Organization of Knowledge and Taxation

Ctirad Slavík, CERGE-EI, Prague

(with Marek Kapička, CERGE-EI, Prague)

August 22, 2022

EEA Annual Meetings

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の へ () 1/44 A classic question:

• How should people's incomes be taxed?

Renewed interest:

- Recent large changes in wage (and income) inequality.
- Wages change differently at the top and bottom.

Answer (to the classic question) typically given in models with:

- Exogeneous wage inequality, and/or
- ② limited interaction between top and bottom wages.

This paper:

- Optimal (labor) taxes in model with (i) endogeneous wages,
 (ii) rich interaction between top and bottom wages.
- 2 Model can match the wage structure and (potentially) its changes over time.

- Model of knowledge based hierarchies of Garicano (2000), Garicano and Rossi-Hansberg (2006).
- People choose to become workers or managers.
- Form organizations in which knowledge efficiently combined.
- We extend the model to match observed wage inequality.
- Study labor income taxation in this model.

With a constant-rate-of-progressivity income tax function:

- More progressive taxes decrease wage inequality in upper tail: (more) managers supervise fewer (less diverse) workers.
- More progressive taxes **increase** wage inequality in lower tail: workers matched with more diverse managers.
- Nontrivial trade-off. However, in the optimum, taxes are:
 - less progressive than in the U.S,
 - 2 much less progressive than if wages were exogeneous.

- Model
 - Environment
 - ② Competitive Equilibrium
 - ③ Comparative Statics
- Quantitative Analysis
 - Calibration
 - ② Optimal Taxes
- Conclusion

Model

Static model.

• Two goods: time and general consumption/output good.

• Government and measure one of agents: $U(c) - V(\ell)$.

$$U(c) = \ln c, \quad V(\ell) = \kappa \frac{\ell^{1+\eta}}{1+\eta}.$$

 • Output produced by solving tasks.

• Agents heterogeneous in skill $z \in [\underline{z}, \overline{z}] \sim G(z)$.

• Every unit of time, continuum of tasks arrives $\sim F(z)$.

• Agent with skill z can solve $[\underline{z}, z]$ tasks.

- Agents form organizations with one manager and *n* production workers.
- Worker of type z_p solves $F(z_p)$ tasks, and asks the manager for help with $1 F(z_p)$ tasks.
- Manager of type z_m > z_p explains F(z_m) F(z_p) tasks to worker.
- After receiving advice, worker produces output $F(z_m)$ per unit of time, and $F(z_m)\ell_p$ total (team) output.

Communication

 Communication between worker and manager takes time; number of workers n a manager working lm can supervise:

$$n\theta(z_p) = \ell_m$$

Example 1

(Garicano, 2000, constant communication costs h):

$$\theta(z_p) = h \cdot [1 - F(z_p)]$$

• Example 2

(this paper, heterogeneity in communication costs):

$$heta(z_p) = h(z_p) \cdot [1 - F(z_p)], \quad h'(z_p) < 0.$$

Output of organization is

$$nF(z_m)\ell_p = rac{\ell_m}{ heta(z_p)}F(z_m)\ell_p$$

- Complementarity between i) skills, ii) hours worked
- Effective communication costs $\frac{\theta(z_{\rho})}{\ell_{\rho}}$ critical

- Individuals sort to be production workers or managers.
- Production workers receive wage $w(z_p)$. Earnings

$$y_p = w(z_p)\ell_p$$

• Managers z_m teaming with n workers z_p have earnings

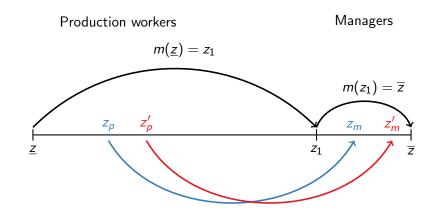
$$y_m = n \left[F(z_m) - w(z_p) \right] \ell_p = \frac{\ell_p}{\theta(z_p)} \cdot \left[F(z_m) - w(z_p) \right] \ell_m$$

with wages $w(z_m) = y_m/\ell_m$.

 Income taxed by a type-independent constant-rate-of-progressivity tax function:

$$T(y) = y - \lambda y^{1-\tau}$$

• Government consumption G, budget constraint


$$\mathbb{E}_{y}T(y)=G,$$

• **Remark:** With this tax and utility functions, labor hours constant across agents; $\bar{\ell}(\tau)$.

