Fiscal Policy in a Networked Economy

Joel P. Flynn MIT

Christina Patterson Chicago Booth and NBER

> John Sturm MIT

EEA Congress, August 24, 2022

- During downturns, policymakers can choose from several stimulus policies
 - Undirected Transfers (e.g. stimulus checks)
 - Targeted Transfers (e.g. extended UI benefits)
 - Targeted Spending (e.g. auto industry bailout, infrastructure spending)

- During downturns, policymakers can choose from several stimulus policies
 - Undirected Transfers (e.g. stimulus checks)
 - Targeted Transfers (e.g. extended UI benefits)
 - Targeted Spending (e.g. auto industry bailout, infrastructure spending)
- Need to know which forms of fiscal stimulus are the most effective, whom they help, and how should they be targeted

- During downturns, policymakers can choose from several stimulus policies
 - Undirected Transfers (e.g. stimulus checks)
 - Targeted Transfers (e.g. extended UI benefits)
 - Targeted Spending (e.g. auto industry bailout, infrastructure spending)
- Need to know which forms of fiscal stimulus are the most effective, whom they help, and how should they be targeted
- Question complicated by rich networks supply chains, regional trade, employment and consumption patterns
 - Must consider cascade of expenditures that each policy induces

- During downturns, policymakers can choose from several stimulus policies
 - Undirected Transfers (e.g. stimulus checks)
 - Targeted Transfers (e.g. extended UI benefits)
 - Targeted Spending (e.g. auto industry bailout, infrastructure spending)
- Need to know which forms of fiscal stimulus are the most effective, whom they help, and how should they be targeted
- Question complicated by rich networks supply chains, regional trade, employment and consumption patterns
 - Must consider cascade of expenditures that each policy induces

Research question: How does the structure of interconnections between households affect fiscal policy?

- **O** Theory: Develop model of how heterogeneity affects propagation of fiscal shocks
 - Firm side: many sectors and regions linked through input-output structure

- Firm side: many sectors and regions linked through input-output structure
- Household side: magnitude and direction of MPCs, heterogeneous employment across firms

- Firm side: many sectors and regions linked through input-output structure
- Household side: magnitude and direction of MPCs, heterogeneous employment across firms
- Main result: novel decomposition describing how heterogeneity shapes the fiscal multiplier

- Firm side: many sectors and regions linked through input-output structure
- Household side: magnitude and direction of MPCs, heterogeneous employment across firms
- Main result: novel decomposition describing how heterogeneity shapes the fiscal multiplier
- **@ Empirics:** Bring decomposition to data and explore implications for fiscal policy

- Firm side: many sectors and regions linked through input-output structure
- Household side: magnitude and direction of MPCs, heterogeneous employment across firms
- Main result: novel decomposition describing how heterogeneity shapes the fiscal multiplier
- **@ Empirics:** Bring decomposition to data and explore implications for fiscal policy
 - Estimate components of multiplier using several public-use datasets

- Firm side: many sectors and regions linked through input-output structure
- Household side: magnitude and direction of MPCs, heterogeneous employment across firms
- Main result: novel decomposition describing how heterogeneity shapes the fiscal multiplier
- Empirics: Bring decomposition to data and explore implications for fiscal policy
 - Estimate components of multiplier using several public-use datasets
 - Core empirical finding: Details of economic interconnections are...
 - critical for *distribution* of policy impacts
 - irrelevant for aggregate policy impacts

- Firm side: many sectors and regions linked through input-output structure
- Household side: magnitude and direction of MPCs, heterogeneous employment across firms
- Main result: novel decomposition describing how heterogeneity shapes the fiscal multiplier
- Empirics: Bring decomposition to data and explore implications for fiscal policy
 - Estimate components of multiplier using several public-use datasets
 - Core empirical finding: Details of economic interconnections are...
 - critical for *distribution* of policy impacts
 - irrelevant for aggregate policy impacts
 - Key implication: targeting fiscal policy towards high-MPC households is maximally expansionary

