Estimation of Time Series Models Using Generalized Spectral Distribution EEA-ESEM 2022, Milan

Weifeng Jin

Department of Economics, Universidad Carlos III de Madrid

August 25, 2022

Weifeng Jin (Department of Economics, Universidad CarEstimation of Time Series Models Using Generalized Sp

August 25, 2022

Motivation

Figure: Path of soybean daily price from 1973 to 1992

- Speculative behaviour leads to asymmetric dynamics like phases of local explosiveness.
- Limitation of conventional linear process in characterizing nonlinear dynamics.

- Predictability of future values given private information held by agents → Incorporate future components into the model ⇔ "non-fundamental" time series model (temporal dependence in both future and past)
- Autoregressive-moving-average model
 - Non-causality, e.g.

$$Y_t = \alpha Y_{t-1} + u_t, |\alpha| > 1$$

- nonlinear dynamics: speculative bubbles, asymmetric cycles (Gouriéroux and Zakoïan 2017)
 illustration and volatility clustering (Breidt, Davis, Trindade, et al. 2001)
- improvement in forecasting accuracy in macroeconomics and finance (Hecq and Voisin 2020; Lanne, Luoto, and Saikkonen 2012)
- alternative to non-invertible processes in modeling forward-looking behaviour (Lanne and Luoto 2013)

- Autoregressive-moving-average model
 - Non-invertibility, e.g.

$$Y_t = u_t + \beta u_{t-1}, |\beta| > 1$$

- economically sensible impulse-response functions (Lippi and Reichlin 1993)
- information flow with unusual discounting patterns due to the fiscal foresight of tax policy (Leeper, Walker, and Yang 2013)
- non-revealing equilibrium when agents have heterogeneous information (Kasa, Walker, and Whiteman 2006; Walker 2007)
- Classical time series analysis is restricted to causal and invertible ARMA models
- In this paper, I investigate a **novel estimation technique** of general time series models which accommodate **non-invertibility** and **non-causality**.

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ • • • • • •

Trajectory of causal/non-causal autoregressions

 non-causal AR can generate repetitive episodes of upward trends followed by a sharp drop.

Figure: Comparison of trajectories of causal v.s. non-causal non-Gaussian AR(1)

Obstacle in the identification

• Consider two AR(1) models with |
ho| < 1,

$$\begin{aligned} Y_t^{(1)} = &\rho Y_{t-1}^{(1)} + u_t, u_t \sim IID(0, \sigma^2) \\ Y_t^{(2)} = &\rho^{-1} Y_{t-1}^{(2)} + v_t \Leftrightarrow Y_{t-1}^{(2)} = \rho Y_t^{(2)} - \rho v_t, v_t \sim IID(0, \sigma^2) \end{aligned}$$

• They have the same autocorrelation function,

$$\begin{split} & \mathbb{C}\mathrm{orr}\left(Y_{t}^{(1)}, Y_{t-1}^{(1)}\right) = \frac{\mathbb{C}\mathrm{ov}\left(\rho Y_{t-1}^{(1)} + u_{t}, Y_{t-1}^{(1)}\right)}{\mathbb{V}\mathrm{ar}\left(Y_{t-1}^{(1)}\right)} = \rho \\ & \mathbb{C}\mathrm{orr}\left(Y_{t}^{(2)}, Y_{t-1}^{(2)}\right) = \frac{\mathbb{C}\mathrm{ov}\left(Y_{t}^{(2)}, \rho Y_{t}^{(2)} - \rho v_{t}\right)}{\mathbb{V}\mathrm{ar}\left(Y_{t}^{(2)}\right)} = \rho \end{split}$$

Failure of estimation methods based on second-order structure for Y_t⁽²⁾
 Ordinary Least Square(OLS) or Gaussian Likelihood Estimation
 (Y_t⁽¹⁾, Y_t⁽²⁾) display distinct dynamics, see Figure.2

In the **Gaussian** framework, uncorrelatedness is equivalent to iid, but not in the non-Gaussian case.

So what other information from *iid* model innovations can be employed for identification?

- Non-Gaussian MLE: Breidt, Davis, Lh, et al. 1991, Lii and Rosenblatt 1992, Lii and Rosenblatt 1996, Gouriéroux and Zakoïan 2017.
- Minimum distance estimation: Gospodinov and Ng 2015, Velasco and Lobato 2018, Velasco 2021, Cabello 2021.

- **Methodology**: A new minimum distance estimation method based on a dependence measure using the cumulative distribution function of the residuals.
- Advantages:
 - Identification of general time series models robust to non-causality and non-invertibility without prior information on the distribution of the innovations.
 - Mild conditions on higher order moments for asymptotic analysis of the estimates.
 - Extension to different dependence structures, e.g. conditional mean independence and conditional quantile independence.

