

Green Technologies, Environmental Policy and Regional Growth

Philip Kerner¹, Torben Klarl^{1 2} and Tobias Wendler¹

¹University of Bremen, Faculty of Business Studies and Economics ²Research Fellow at SPEA, Indiana University, Bloomington

Annual Congress European Economic Association 2022 August, 24 2022 Outline

1 Introduction

- 2 Empirical Strategy and Data
- 3 Results
- 4 Summary and Concluding Remarks

Background

- Green technologies are at the core of endeavors to achieve sustainable growth, one of the aims of, e.g., the European Green Deal (European Commission, 2019)
 - They contribute to increase environmental productivity (e.g. Popp, 2010)
 - They might as well increase economic productivity (e.g. Xepapadeas and de Zeeuw, 1999)
 - Green technologies as source of win-win opportunities
- RQ: What is the impact of green technology development on labor productivity of European regions?
- Firm level evidence: lower returns compared to other innovation (Marin and Lotti, 2017) or positive effects only for specific types of green technologies (resource-saving) (Ghisetti and Rennings, 2014; Rexhäuser and Rammer, 2014; Van Leeuwen and Mohnen, 2017)
- Sector level evidence: positive, albeit small returns (Stucki and Woerter, 2019); potential U-shaped relationship (Soltmann et al., 2015; Stucki and Woerter, 2019)

We aim to estimate a logarithmized aggregate production function for each European region r and year t

$$y_{rt} = \sigma_g k_{g,rt} + \sigma_p k_{p,rt} + \sigma_k k_{k,rt} + v_{rt}, \qquad (2.1)$$

with

$$v_{rt} = \psi_r + e_{rt},\tag{2.2}$$

ie

where

- y_{rt}: Labor productivity
- \blacktriangleright $k_{k,rt}$: Physical capital input
- k_{g,rt}: Green knowledge stock
- $k_{p,rt}^{o,rt}$: Non-green knowledge stock
- $\hat{\psi}_r$: Region-specific, year-invariant effect

institute for economic research

- Panel dimension: R = 158 European NUTS-2 regions over the period 1980 2018 (T = 39) from twelve countries (eleven EU-15 plus Norway)
- We utilize the following data for the respective variables...
 - y_{rt}: Gross value added by employment (ARDECO)
 - *k_{k,rt}*: Gross fixed capital formation by employment (ARDECO)
 - kg,rt: Based on Y02 patents (RegPat 2021) per employment
 - k_{p,rt}: Based on total patents (RegPat 2021) per employment

- Heterogeneous coefficients between regions
- Time series properties of the variables of the production function
- Lagged feedback and dynamic adjustment processes
- Convergence rates of estimators given the time series and cross-section dimensions

Cross-sectional dependence

- *e_{rt}* might contain cross-sectional dependence (CSD) because of omitted sources of between-region spillovers
- Recent studies stress the importance to account for CSD (e.g. common shocks, knowledge spillovers) when estimating returns to knowledge (Ertur and Musolesi, 2017; Mitze et al., 2016; Eberhardt et al., 2013)

- General approach: we use different methods to make sure that the results are not driven by assumptions on the data generation process (e.g. Eberhardt and Teal, 2011; Eberhardt et al., 2013)
- Based on the CSD tests, we choose the common correlated effects estimator (CCE) (Pesaran, 2006) as a priori preferred method
 - In essence, cross-sectional averages of dependent and independent variables are used to approximate the common factors
 - We utilize the pooled version as our main estimator (CCEP)
- Additionally: two-way fixed effects (2FE), first difference (FD)

	POLS	FE	POLS	2FE	FD	CCEP
Investment	0.471***	0.292***	0.476***	0.277***	0.110***	0.085***
	(0.0094)	(0.0255)	(0.0097)	(0.0274)	(0.0119)	0.0183
Green knowledge stock	0.014*** (0.0027)	0.022*** (0.0055)	0.0004 (0.0032)	-0.001 (0.0074)	0.004*	-0.001 0.0052
Non-green knowledge stock	0.039***	0.060***	0.047***	0.037***	0.026***	0.046***
	(0.0031)	(0.0081)	(0.0033)	(0.0134)	(0.0052)	0.0158
Year dummies	No	No	Yes	Yes	Yes	No
Observations	6162	6162	6162	6162	6004	6162
Regions	158	158	158	158	158	158

