:

êt :=
∫
R

(
I
(
ût(θ̂T ) ≤ x

)
− F̂ (x)

)
f̂(x)dW (x)

ν̂t :=
∫
R

(
I
(
ût(θ̂T ) ≤ x

)
− F̂ (x)

)
µ̂(x)dW (x)

where

F̂ (x) = 1
T

T∑
t=1

I
(
ût(θ̂T ) ≤ x

)

f̂(x) = 1
Th

T∑
t=1

λ

(
x − ût(θ̂T )

h

)
for properly chosen h and smooth pdf λ

µ̂(x) = 1
T

T∑
t=1

ût(θ̂T )I
(
ût(θ̂T ) ≤ x

)
. Back
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Simulation result 2: estimates of AR(2)

Table: Proportion of Correct Identification in AR(2)

χ2(5) − 5
T= 100 T= 200

θ0 : (0.4, 0.8)
(
0.4−1, 0.8−1) (

0.4−1, 0.8
) (

0.4, 0.8−1) (0.4, 0.8)
(
0.4−1, 0.8−1) (

0.4−1, 0.8
) (

0.4, 0.8−1)
PCI 59.00% 81.00% 84.00% 85.00% 80.00% 94.00% 95.00% 90.00%
PN 41.00% 95.00% 96.00% 85.00% 20.00% 100.00% 98.00% 99.00%

PCI: percentage of correct root identification including the number of roots lying inside unit circle
PN: percentage of detecting existence of noncausality in the process. ı.e. There is at least one root lying inside unit circle.

The estimation in noncausal case outperforms the one in causal case in terms of PCI.
The method is able to detect existence of noncausality but cannot pin down precisely
where the noncausal root is. Simulation
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