- Model Setup and Multiplier
- Oata and Estimation
- Empirical Results
 - O Description of multipliers with many sources of heterogeneity
 - Implications for design of fiscal policy

- **1** Model Setup and Multiplier
- Oata and Estimation
- Empirical Results
 - O Description of multipliers with many sources of heterogeneity
 - Implications for design of fiscal policy

1 Two period model with heterogeneous households, regions and sectors

- **()** Two period model with heterogeneous households, regions and sectors
- Socus on recessionary environment in first period
 - $\bullet~$ Binding ZLB + sticky inflation expectations $\implies~$ rigid real interest rate
 - Downward wage rigidity \implies rigid first-period wages

- **1** Two period model with heterogeneous households, regions and sectors
- Socus on recessionary environment in first period
 - $\bullet~$ Binding ZLB + sticky inflation expectations $\implies~$ rigid real interest rate
 - Downward wage rigidity \implies rigid first-period wages

(9) Labor markets cannot clear on prices \implies assume labor is rationed to households

- **()** Two period model with heterogeneous households, regions and sectors
- Socus on recessionary environment in first period
 - $\bullet~$ Binding ZLB + sticky inflation expectations $\implies~$ rigid real interest rate
 - Downward wage rigidity \implies rigid first-period wages
- **(a)** Labor markets cannot clear on prices \implies assume labor is rationed to households
- Government sector chooses spending and taxes/transfers

Model Setup: Prices and Firms

• Normalize wage in each period to 1 ($w^t = 1$) and denote real interest rate $r = \frac{w^1}{w^2} \iota$.

- Normalize wage in each period to 1 ($w^t = 1$) and denote real interest rate $r = \frac{w^1}{w^2}\iota$.
- Finite set of goods (*I*¹) produced CRS by competitive firm *i* using intermediates X^t_i and single labor factor L^t_i

 $Q_i^t = F_i^t \left(X_i^t, L_i^t \right)$ Production L abox Intermediates Input

- Normalize wage in each period to 1 ($w^t = 1$) and denote real interest rate $r = \frac{w^1}{w^2}\iota$.
- Finite set of goods (*I*¹) produced CRS by competitive firm *i* using intermediates X^t_i and single labor factor L^t_i

• Given prices $p^t = \{p_i^t\}_{i \in I}$, firms demand L_i^t and $X_i^t = \{X_{ii}^t\}_{j \in I}$ to maximize profits

$$(X_i^t, L_i^t) \in \arg \max_{X^t, L^t} p_i^t F_i^t(X^t, L^t) - p^t X^t - L^t$$

Model Setup: Households and Government

• Continuum of households of type $n \in N$ with mass μ_n

- Continuum of households of type $n \in N$ with mass μ_n
- Households consume c_n^t , save at rate 1 + r and supply labor ℓ_n^t

- Continuum of households of type $n \in N$ with mass μ_n
- Households consume c_n^t , save at rate 1 + r and supply labor ℓ_n^t
 - Allow c_n^t to be arbitrary function of variables outside their control

- Continuum of households of type $n \in N$ with mass μ_n
- Households consume c_n^t , save at rate 1 + r and supply labor ℓ_n^t
 - Allow c_n^t to be arbitrary function of variables outside their control
 - Assume that households satisfy their lifetime budget constraint

$$\ell_n^1 + \frac{\ell_n^2}{1+r^1} = p^1 c_n^1 + \frac{p^2 c_n^2}{1+r} + \tau_n^1 + \frac{\tau_n^2}{1+r}$$

- Continuum of households of type $n \in N$ with mass μ_n
- Households consume c_n^t , save at rate 1 + r and supply labor ℓ_n^t
 - Allow c_n^t to be arbitrary function of variables outside their control
 - Assume that households satisfy their lifetime budget constraint

$$\ell_n^1 + \frac{\ell_n^2}{1+r^1} = p^1 c_n^1 + \frac{p^2 c_n^2}{1+r} + \tau_n^1 + \frac{\tau_n^2}{1+r}$$