	Mean (Group			
	MG	CCEMG	2FE	FD	CCEP
Investment	0.169***	0.109***	0.280***	0.110***	0.0837***
	(0.0177)	(0.0128)	(0.0274)	(0.0119)	(0.0184)
Green knowledge stock	-0.0179*	0.00196	-0.0159	0.00318	-0.0128*
-	(0.0071)	(0.00815)	(0.0116)	(0.00322)	(0.00606)
Non-green knowledge stock	0.0352*	0.0459**	0.0743***	0.0368***	0.0504
0 0	(0.0159)	(0.0145)	(0.0193)	(0.00716)	(0.0293)
Green * Industry	· · ·		Ò.0900* [*]	0.00490	0.0570*
-			(0.0340)	(0.00796)	(0.0258)
Non-green * Industry			-0.172**	-0.0503*	-0.0228
o ,			(0.0628)	(0.0211)	(0.139)
Year dummies	Demeaned	No	Yes	Yes	No
Observations	6162	6162	6162	6004	6162
Regions	158	158	158	158	158

- We find a significant productivity effect by non-green innovation, while there are no private returns to green innovation
- Generally robust for different computation of knowledge and capital stocks, quality-weighted knowledge stocks, and weak exogeneity
- We find the regional economic structure to moderate the productivity effects of green and non-green
 - We find no evidence for distinct effects within individual sectors

	Buildings			efficiency	Renewables	
	FD	CCEP	FD	CCEP	FD	CCEP
Investment	0.107***	0.0901***	0.113***	0.0888***	0.103***	0.0913***
	(0.0127)	(0.0160)	(0.0130)	(0.0159)	(0.0114)	(0.0353)
Green	0.00341	0.00568*	0.00382*	0.00579	0.000433	-0.0007
	(0.00188)	(0.0032)	(0.00194)	(0.0036)	(0.00154)	(0.0036)
Non-green	0.0313***	0.0540**	0.0293***	0.0432**	0.0326***	0.0626**
	(0.00562)	(0.0269)	(0.00528)	(0.0174)	(0.00558)	(0.0294)
Year dummies	Yes	No	Yes	No	Yes	No
Observations	5814	5967	5890	6045	5890	6045
Regions	153	153	155	155	155	155

.

	Compler	mentarity	Gre	een	Non-	green
	FD	CCEP	FD	CCEP	FD	CCEP
Investment	0.110***	0.103***	0.110***	0.105***	0.111***	0.109***
	(0.012)	(0.022)	(0.012)	(0.021)	(0.012)	(0.021)
Green knowledge stock	0.006 (0.003)	0.003 (0.018)	0.023*	0.035 (0.025)	0.001 (0.002)	-0.004 (0.011)
Non-green knowledge stock	0.027***	0.014	0.025***	0.014	0.050***	0.108**
	(0.005)	(0.028)	(0.005)	(0.014)	(0.010)	(0.037)
Non-green * Green	0.0003 (0.0004)	0.00004 (0.0057)	· · · ·	, , , , , , , , , , , , , , , , , , ,	()	· · /
Green * Green	. ,	. ,	0.0014* (0.0007)	0.0028 (0.0025)		
Non-green * Non-green			. ,	. ,	0.0025* (0.0011)	0.010* (0.005)
Year dummies	Yes	No	Yes	No	Yes	No
Observations	6004	6162	6004	6162	6004	6162
Regions	158	158	158	158	158	158