300 E E 4 E + 4 E

• Given a sequence of random variable $\{X_t\}$,

$$\begin{aligned} X_t \perp X_{t-j} &\iff P\left(X_t \leq x, X_{t-j} \leq y\right) = P\left(X_t \leq x\right) P\left(X_{t-j} \leq y\right) \\ &\forall (x,y) \in \mathbb{R}^2 \text{ for } j = \pm 1, \pm 2, \dots \end{aligned}$$

• General covariance of (X_t, X_{t-j}) :

$$\sigma_j (x, y) = \mathbb{C} \text{ov} \left(I \left(X_t \leq x \right), I \left(X_{t-j} \leq y \right) \right)$$
$$= P \left(X_t \leq x, X_{t-j} \leq y \right) - P \left(X_t \leq x \right) P \left(X_{t-j} \leq y \right)$$
$$\forall (x, y) \in \mathbb{R}^2 \text{ for } j = \pm 1, \pm 2, \dots$$

• Discrepancy between the joint *cdf* and the product of two marginal *cdf*, see Hoeffding 1948.

> A ∃ ► ∃ ∃ = < < </p>

Dependence measure: generalized spectral distribution

• Generalized spectral density of the sequence $\{X_t\}$, see Hong 2000:

$$h(x, y, \omega) = \frac{1}{2\pi} \sum_{j=-\infty}^{\infty} \sigma_j(x, y) e^{-ij\omega}, \quad \omega \in [-\pi, \pi], i = \sqrt{-1}$$

• Generalized spectral distribution function:

$$H(x, y, \lambda) = 2 \int_0^{\lambda \pi} h(x, y, \omega) d\omega$$
$$= \lambda \sigma_0(x, y) + 2 \sum_{j=1}^\infty \sigma_j(x, y) \frac{\sin(j\pi\lambda)}{j\pi}, \quad \lambda \in [0, 1]$$

- Take into account all pairwise dependence in $\{X_t\}$.
- Under *iid* assumption of $\{X_t\}$,

$$\begin{split} h_0(x,y,\omega) &= \frac{1}{2\pi} \sigma_0(x,y) \\ H_0(x,y,\lambda) &= \lambda \sigma_0(x,y), \quad \forall (x,y) \in \mathbb{R}^2 \quad \lambda \in [0,1]_{\text{Bigger}} \text{ for all } x \in [0,1]_{\text{Bigger}} \text{ for all } x$$

The Model

• Consider a general linear time series model

$$Y_t = \sum_{j=-\infty}^{\infty} \varphi_j u_{t-j} \tag{1}$$

where u_t is a sequence of *iid* innovations with $\mathbb{E} |u_t| < \infty$, and $\sum_{j=-\infty}^{\infty} |\varphi_j| < \infty$.

- Two-sided moving average in (1) allows non-causality and non-invertibility in time series.
- **Goal**:identification and estimation of $\theta \in \Theta \subset \mathbb{R}^m$

$$\varphi(\theta; L) = \sum_{j=-\infty}^{\infty} \varphi_j(\theta) L^j$$

• ARMA(p,q): $\alpha(L) Y_t = \beta(L) u_t$, where $\varphi(L) = \alpha^{-1}(L)\beta(L)$ with polynomials $\alpha(L) = 1 - \sum_{j=1}^{p} \alpha_j L^j$ and $\beta(L) = 1 + \sum_{j=1}^{q} \beta_j L^j$ having no common roots and all roots away from unity.

The Model

• Residual $\{u_t(\theta)\}$ at any given θ is calculated by

$$u_t(\theta) = \varphi(\theta, L)^{-1} Y_t = \varphi(\theta, L)^{-1} \ \varphi(\theta_0, L) u_t \equiv \phi(\theta, L) u_t$$

• Generalized spectral density and distribution of $\{u_t(\theta)\}$

$$h_{\theta}(x, y; \omega) = \frac{1}{2\pi} \sum_{-\infty}^{\infty} \sigma_{\theta, j}(x, y) e^{-ij\omega}$$
$$H_{\theta}(x, y; \lambda) = \lambda \sigma_{\theta, 0}(x, y) + 2 \sum_{j=1}^{\infty} \sigma_{\theta, j}(x, y) \frac{\sin j\pi\lambda}{j\pi}$$

where

$$\sigma_{\theta,j}(x,y) = \mathbb{C}\mathrm{ov}\left(I(u_t(\theta) \le x), I(u_{t-j}(\theta) \le y)\right)$$