• Government purchases (G^t) and levies lump-sum taxes/transfers (τ^t) subject to budget constraint

$$\sum_{n \in \mathbb{N}} \mu_n \left(\tau_n^1 + \frac{\tau_n^2}{1+r} \right) = \rho^1 G^1 + \frac{\rho^2 G^2}{1+r}$$

• We consider rationing equilibrium (Barro and Grossman 1971, Werning 2015)

- We consider rationing equilibrium (Barro and Grossman 1971, Werning 2015)
 - $\bullet\,$ Wages are exogenously fixed $\rightarrow\,$ first period labor is rationed according to rationing function

$$\underbrace{\ell_n^1}_{\text{Labor supply}} = \underbrace{R_n^1(L^1)}_{\text{Labor Demand}}$$

• Assume rationing function clears labor market: $\sum_{n \in N} \mu_n \ell_n^1 = \sum_{i \in I} L_i^1$ • Microfoundation

- We consider rationing equilibrium (Barro and Grossman 1971, Werning 2015)
 - $\bullet\,$ Wages are exogenously fixed $\rightarrow\,$ first period labor is rationed according to rationing function

$$\underbrace{\ell_n^1}_{\text{Labor supply}} = \underbrace{R_n^1(L^1)}_{\text{Labor Demand}}$$

- Assume rationing function clears labor market: $\sum_{n \in N} \mu_n \ell_n^1 = \sum_{i \in I} L_i^1$ Microfoundation
- Households choose second-period labor supply

- We consider rationing equilibrium (Barro and Grossman 1971, Werning 2015)
 - $\bullet\,$ Wages are exogenously fixed $\to\,$ first period labor is rationed according to rationing function

$$\underbrace{\ell_n^1}_{\text{Labor supply}} = \underbrace{R_n^1(L^1)}_{\text{Labor Demand}}$$

- Assume rationing function clears labor market: $\sum_{n \in N} \mu_n \ell_n^1 = \sum_{i \in I} L_i^1$ Microfoundation
- Households choose second-period labor supply
- Rationing Equilibrium: set of prices, agent and market-level variables s.t: Existence
 - O Households optimize subject to budget constraints and rationing
 - Irms maximize profits
 - First-period labor is rationed as above
 - Markets clear

► Prices

The Output Multiplier: From PE to GE

• We consider two policy shocks – tax and transfer shocks $(d\tau)$ and spending shocks (dG^1)

The Output Multiplier: From PE to GE

- We consider two policy shocks tax and transfer shocks $(d\tau)$ and spending shocks (dG^1)
- We define the partial equilibrium effect of the shock as effect on gross output before incomes adjust (∂Y¹ = dG¹ + C¹_τdτ)
The Output Multiplier: From PE to GE

- We consider two policy shocks tax and transfer shocks $(d\tau)$ and spending shocks (dG^1)
- We define the partial equilibrium effect of the shock as effect on gross output before incomes adjust (∂Y¹ = dG¹ + C¹_τdτ)

Proposition 1

Given any rationing equilibrium, the local change in equilibrium first period value added dY^1 following a fiscal shock with partial equilibrium effect on first-period value added ∂Y^1 is given by:

$$dY^{1} = \left(\boldsymbol{I} - \underbrace{\widehat{\boldsymbol{C}}_{1}}_{I \times N} \underbrace{\boldsymbol{m}}_{N \times N} \underbrace{\boldsymbol{R}_{\boldsymbol{L}^{1}}}_{N \times I} \underbrace{\widehat{\boldsymbol{L}}_{1}}_{I \times I} \left(\boldsymbol{I} - \underbrace{\widehat{\boldsymbol{X}}_{1}}_{I \times I}\right)^{-1}\right)^{-1} \partial Y^{1}$$

Intuition: Shock → production → labor income rationed → marginal consumption → directed consumption. Repeats ad infinitum

Comparative Static

The many dimensions of heterogeneity can amplify shocks through three network effects:

$$1^{T} dY^{1} = 1^{T} dG^{1} + \frac{1}{1 - \mathbb{E}_{h^{*}}[m_{n}]} \left(\underbrace{\mathbb{E}_{h^{*}}[m_{n}]}_{\text{RA Keynesian effect}} + \right)$$

+
$$O^{3}(|m|)$$

- ∂h^1 = income incidence of unit magnitude shock.
- h^* = income incidence of GDP-proportional shock.
- m_n^{next} = average MPC of HHs who receive as income *i*'s marginal spending.

