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Motivation

Increased data availability for research in economics

May lead to more nuanced insights about the problem at hand
But how should we control for confounders? How do we
estimate heterogeneity?

“Traditional” approaches were not designed for heterogeneity:

Recent critiques of Two-Way Fixed Effects (TWFE) for
staggered difference-in-differences (Borusyak and
Jaravel, 2017; Goodman-Bacon, 2021)

Yi ,t = βDi ,t + αi + αt + ui ,t

Some solutions:

Sun and Abraham (2021): no covariates
Callaway and Sant’Anna (2021); Wooldridge (2021): only
allow pre-determined covariates
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Contribution

I propose to predict untreated counterfactuals with
machine learning techniques

Allows the inclusion of time-varying covariates

Fixes the weighting issue from TWFE

My proposal is similar to parallel work from Borusyak, Jaravel, and
Spiess (2021)

They propose OLS rather than ML for counterfactual
predictions

ML algorithms are “agnostic” about the functional forms
of control variables

ML results in more efficient estimation of treatment effects
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Proposed approach

The treatment effect for unit i at time t is bi ,t = Yi ,t(1)− Yi ,t(0)
But we only observe Yi ,t = Yi ,t(1).

My proposal is based on the estimation of a counterfactual
function g(Xi ,t), so that we can impute Yi ,t(0) = g(Xi ,t(0)) + ε i ,t

Step 1: build and select a model to estimate g()

using pre-treatment data

machine learning techniques for better prediction accuracy

Step 2: Estimate the full distribution of treatment effects:
b̂i ,t = Yi ,t − ĝ(Xi ,t)

Step 3: Estimate causal parameters of interest by taking
conditional averages of the treatment effects

4 / 20



Causal parameters of interest

Average Treatment Effect on the Treated (ATT):

ATT = E[Yi ,t(1)− Yi ,t(0)|Di ,t = 1]

ATT for r periods of exposure relative to the treatment time
(t = qi ):

ATT (r) = E[Yi ,t(1)− Yi ,t(0)|Di ,t = 1, t − (qi − 1) = r ]

Conditional ATT for groups defined based on a set of
covariates Xi ,t :

CATT (c) = E[Yi ,t(1)− Yi ,t(0)|Xi ,t = c,Di ,t = 1]
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Key assumptions

Assumption 1: No anticipatory effects.

Yi ,t = Yi ,t(0) , for all i , t < qi

Assumption 2: Covariates are not affected by the treatment.

Xi ,t = Xi ,t(0) = Xi ,t(1), for all t

Assumption 3: Stability of the counterfactual function.

E[Yi ,t(0)|Xi ,t ,Di ,t = 1] = g(Xi ,t(1))

For CATT, we need Assumption 3 to hold for each group defined
by Xi ,t = c.
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Illustration of the Approach

Outcome: daily air pollution (PM10) concentration measured
at ∼400 monitors across Spain, from 2014 to 2019

Rich set of covariates:

Daily weather realizations (temp, precip, wind speed, etc.)
Daily national-level power generation by fuel type
Annual national-level fire activity
Characteristics about pollution monitors
Date fixed effects

Semi-Synthetic Simulations:

Assign random treatment dates for each air pollution monitor

Staggered treatment

Force a PM10 reduction for post-treatment observations

Can be thought of as staggered implementation of
low-emissions zones across Spain
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Illustration of the Approach

Step 1: build and select a model to estimate g()

Focus on tree-based methods (gradient boosted trees);
Other algorithms can be considered (LASSO, neural networks,
etc.)
use cross-validation to assess out-of-sample accuracy
assess identifying assumptions

Step 2: Estimate the full distribution of treatment effects:
b̂i ,t = Yi ,t − ĝ(Xi ,t)

Step 3: Estimate the causal parameters of interest by taking
conditional averages of the treatment effects

8 / 20



Step 1: Model selection

Tried 8 configurations of XGBoost (Chen and Guestrin, 2016)

Model ID Number of Trees Max Tree Depth Min Obs per Node Shrinkage In Sample RMSE Cross-Validated RMSE

1 2000 10 20 0.05 2.793 6.574
2 3000 10 20 0.05 2.149 6.524
3 2000 30 20 0.05 0.203 6.852
4 3000 30 20 0.05 0.068 6.853
5 2000 10 60 0.05 3.818 6.686
6 3000 10 60 0.05 3.248 6.601
7 2000 30 60 0.05 1.029 6.618
8 3000 30 60 0.05 0.598 6.627