• $heta_0$ is the true value of the parameters,i.e. $u_t(heta_0)=u_t$

1 = + 1 = + = = + 1 = + 1

Model Estimation under *iid* Assumption

• $\theta = \theta_0$: from iid-ness of the innovation, we have

$$\sigma_{\theta_0,j}(x,y) = 0 \quad \forall j \neq 0, \forall (x,y) \in \mathbb{R}^2$$

• Generalized spectral density and distribution :

$$h_{\theta_0}(x, y; \omega) = \frac{1}{2\pi} \sigma_{\theta_0, 0}(x, y)$$
$$H_{\theta_0}(x, y; \lambda) = \lambda \sigma_{\theta_0, 0}(x, y) \quad \lambda \in [0, 1]$$

• Population loss criterion: L_2 distance between $H_{\theta}(x, y; \lambda)$ and $H_{\theta_0}(x, y; \lambda)$

$$\begin{split} \mathcal{Q}_0(\theta) &= \int_{\mathbb{R}^2} \int_0^1 |H_\theta(x,y;\lambda) - H_{\theta_0}(x,y;\lambda)|^2 d\lambda dW(x,y) \\ &= 2\sum_{j=1}^\infty \frac{1}{(j\pi)^2} \int_{\mathbb{R}^2} \sigma_{\theta,j}^2(x,y) dW(x,y). \text{ (Parseval's identity)} \end{split}$$

• Under Assumption 1-3 \bigcirc Details), if $\theta \neq \theta_0, \{u_t(\theta)\}$ will not satisfy full or pairwise independence.

$$\sigma_{\theta,j}(x,y) \neq 0 \quad \exists j \neq 0 \quad \exists (x,y) \in \mathbb{R}^2$$
$$\rightarrow \int_{\mathbb{R}^2} |\sigma_{\theta,j}(x,y)|^2 dW(x,y) > 0$$
$$\rightarrow \mathcal{Q}_0(\theta) > 0$$

and

$$\mathcal{Q}_0(heta) = 0$$
, when $heta = heta_0$,

since $\sigma_{\theta_0,j}(x,y) = 0$ for $j \neq 0$. Plots

Theorem 1

Assume $\{u_t\}$ is iid with zero mean and $\mathbb{E}(u_t)^2 < \infty$, $\theta_0 \in \Theta$, under Assumptions 1-5 Details, $\mu_0 > 3 \text{ as } T \to \infty$,

$$\hat{\theta}_T \longrightarrow_p \theta_0.$$

Asymptotic normality: smooth approximation

• The approach: approximate indicator function by smoothed cumulative distribution function.

$$\tilde{\sigma}_{\theta,j;h}(x,y) = \tilde{F}_{\theta,j}(x,y;h) - \tilde{F}_{\theta,j}(x,\infty;h)\tilde{F}_{\theta,j}(\infty,y;h)$$

where $\tilde{F}_{\theta,j}(x,y;h)$ is a smoothed empirical joint cdf of residuals $u_t(\theta)$,

$$\tilde{F}_{\theta,j}(x,y;h) = \frac{1}{T-j} \sum_{t=j+1}^{T} \Lambda\left(\frac{x-u_t(\theta)}{h}\right) \Lambda\left(\frac{y-u_{t-j}(\theta)}{h}\right).$$

where $\Lambda(\cdot)$ is a distribution defined on unbounded support with differentiable $pdf\lambda(\cdot)$ away from zero, making sure it is a total-revealing transformation, see Stinchcombe and White 1998.

h is a smoothing parameter which tends to 0^+ so as to

$$\Lambda(\frac{z}{h}) \to I(z>0)$$
 for $|z| > 0$

▶ ▲ ∃ ▶ ∃ ∃ ♥ Q 0

Theorem 2

Under Assumptions 1-3 and Assumptions 6-7 \frown Details, $\{u_t\}$ iid with zero mean, $\mathbb{E} |u_t|^3 < \infty, \theta_0 \in \Theta, \ \mu_0 > 3, \mu_1 > 1$, as $T \to \infty, h \to 0$

$$T^{1/2}\left(\tilde{\theta}_T^h - \theta_0\right) \longrightarrow_p \mathcal{N}\left(0, H_0^{-1} H_1 H_0^{-1}\right)$$

To maintain the $\sqrt{T}\mbox{-}{\rm rate}$ of the asymptotic distribution, the convergence rate of h to zero needs to be

- slower than T^{-1} and faster than $T^{-1/4}$.
- H_0, H_1 have components of local identification. Details
- Efficiency comparison with Gaussian MLE.
- Standard error can be computed by replacement of each components by analogy. Details

Simulation

$$Y_t = \theta_0 Y_{t-1} + u_t$$

where $\{u_t\}$ are iid non-Gaussian innovations.