Results V: Critical mass in knowledge - Thresholds

Threshold variable Regime dependent variable	Green	Green Non-green	Both	Both	Non-green Green	Non-green
Investment	0.2663*** (0.0058)	0.2649*** (0.0058)	0.2639*** (0.0058)	0.2686*** (0.0057)	0.2755*** (0.0058)	0.2674*** (0.0058)
Green knowledge stock		0.0066*** (0.0022)				-0.0025 (0.0021)
Green knowledge stock (below threshold) Green knowledge stock (above threshold)	0.0046** (0.0022) 0.0139*** (0.0025)		0.0061*** (0.0022) 0.0102*** (0.0026)	-0.0026 (0.0021) -0.0109*** (0.0027)	-0.0011 (0.0021) -0.0281*** (0.0038)	
Non-green knowledge stock	0.0463*** (0.0030)				0.0391*** (0.0030)	
Non-green knowledge stock (below threshold) Non-green knowledge stock (above threshold)		0.0400*** (0.0030) 0.0567*** (0.0034)	0.0429*** (0.0032) 0.0533*** (0.0036)	0.0467*** (0.0030) 0.1045*** (0.0059)		0.0446*** 0.0030 0.1004*** (0.0056)
Threshold value Threshold p-value Threshold percentile Year dummies Observations Regions	-4.9972 0.0000 25% Yes 6162 158	-4.8207 0.0100 25% Yes 6162 158	-4.8207 0.0000 25% Yes 6162 158	-0.7806 0.0100 50% Yes 6162 158	0.9645 0.0800 95% Yes 6162 158	0.0593 0.0033 75% Yes 6162 158

Asterisks indicate significance at ***1%; **5%; *10%. Fixed-effects panel threshold regression implemented with xthreg in STATA.

- We find a significant productivity effect by non-green innovation, while there are no private returns to green innovation
- We find on average more industrialized regions to potentially profit distinctly from green innovation
 - We find no distinct returns within the industry sector
 - We find some evidence that the green technology profile might be important
 - We find some evidence towards critical mass phenomena, i.e. that an existent knowledge base moderates productivity gains
 - Both green and non-green profit from a larger own knowledge base
 - A knowledge complementarity seems to be a one-sided relation, i.e. non-green profits from a green knowledge base but not the other way around

Thank you!

If you have any further questions or suggestions, please feel free to contact me via tobias.wendler@uni-bremen.de

Green Technologies, Environmental Policy and Regional Growth

References

- Eberhardt, M., Helmers, C., and Strauss, H. (2013). Do Spillovers Matter When Estimating Private Returns to R&D? The Review of Economics and Statistics, 95(2):436–448.
- Eberhardt, M. and Teal, F. (2011). Econometrics for Grumblers: A New Look at the Literature on Cross-Country Growth Empirics. *Journal of Economic Surveys*, 25(1):109–155.
- Ertur, C. and Musolesi, A. (2017). Weak and Strong Cross-Sectional Dependence: A Panel Data Analysis of International Technology Diffusion. *Journal of Applied Econometrics*, 32(3):477–503.
- European Commission (2019). Communication from the Commission "The European Green Deal". COM(2019) 640 final.
- Ghisetti, C. and Rennings, K. (2014). Environmental innovations and profitability: how does it pay to be green? An empirical analysis on the German innovation survey. *Journal of Cleaner Production*, 75:106–117.
- Marin, G. and Lotti, F. (2017). Productivity effects of eco-innovations using data on eco-patents. Industrial and Corporate Change, 26(1):125–148.
- Mitze, T., Naveed, A., and Ahmad, N. (2016). International, intersectoral, or unobservable? Measuring R&D spillovers under weak and strong cross-sectional dependence. *Journal of Macroeconomics*, 50:259–272.
- Pesaran, M. H. (2006). Estimation and inference in large heterogeneous panels with a multifactor error structure. *Econometrica*, 74(4):967–1012.
- Popp, D. (2010). Innovation and Climate Policy. Annual Review of Resource Economics, 2(1):275-298.
- Rexhäuser, S. and Rammer, C. (2014). Environmental Innovations and Firm Profitability: Unmasking the Porter Hypothesis. Environmental and Resource Economics, 57(1):145–167.
- Soltmann, C., Stucki, T., and Woerter, M. (2015). The Impact of Environmentally Friendly Innovations on Value Added. *Environmental and Resource Economics*, 62(3):457–479.
- Stucki, T. and Woerter, M. (2019). The private returns to knowledge: A comparison of ICT, biotechnologies, nanotechnologies, and green technologies. *Technological Forecasting and Social Change*, 145:62–81.
- Van Leeuwen, G. and Mohnen, P. (2017). Revisiting the Porter hypothesis: an empirical analysis of Green innovation for the Netherlands. *Economics of Innovation and New Technology*, 26(1-2):63–77.
- Xepapadeas, A. and de Zeeuw, A. (1999). Environmental Policy and Competitiveness: The Porter Hypothesis and the Composition of Capital. *Journal of Environmental Economics and Management*, 37(2):165–182.