Selected model ID 2, with lowest cross-validated RMSE.
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Step 1: Out-of-sample accuracy

Check the distribution of cross-validated residuals
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Step 1: Out-of-sample accuracy

How in-sample residuals underestimate the variance of errors
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Step 1: Tests for validity of assumptions

Event-study regression, similar to analyzing “pre-trends”
Perform F-test for joint significance of βr

ε̂cvi ,t = ∑
r≤0

βr1[r = t − (qi − 1)] + ui ,t , for all t < qi

F-stat = 1.113
P-value of F-stat = 0.329
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Approach

Step 1: build and select a model to estimate g()

Step 2: Estimate the full distribution of treatment effects:
b̂i ,t = Yi ,t − ĝ(Xi ,t)

Step 3: Estimate the causal parameters of interest by taking
conditional averages of the treatment effects
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Approach

Step 1: build and select a model to estimate g()

Step 2: Estimate the full distribution of treatment effects:
b̂i ,t = Yi ,t − ĝ(Xi ,t)

Step 3: Estimate the causal parameters of interest by taking
conditional averages of the treatment effects; and estimate
standard errors

Estimates from my approach are compared to standard TWFE
and OLS imputation
Will assess bias and efficiency (standard errors)
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Inference

Building on Borusyak, Jaravel, and Spiess (2021), I propose
estimating the variance as:

σ̂2
cv = ∑

i

(
∑

t;Di ,t=0

γi ,t ε̂
cv
i ,t + ∑

t;Di ,t=1

γi ,t ε̃ i ,t

)2

ε̂cvi ,t are cross-validated residuals from the first (prediction) step

ε̃ i ,t = b̂i ,t − ˆ̄b are treatment effect deviations from an average

γi ,t are the weights of each observation

ˆ̄b is up to the researcher

A conservative choice is a single ˆ̄b for the full post-treatment
sample. Alternatively, we may take averages across
subsamples for which heterogeneity is expected.

Even more conservative: bootstrap the whole process.
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Step 3: Estimating ATT under dynamic effects

Panel A: weaker effects over time (5% decrease per semester)
Panel B: stronger effects over time (5% increase per semester)

Panel A: Treatment Effects Decreasing Over Time

(1) (2) (3) (4) (5) (6)

Simulated
(benchmark)

Machine Learning OLS TWFE OLS TWFE
(saturated)

OLS Imputation OLS Imputation
(saturated)

ÂTT -3.1840 -3.1350 -4.9006 -4.5487 -3.0367 -2.7432
Standard Errors (0.1281) (0.2891) (0.3457) (0.2548) (0.2118)

Observations 170,484 170,484 170,484 154,999 170,133 128,718

Panel B: Treatment Effects Increasing Over Time

ÂTT -2.2199 -2.1709 -0.9287 -0.4429 -2.0691 -1.6989
Standard Errors (0.1244) (0.2869) (0.3334) (0.2563) (0.2153)

Observations 170,484 170,484 170,484 154,999 170,133 128,718

Station FE NA Yes No Yes No
Day of sample FE NA Yes No Yes No
Station × Month FE NA No Yes No Yes
Day of sample × Province FE NA No Yes No Yes
Additional controls NA No Yes No Yes

Average PM10 concentration is about 20 µg/m3
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Step 3: Estimating ATT (r)

Simulating weaker effects over time (5% decrease per semester)

(1) (2) (3) (4) (5) (6)

Simulated
(benchmark)

Machine Learning OLS TWFE OLS TWFE
(saturated)

OLS Imputation OLS Imputation
(saturated)

ÂTT (1): Semester 1 -4.2808 -4.2578 -4.5397 -4.0435 -4.2057 -3.5697
Standard Errors (0.1568) (0.2967) (0.3733) (0.2386) (0.3176)

ÂTT (2): Semester 2 -3.1807 -3.2693 -3.4408 -2.9358 -3.0351 -2.8437
(0.1814) (0.4054) (0.4179) (0.2969) (0.3106)

ÂTT (3): Semester 3 -2.1932 -2.0567 -2.3363 -1.7575 -1.9510 -1.6892
(0.2619) (0.5098) (0.5406) (0.4209) (0.4430)

ÂTT (4): Semester 4 -1.1405 -0.8112 -1.3540 -0.2796 -0.8908 -0.8406
(0.3677) (0.5721) (0.5758) (0.5169) (0.4410)