- $\bullet\,$ Two approaches of choosing $W(\cdot)$
 - empirical distribution of the residuals
 - standard normal cdf after standardization of the residuals : $u_t^*(\theta) = \frac{u_t(\theta)}{\sqrt{\sqrt{var}(u_t(\theta))}}$
- $\theta_0 = 0.4(0.4^{-1})$ and $0.9(0.9^{-1})$ in the causal (noncausal) case.
- $\{u_t\}$ follows U, t_3 and $\chi_5^2 5$.
- Sample size is 100 and 200 with 100 Monte Carlo replications.
- Percentage of correct root identification is reported in both approaches.

Table: Proportion of Correct Identification of AR(1)

				W: empirical cdf				W: standard normal cdf			
u_t	Т		θ_0 :	0.4	0.4^{-1}	0.9	0.9^{-1}	0.4	0.4^{-1}	0.9	0.9^{-1}
$U_{[-5,5]}$	100	PCI		67.00%	84.00%	53.00%	54.00%	62.00%	% 77.00%	45.00%	41.00%
	200	PCI		87.00%	86.00%	64.00%	63.00%	82.00%	% 78.00%	50.00%	54.00%
t_3	100	PCI		60.00%	69.00%	69.00%	57.00%	81.00%	% 86.00%	75.00%	72.00%
	200	PCI		76.00%	75.00%	63.00%	59.00%	90.00%	% 84.00%	71.00%	76.00%
$\chi_{5}^{2} - 5$	100	PCI		94.00%	94.00%	71.00%	69.00%	94.00%	% 93.00%	78.00%	73.00%
	200	PCI		99.00%	98.00%	80.00%	76.00%	99.00%	% 99.00%	81.00%	77.00%

▶ < ∃ ▶</p>

- Both approaches with different weighting functions work well when the parameter is not close to unity.
- When θ_0 approaches unity, it becomes more difficult to distinguish causality and non-causality.
- As sample size increases, PCI gets higher.
- Skewness and excess kurtosis provide information in identification.
- In general, the approach with standard normal *cdf* is recommended.
- More complicated case when the order of AR is higher. Simulation

DOC FIE 4EX 4E

Application : daily trading volume of Microsoft (MSFT) stock

Figure: Microsoft daily trading volume from 6/3/1993 to 5/26/1999

-

Application : daily trading volume of Microsoft (MSFT) stock

- Our proposed method: $\hat{u}_t^{gsd} = Y_t 1.7953Y_{t-1}$
- Noncausal autoregression is chosen.
- Compared to AR-ARCH model (

$$\begin{cases} Y_t = 0.5854Y_{t-1} + u_t \\ u_t = \sigma_t \epsilon_t \\ \sigma_t^2 = 0.088 + 0.1667u_{t-1}^2 \end{cases}$$

), both clustering volatility and asymmetric patterns are captured by non-causal AR model.

- Fewer parameters to be estimated.
- Dependence across quantiles: \mathbb{C} ov $(I(u_t < Q_u(\tau_1)), I(u_{t-j} < Q_u(\tau_2))) \neq 0.$
- Time irreversibility: \mathbb{C} ov $(I(Y_{t_1} \leq x), I(Y_{t_2} \leq y)) \neq \mathbb{C}$ ov $(I(Y_{t_2} \leq x), I(Y_{t_1} \leq y))$.

Diagnostic check

Figure: Sample autocorrelation function of squared residuals from causal/non-causal AR(1) models

els Using Generalized Spe

August 25, 2022

- Choice of smoothing parameter *h*.
- Working on the application of modelling speculative bubbles.
- Extension to dependence under martingale difference innovations.
- Comparison of this method with other alternatives in terms of efficiency, like Gaussian PMLE and MLE assuming the distribution of innovation is known.
- Efficiency improvement by adding higher order dependence, i.e. triple dependence (u_t, u_{t-j}, u_{t-i}) .

김 국가 문제품

Local identification and global identification

Figure: Loss function for both causal and noncausal AR(1)

Back to Identification

Weifeng Jin (Department of Economics, Universidad CarEstimation of Time Series Models Using Generalized Spe

August <u>25, 202</u>2

• Noncausal Autoregression AR(p) model:

$$\begin{split} \alpha \left(L^{-1} \right) Y_t &= u_t, \quad u_t \sim IID(0, \sigma^2) \\ \Leftrightarrow \alpha \left(L \right) \alpha \left(L^{-1} \right) Y_t &= \alpha \left(L \right) u_t \\ \Leftrightarrow \alpha \left(L \right) Y_t &= \frac{\alpha \left(L \right)}{\alpha \left(L^{-1} \right)} u_t = \epsilon_t \quad \epsilon_t \sim WN(0, \tilde{\sigma}^2) \end{split}$$

- Causal AR(p) driven from ϵ_t
- { ϵ_t } is a white noise sequence but not independent (all-pass time series model), where the roots to the AR polynomial are the reciprocals of the roots to the MA polynomial.