CE is an allocation (assignment, labor hours and consumption) and prices (wages) s.t.:

- (a) Individuals optimally choose to be managers or workers.
- (b) Workers choose ℓ and c optimally given wages.
- (c) Managers choose workers and ℓ and c optimally, taking wage schedule and labor hours of production workers as given.
- (d) Supply of managers/workers equal to demand for managers/workers.
- (e) Supply of goods equal to demand for goods.

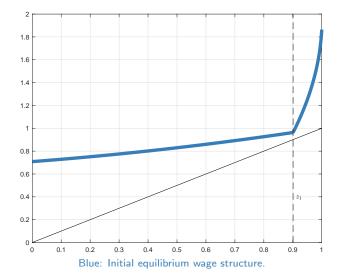
Occupational Choice

Assortative matching: $m'(z_p) > 0$

What happens when τ increases?

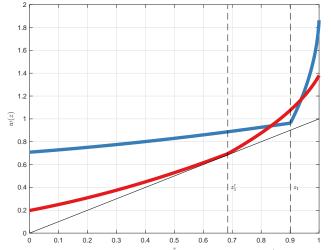
• Labor hours $\bar{\ell}(\tau)$ decrease, effective com. costs $\frac{\theta(z_p)}{\ell_p}$ increase.

• Threshold *z*₁ decreases.


• Wage structure changes.

Consider a simple example with a closed form solution:

- *z* ∈ [0, 1]
- F and G are uniform


- $\theta(z_p) = h(1-z_p)$
- The effective communication costs are $h/ar{\ell}(au)$

Initial Equilibrium

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへで 19/44

Comparative Statics

Blue: Initial equilibrium wage structure. Red:^z higher progressivity/a decrease in hours.

Comparative Statics

Tax progressivity $\tau \uparrow$ (effective communication cost \uparrow):

- Image Managers work less: More managers, smaller organizations.
- ② Absolute effect: Workers' wages decrease.
- 3 Wage inequality among managers decreases.
 - Intuition: Managers now matched with more similar workers.
- Wage inequality among workers increases.
 - Intuition: Workers matched with more diverse managers.

Summary: Endo wages affect the E-E tradeoff and make redistribution through progressive taxes less attractive.

Quantitative Analysis

- Calibrate model to U.S. wage moments.
- Compute optimal taxes (progressivity):
 - 1) When wages are endogeneous.
 - 2 When wages are exogeneous.
- Extensions/additional exercises.

- Skill types and tasks on [0,1].
- Skill types and task arrival:

$$G(x) = 1 - (1 - x)^{1+\rho}$$

 $F(x) = x$

• Note: $F \sim U[0,1]$ WLOG. Degree of freedom in G and F.

•
$$\theta(x) = h(1-x)^{\gamma} [1-F(x)] = h(1-x)^{1+\gamma}$$

Calibration: Parameters

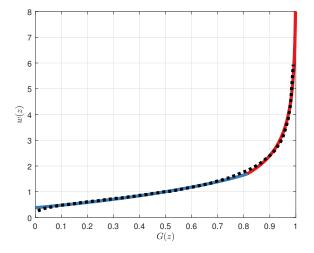
Parameters set outside the model

Gvt policy

(1)
$$T(y) = y - \lambda y^{1-\tau}$$
, $\tau = 0.186$ in 2012 - 2016 (HSV, 2020),

2 gvt expenditure G/Y = 0.16.

• Utility ln
$$c - \kappa \frac{\ell^{1+\eta}}{1+\eta}$$


1) $\eta = 2$ (Frisch elasticity of labor = 0.5),

2 normalize $\kappa = 1$.

<ロ > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > 25/44

- 3 remaining model parameters: ρ , γ and h.
- 3 targets:
 - 1 $G(z_1) = 0.187$ (fraction of managers, CPS 2012-2016)
 - $2 \log 90/50$ wage ratio = 0.877 (CPS 2012-2016)
 - $3 \log 50/10$ wage ratio = 0.743 (CPS 2012-2016)

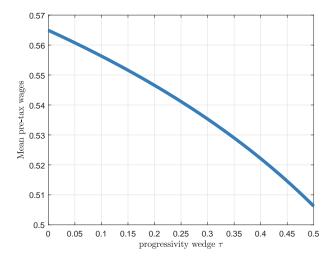
Benchmark Model Fit

Thick line: Model wages. Dashed line: CPS 2012-2016 data.