Observations 170,484 170,484 170,484 154,999 170,133 128,718

Station FE NA Yes No Yes No
Day of sample FE NA Yes No Yes No
Station × Month FE NA No Yes No Yes
Day of sample × Province FE NA No Yes No Yes
Additional controls NA No Yes No Yes

Average PM10 concentration is about 20 µg/m3
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Setup for CATT

More complex setting where treatment effects decrease over
time and with altitude of pollution monitors
First, we check the validity of the assumptions: are
cross-validated errors correlated with altitude of stations?
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Step 3: Estimating CATT

More complex setting where treatment effects decrease over time
and with altitude of pollution monitors

(1) (2) (3) (4) (5) (6)

Simulated
(benchmark)

Machine Learning OLS TWFE OLS TWFE
(saturated)

OLS Imputation OLS Imputation
(saturated)

ĈATT : Altitude ≤ 35m -7.0897 -6.9100 -8.3251 -7.9242 -6.6679 -6.4911
Standard Errors (0.2885) (0.4644) (0.4796) (0.4471) (0.4048)

ĈATT : 35m < Altitude ≤ 150m -4.1586 -4.0815 -5.5698 -5.4877 -4.6664 -4.2504
(0.1982) (0.3555) (0.4692) (0.5500) (0.2942)

ĈATT : 150m < Altitude ≤ 500m -1.2035 -1.1198 -2.8135 -2.7120 -1.0951 -0.4605
(0.2662) (0.4679) (0.6323) (0.4719) (0.5502)

ĈATT : Altitude > 500m 0.0000 -0.2662 -1.3353 -0.2348 0.8703 1.2154
(0.3053) (0.4479) (0.8139) (0.4615) (0.4980)

Observations 170,484 170,484 170,484 154,999 170,133 128,718

Station FE NA Yes No Yes No
Day of sample FE NA Yes No Yes No
Station × Month FE NA No Yes No Yes
Day of sample × Province FE NA No Yes No Yes
Additional controls NA No Yes No Yes

Average PM10 concentration is about 20 µg/m3
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Conclusions

I propose an approach for heterogeneous treatment effect
estimation under staggered adoption

I show how to build a model, based on pre-treatment data, to
predict untreated counterfactuals

I also show how machine learning can be leveraged in this
setting for more efficient estimation

With the real data application (Weatherization Assistance
Program):

I find substantial heterogeneity in energy savings, depending
on levels and types of investments

In particular, wall insulation and furnace replacements are the
measures associated with highest energy savings
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Thank You!

Comments? Feedback? Questions?
mateus.nogueira@uc3m.es

http://energyecolab.uc3m.es/

This Project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 772331).
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Why Machine Learning?

Machine learning algorithms are designed for accurate
predictions (measured with root-mean squared error, RMSE)

Allow us to flexibly and systematically consider a wide range
of variables, functional forms, and interaction terms

Algorithms are “agnostic” about which variables to include

Special concern about out-of-sample performance

This paper focuses on tree-based methods

Specifically, gradient boosted trees
Other algorithms can be considered (LASSO, neural networks,
etc.)



Illustration of a Single Regression Tree



Cross-Validation

Assess cross-validated residuals (ε̂cvi ,t) for observations excluded
from the training fold



The problem of TWFE

Yi ,t = βDi ,t + αi + αt + ui ,t

The problem:
β will capture a variance-weighted average of effects over time
and across units
can cause near-term bias
and “mid-adopters” will receive greater weights



Estimators for causal parameters of interest

Step 3: Estimate the causal parameters of interest

ÂTT =
∑I

i=1 ∑T
t=1 b̂i ,t1{Di ,t = 1}

∑I
i=1(T − (qi − 1))1{qi ≤ T}

ÂTT (r) =
∑I

i=1 b̂i ,t1{t − (qi − 1) = r}
∑I

i=1 1{t − (qi − 1) = r}
, r > 0

ĈATT (c) =
∑I

i=1 ∑T
t=1 b̂i ,t1{Di ,t = 1}1{Xi ,t = c}

∑I
i=1(T − (qi − 1))1{qi ≤ T}1{Xi ,t = c}



Real data application

Setting:

Weatherization Assistance Program

Large household energy efficiency program

Fully subsidizes furnace repair/replacements, air sealing, wall
insulation and others

Data:

Monthly energy billing data from thousand of homes treated
in Illinois

Program administrative data: household demographics,
housing structure, costs of upgrades

Objectives:

Estimate upgrade-specific effects

Provide insight on which upgrades are most cost-effective



Real Data Results – Furnace



Distribution of Furnace Spending



Real-Data Results – Wall Insulation
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