Back to main page

300 EIE 4E 4 E

26 / 24

• Test for serial dependence of a sequence:

- Generalized covariance $\sigma_j(x,y)$:
 - Nonparametric test for independence of two random variables (Hoeffding 1948)
 - First-order (Skaug and Tjøstheim 1993) and p serial dependence (Delgado 1996) in time series context

• Generalized spectral density and distribution:

- Serial dependence of residuals (Hong 2000, Du and Escanciano 2015)
- Martingale difference hypothesis (Escanciano and Velasco 2006)

• Capture dynamic features of variable of interest:

- conditional shape, time irreversibility and dependence in extremes or across quantiles (Kley et al. 2016, Lee and Rao 2011)
- cyclical behaviours (Hagemann 2011)

Model Estimation under *iid* Assumption: Identification

Assumption 1

- Given a compact Θ, for any θ ≠ θ₀, φ(θ, z) ≠ a₀z^{j₀}, in a subset of C with positive measure such that |z| = 1.
 If |φ(θ, z)|² = 1 a.e.for z ∈ C such that |z| = 1 for some θ ≠ θ₀, then u_t is non-Gaussian.
 - This assumption guarantees that the true innovation is only recovered at $\theta = \theta_0$.

Assumption 2

For compact Θ and $\mu_0 > 1$,

$$\sup_{\theta \in \Theta} |\varphi_j(\theta)| + \sup_{\theta \in \Theta} \left| \varphi_j^{-1}(\theta) \right| \le C |j|^{-\mu_0}, \quad j = \pm 1, \pm 2, \dots$$

- The Assumption.2 imposes weak dependence structure on the residual sequence $u_t(\theta)$.
- For ARMA(p,q), Assumption 1.1 is fulfilled and Assumption 2 is satisfied for any $\mu_0 > 0_{3,2}$

August 25, 2022

Assumption 3

 $W(x,y) = W(x,\infty)W(\infty,y)$ where $W(\cdot)$ is a probability distribution defined on \mathbb{R}^2 , continuous and strictly increasing.

Identification

Weifeng Jin (Department of Economics, Universidad CarEstimation of Time Series Models Using Generalized Spe

Assumption 4

 u_t admits a density function f(u) with the first order derivative $f^{(1)}(u)$ that is Lebesgue integrable and has a^{th} order bounded moment, i.e. $\int_{\mathbb{R}} \left| f^{(1)}(u) \right| du < \infty$ and $\int_{\mathbb{R}} \left| u^a f^{(1)}(u) \right| du < \infty, a \ge 2.$

Assumption 5

The filter $\phi(\theta; z)$ is differentiable with the first order derivative $\phi^{(1)}(\theta; z) := \frac{\partial}{\partial \theta} \phi^{-1}(\theta; z) = \sum_{j=-\infty}^{\infty} \phi_j^{(1)}(\theta) z^j$ such that there exists a $\mu_1 > 1$, $\sup_{\theta \in \Theta} \left\| \phi_j^{(1)}(\theta) \right\| \le C|j|^{-\mu_1}, \quad j = \pm 1, \pm 2, \dots$

Back to Theorem

Weifeng Jin (Department of Economics, Universidad CarEstimation of Time Series Models Using Generalized Spi

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● QQ

Model Estimation under *iid* Assumption: Asymptotic Normality

Assumption 6

The filter $\phi(\theta) = \sum_{j=-\infty}^{\infty} \phi_j(\theta)$ with three derivatives $\phi^{(a)}(\theta)$ satisfies following condition:

$$\sup_{\theta \in \Theta} \left\| \phi_j^{(a)} \left(\theta \right) \right\| < C \left| j \right|^{-\eta_a} \text{ with } \eta_a > 1$$

for a=1,2,3.

Assumption 7

- $\{u_t\}$ admits uniformly bounded probability density function f(u) with differentiable derivatives $f^{(a)}(u)$ of order a uniformly bounded by some constants C for a =1,2.
- **2** H_0 is positive definite (local identification).