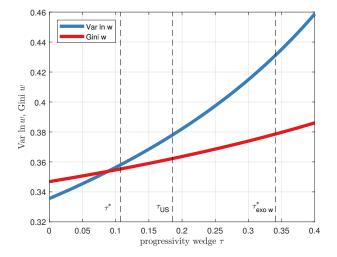
	CPS Data	Model
Calibrated moments		
log 50/10 ratio	0.743	0.743
log 90/50 ratio	0.877	0.877
Uncalibrated moments		
$\log 25/10$ ratio	0.329	0.302
log 90/75 ratio	0.433	0.466
Variance of log wages	0.430	0.378
Gini of wages	0.386	0.362

Comparative Statics

Comparative Statics


As progressivity wedge τ increases:

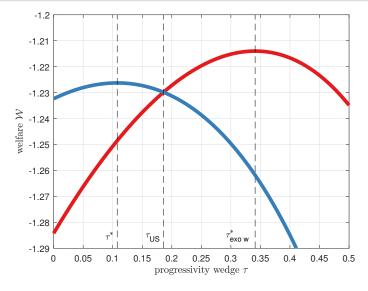
Average wages decrease.


Overall wage inequality increases.

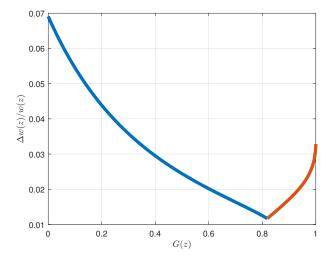
③ Bottom wage inequality increases.

④ Top wage inequality decreases.

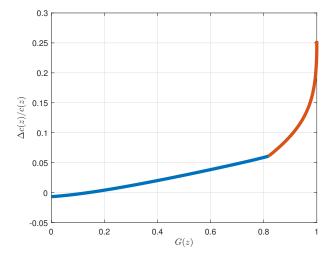
<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の へ () 31/44


Wage Inequality Measures

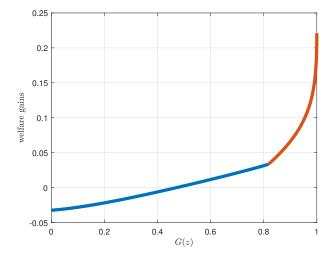
<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の へ () 33 / 44


Optimal Taxes

Welfare


Blue line: endogenous wages. Red line: exogenous wages

Wages with $\tau = 0.108$ Relative to Benchmark


<ロト < 回ト < 巨ト < 巨ト < 巨ト 三 のへで 36 / 44

Consumption with au = 0.108 Relative to Benchmark

<ロ > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > の Q (~ 37 / 44

Welfare with $\tau = 0.108$ Relative to Benchmark

<ロ > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > の < () 38 / 44

Optimal Tax Reform

•
$$\tau_{US} = 0.186, \tau^* = 0.108, \tau^*_{exogenous w} = 0.341.$$

• Welfare gains
$$\tau^* = 0.36\%, \tau^*_{exogenous w} = -3.15\%$$
.

- In addition to more redistribution and standard labor supply effects, higher progressivity:
 - (1) \downarrow average pre-tax wages,
 - ② ↓ wage inequality at top, but ↑ wage inequality elsewhere (at bottom): ↑ overall wage inequality.
- These effects \downarrow optimal tax progressivity from 0.341 to 0.108.

- Model in which taxes interact with top/bottom wage inequality.
- More progressive taxes decrease average wages.
- More progressive taxes decrease top but increase bottom inequality.
- Optimal progressivity substantially lower than in the current U.S. tax code (and also lower relative to exogenous wages).

Empirical Evidence

Our mechanism: Progressivity affects pre-tax wages.

• Large empirical literature on how taxes affect labor supply and on how taxes affect pre-tax income.

• Smaller literature on how taxes affect pre-tax wages.

• Comparing our results to empirical literature work in progress.

Papers estimate wage responses to marginal tax rate (MTR) and average tax rate (ATR) changes:

- Scandinavian data (search-and-matching bargaining context):
 - Arronson et al (1997), Hansen et al (2000): increasing MTR decreses wages; opposite for ATR
 - 2 Blomquist and Selin (2010): increasing MTR decreases wages for both men and women using Swedish data
 - 3 Holmlund and Kolm (1995): increasing progressivity leads to lower wages (and hence higher empoyment)

Our model predicts distributional consequences of changes in progressivity:

- Schneider (2005): German tax reforms, increasing progressivity reduces wages, stronger for lower income workers
- Frish, Zussman, Igdalov (2020): Israeli tax cuts, wage elasticity increases with income
- Moffitt, Wilhelm (1998): Wages of rich men have increased due to the 1986 U.S. tax rate cuts