Back to Theorem

▶ ★ E ▶ ★ E ▶ E = 900

• Sample loss function:

$$\tilde{\mathcal{Q}}_T(\theta;h) = 2\sum_{j=1}^{T-1} (1-\frac{j}{T}) \frac{1}{(j\pi)^2} \int_{\mathbb{R}^2} \tilde{\sigma}_{\theta,j}^2(x,y;h) dW(x,y)$$

- Smoothed estimator: $\tilde{\theta}_{T}^{h} = \operatorname{argmin}_{\theta \in \Theta} \tilde{\mathcal{Q}}_{T}(\theta; h).$
- Consistency of $\tilde{\theta}_T^h$ is guaranteed for any h > 0 as $\Lambda\left(\frac{\cdot}{h}\right)$ is a total-revealing transformation, see Stinchcombe and White 1998.
- Asymptotic properties can be developed based on $\frac{\partial}{\partial \theta} \tilde{\mathcal{Q}}_T(\theta_0; h)$ and Hessian matrix $\frac{\partial^2}{\partial \theta \partial \theta'} \tilde{\mathcal{Q}}_T(\theta_0; h)$, see Velasco 2021. Details

Assumption 8

- $\Lambda(u)$ admits uniformly bounded positive probability density function $\lambda(u)$ with differentiable first order and second order derivatives $\dot{\lambda}(u)$ and $\ddot{\lambda}(u)$ uniformly bounded by some constants *C*.
- **2** $H_{0,h}$ is positive definite (local identification).

Theorem 3

Let $\{u_t\}$ be *iid* with zero mean, $\mathbb{E} |u_t|^3 < \infty$ and , $\mu_0 > 3, \mu_1 > 1, \theta_0 \in \Theta$, Under Assumptions 1-3, Assumption 6 and 8, as $T \to \infty$,

$$T^{1/2}\left(\tilde{\theta}_T^h - \theta_0\right) \longrightarrow_d \mathcal{N}\left(0, H_{0,h}^{-1} H_{1,h} H_{0,h}^{-1}\right)$$

NOO ELE NENNENNOO

Asymptotic normality

٥ $\Sigma_{0,1} := \sum_{j=1}^{\infty} j^{-2} \phi_j^{(1)}(\theta_0) \phi_j^{(1)}(\theta_0)' \quad \Sigma_{0,1}^* := \sum_{j=1}^{\infty} j^{-2} \phi_{-j}^{(1)}(\theta_0) \phi_{-j}^{(1)}(\theta_0)'$ and $\Sigma_{0,1}^{\dagger} := \sum_{i=1}^{\infty} j^{-2} \phi_i^{(1)}(\theta_0) \phi_{i}^{(1)}(\theta_0)'$. $\Sigma_{0,2} := \sum_{i=1}^{\infty} j^{-4} \phi_j^{(1)}(\theta_0) \phi_j^{(1)}(\theta_0)' \quad \Sigma_{0,2}^* := \sum_{i=1}^{\infty} j^{-4} \phi_{-j}^{(1)}(\theta_0) \phi_{-j}^{(1)}(\theta_0)'$ and $\Sigma_{0,2}^{\dagger} := \sum_{i=1}^{\infty} j^{-4} \phi_i^{(1)}(\theta_0) \phi_{-i}^{(1)}(\theta_0)'.$

Asymptotic normality: h fixed

•
$$H_{0,h} = \left(\Sigma_{0,1} + \Sigma_{0,1}^*\right) \rho_1^h \rho_2^h + \left(\Sigma_{0,1}^\dagger + \Sigma_{0,1}^{\dagger'}\right) \left(\rho_{12}^h\right)^2$$
, where
 $\rho_1^h = \int_{\mathbb{R}} \left(\mu^h(x)\right)^2 dW(x), \ \rho_2^h = \int_{\mathbb{R}} \left(\lambda^h(x)\right)^2 dW(x)$

and
$$\begin{split} & \text{and } \rho_{12}^h = \int_{\mathbb{R}} \mu^h(x) \lambda^h(x) dW(x) \\ \bullet \ \varphi^h(x) &:= \mathbb{E}\left(\Lambda\left(\frac{x-u_t}{h}\right)\right), \ \lambda^h(x) &:= \frac{1}{h} \mathbb{E}\left(\lambda\left(\frac{x-u_t}{h}\right)\right), \ \mu^h(x) &:= \mathbb{E}\left(u_t \Lambda\left(\frac{x-u_t}{h}\right)\right). \\ & H_{1,h} = \left(\Sigma_{0,2} + \Sigma_{0,2}^*\right) \sigma_{e;h}^2 \sigma_{\nu;h}^2 + \left(\Sigma_{0,2}^{\dagger} + \Sigma_{0,2}^{\dagger'}\right) \sigma_{e\nu;h}^2 \\ \bullet \ \{\sigma_{e;h}^2, \sigma_{\nu;h}^2\} \text{ and } \sigma_{e\nu;h}^2 \text{ are the variance and covariance of } \{e_t^h\}, \{\nu_t^h\} \text{ respectively.} \end{split}$$

$$e_t^h := \int_{\mathbb{R}} \left(\Lambda\left(\frac{x-u_t}{h}\right) - \varphi^h(x) \right) \lambda^h(x) dW(x)$$
$$\nu_t^h := \int_{\mathbb{R}} \left(\Lambda\left(\frac{x-u_t}{h}\right) - \varphi^h(x) \right) \mu^h(x) dW(x)$$

Weifeng Jin (Department of Economics, Universidad Car<mark>Estimation of Time Series Models Using C</mark>

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ のQ@

Asymptotic distribution: $h \rightarrow 0$

•
$$H_0 = \left(\Sigma_{0,1} + \Sigma_{0,1}^*\right) \rho_1 \rho_2 + \left(\Sigma_{0,1}^{\dagger} + \Sigma_{0,1}^{\dagger'}\right) (\rho_{12})^2$$
, where
 $\rho_1 = \int_{\mathbb{R}} (\mu(x))^2 dW(x), \ \rho_2 = \int_{\mathbb{R}} f^2(x) dW(x)$
and $\rho_{12} = \int_{\mathbb{R}} f(x) \lambda(x) dW(x), \ \mu(x) = \mathbb{E} (u_t I (u_t \le x)).$
• $H_1 = \left(\Sigma_{0,2} + \Sigma_{0,2}^*\right) \sigma_e^2 \sigma_\nu^2 + \left(\Sigma_{0,2}^{\dagger} + \Sigma_{0,2}^{\dagger'}\right) \sigma_{e\nu}^2$
• $\{\sigma_e^2, \sigma_\nu^2\}$ and $\sigma_{e\nu}^2$ are the variance and covariance of $\{e_t\}, \{\nu_t\}$ respectively.

$$e_t := \int_{\mathbb{R}} \left(I\left(u_t \le x\right) - F(x) \right) f(x) dW(x)$$
$$\nu_t := \int_{\mathbb{R}} \left(I\left(u_t \le x\right) - F(x) \right) \mu(x) dW(x)$$

August 25, 2022

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ のQ@

Standard error

Following the expressions of H_0 and H_1 , their components can be replaced by corresponding sample counterparts:

$$\hat{e}_t := \int_{\mathbb{R}} \left(I\left(\hat{u}_t(\hat{\theta}_T) \le x\right) - \hat{F}(x) \right) \hat{f}(x) dW(x)$$
$$\hat{\nu}_t := \int_{\mathbb{R}} \left(I\left(\hat{u}_t(\hat{\theta}_T) \le x\right) - \hat{F}(x) \right) \hat{\mu}(x) dW(x)$$

where

$$\begin{split} \hat{F}(x) &= \frac{1}{T} \sum_{t=1}^{T} I\left(\hat{u}_t(\hat{\theta}_T) \leq x\right) \\ \hat{f}(x) &= \frac{1}{Th} \sum_{t=1}^{T} \lambda\left(\frac{x - \hat{u}_t(\hat{\theta}_T)}{h}\right) \text{ for properly chosen } h \text{ and smooth pdf } \lambda \\ \hat{\mu}(x) &= \frac{1}{T} \sum_{t=1}^{T} \hat{u}_t(\hat{\theta}_T) I\left(\hat{u}_t(\hat{\theta}_T) \leq x\right). \end{split}$$

Weifeng Jin (Department of Economics, Universidad Car

Table: Proportion of Correct Identification in AR(2)

		$\chi^{2}(5) - 5$									
			T=	100		T= 200					
	θ_0 :	(0.4, 0.8)	$(0.4^{-1}, 0.8^{-1})$	$(0.4^{-1}, 0.8)$	$(0.4, 0.8^{-1})$	(0.4, 0.8)	$(0.4^{-1}, 0.8^{-1})$	$(0.4^{-1}, 0.8)$	$(0.4, 0.8^{-1})$		
PCI		59.00%	81.00%	84.00%	85.00%	80.00%	94.00%	95.00%	90.00%		
ΡN		41.00%	95.00%	96.00%	85.00%	20.00%	100.00%	98.00%	99.00%		

PCI: percentage of correct root identification including the number of roots lying inside unit circle PN: percentage of detecting existence of noncausality in the process. *i.e.* There is at least one root lying inside unit circle.

- The estimation in noncausal case outperforms the one in causal case in terms of PCI.
- The method is able to detect existence of noncausality but cannot pin down precisely where the noncausal root is. Simulation

A B N A B N B B N A A

Bibliography I

- Breidt, F Jay, Richard A Davis, Keh-Shin Lh, and Murray Rosenblatt (1991). "Maximum likelihood estimation for noncausal autoregressive processes". In: *Journal of Multivariate Analysis* 36.2, pp. 175–198.
- Breidt, F Jay, Richard A Davis, A Alexandre Trindade, et al. (2001). "Least absolute deviation estimation for all-pass time series models". In: *The Annals of Statistics* 29.4, pp. 919–946.
- Cabello, Miguel Angel (2021). "Identification and estimation of linear structural VARMA models using pairwise dependence measures". In: *Working paper*.
- Delgado, Miguel A (1996). "Testing serial independence using the sample distribution function". In: *Journal of Time Series Analysis* 17.3, pp. 271–285.
- Du, Zaichao and Juan Carlos Escanciano (2015). "A nonparametric distribution-free test for serial independence of errors". In: *Econometric Reviews* 34.6-10, pp. 1011–1034.
- Escanciano, Juan Carlos and Carlos Velasco (2006). "Generalized spectral tests for the martingale difference hypothesis". In: *Journal of Econometrics* 134.1, pp. 151–185.

▶ < ∃ > ∃|∃ <> QQ

- Gospodinov, Nikolay and Serena Ng (2015). "Minimum distance estimation of possibly noninvertible moving average models". In: *Journal of Business & Economic Statistics* 33.3, pp. 403–417.
- Gouriéroux, Christian and Jean-Michel Zakoïan (2017). "Local explosion modelling by non-causal process". In: *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 79.3, pp. 737–756.
- B Hagemann, Andreas (2011). "Robust spectral analysis". In: arXiv preprint arXiv:1111.1965.
- Hecq, Alain and Elisa Voisin (2020). "Forecasting bubbles with mixed causal-noncausal autoregressive models". In: *Econometrics and Statistics*.
- Hoeffding, Wassily (1948). "A non-parametric test of independence". In: The annals of mathematical statistics, pp. 546–557.
- Hong, Yongmiao (2000). "Generalized spectral tests for serial dependence". In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 62.3, pp. 557–574.

▶ ★ Ξ ▶ ★ Ξ ▶ Ξ Ξ • • • • •

Bibliography III

- Kasa, Kenneth, Todd B Walker, and Charles H Whiteman (2006). "Asset prices in a time series model with perpetually disparately informed, competitive traders". In.
- Kley, Tobias, Stanislav Volgushev, Holger Dette, Marc Hallin, et al. (2016). "Quantile spectral processes: Asymptotic analysis and inference". In: *Bernoulli* 22.3, pp. 1770–1807.
- Lanne, Markku and Jani Luoto (2013). "Autoregression-based estimation of the new Keynesian Phillips curve". In: *Journal of Economic Dynamics and Control* 37.3, pp. 561–570.
- Lanne, Markku, Jani Luoto, and Pentti Saikkonen (2012). "Optimal forecasting of noncausal autoregressive time series". In: International Journal of Forecasting 28.3, pp. 623–631.
- Lee, Junbum and Suhasini Subba Rao (2011). "The quantile spectral density and comparison based tests for nonlinear time series". In: *arXiv preprint arXiv:1112.2759*.
- Leeper, Eric M, Todd B Walker, and Shu-Chun Susan Yang (2013). "Fiscal foresight and information flows". In: *Econometrica* 81.3, pp. 1115–1145.

- Lii, Keh-Shin and Murray Rosenblatt (1992). "An approximate maximum likelihood estimation for non-Gaussian non-minimum phase moving average processes". In: Journal of Multivariate Analysis 43.2, pp. 272–299.
- (1996). "Maximum likelihood estimation for nonGaussian nonminimum phase ARMA sequences". In: Statistica Sinica, pp. 1–22.
- Lippi, Marco and Lucrezia Reichlin (1993). "The dynamic effects of aggregate demand and supply disturbances: Comment". In: *The American Economic Review* 83.3, pp. 644–652.
- Skaug, Hans Julius and Dag Tjøstheim (1993). "A nonparametric test of serial independence based on the empirical distribution function". In: *Biometrika* 80.3, pp. 591–602.
- Stinchcombe, Maxwell B and Halbert White (1998). "Consistent specification testing with nuisance parameters present only under the alternative". In: *Econometric theory* 14.3, pp. 295–325.

▶ ★ Ξ ▶ ★ Ξ ▶ Ξ Ξ • • • • •

- Velasco, Carlos (2021). "Estimation of time series using residuals dependence measures". In: Working paper.
- Velasco, Carlos and Ignacio N Lobato (2018). "Frequency domain minimum distance inference for possibly noninvertible and noncausal ARMA models". In: *The Annals of Statistics* 46.2, pp. 555–579.
- Walker, Todd B (2007). "How equilibrium prices reveal information in a time series model with disparately informed, competitive traders". In: *Journal of Economic Theory* 137.1, pp. 512–537.

DOC FIE 4EX 4E