The many dimensions of heterogeneity can amplify shocks through three network effects:

Incidence Effect: Shock disproportionately hits households with high MPCs

$$1^{T} dY^{1} = 1^{T} dG^{1} + \frac{1}{1 - \mathbb{E}_{h^{*}}[m_{n}]} \left(\underbrace{\mathbb{E}_{h^{*}}[m_{n}]}_{\text{RA Keynesian effect}} + \underbrace{\mathbb{E}_{\partial h^{1}}[m_{n}] - \mathbb{E}_{h^{*}}[m_{n}]}_{\text{Incidence effect}} \right) + O^{3}(|m|$$

- ∂h^1 = income incidence of unit magnitude shock.
- h^* = income incidence of GDP-proportional shock.
- m_n^{next} = average MPC of HHs who receive as income *i*'s marginal spending.

The many dimensions of heterogeneity can amplify shocks through three network effects:

- **Incidence Effect:** Shock disproportionately hits households with high MPCs
- **Bias Effect:** Shock hits HHs whose marginal spending is on high-MPC HHs

$$1^{T} dY^{1} = 1^{T} dG^{1} + \frac{1}{1 - \mathbb{E}_{h^{*}}[m_{n}]} \left(\underbrace{\mathbb{E}_{h^{*}}[m_{n}]}_{\text{RA Keynesian effect}} + \underbrace{\mathbb{E}_{\partial h^{1}}[m_{n}] - \mathbb{E}_{h^{*}}[m_{n}]}_{\text{Incidence effect}} + \underbrace{\mathbb{E}_{\partial h^{1}}[m_{n}] \left(\mathbb{E}_{\partial h^{1}}[m_{n}^{\text{next}}] - \mathbb{E}_{h^{*}}[m_{n}]\right)}_{\text{Biased spending direction effect}} \right) + O^{3}(|m|)$$

- ∂h^1 = income incidence of unit magnitude shock.
- $h^* =$ income incidence of GDP-proportional shock.
- m_n^{next} = average MPC of HHs who receive as income *i*'s marginal spending.

Flynn, Patterson, and Sturm

The many dimensions of heterogeneity can amplify shocks through three network effects:

- **Incidence Effect:** Shock disproportionately hits households with high MPCs
- **Bias Effect:** Shock hits HHs whose marginal spending is on high-MPC HHs
- **9** Homophily Effect: Correlation between MPC and MPCs of the household they spend on

$${}^{T}dY^{1} = 1^{T}dG^{1} + \frac{1}{1 - \mathbb{E}_{h^{*}}[m_{n}]} \left(\underbrace{\mathbb{E}_{h^{*}}[m_{n}]}_{\text{RA Keynesian effect}} + \underbrace{\mathbb{E}_{\partial h^{1}}[m_{n}] - \mathbb{E}_{h^{*}}[m_{n}]}_{\text{Incidence effect}} + \underbrace{\mathbb{E}_{\partial h^{1}}[m_{n}] \left(\mathbb{E}_{\partial h^{1}}[m_{n}^{\text{next}}] - \mathbb{E}_{h^{*}}[m_{n}]\right)}_{\text{Biased spending direction effect}} + \underbrace{\mathbb{C}_{\partial h^{1}}[m_{n}, m_{n}^{\text{next}}]}_{\text{Homophily effect}} \right) + O^{3}(|m|)$$

- ∂h^1 = income incidence of unit magnitude shock.
- h^* = income incidence of GDP-proportional shock.
- m_n^{next} = average MPC of HHs who receive as income *i*'s marginal spending.

1

Network Effects: An Example

- Two households $m_H > m_L$.
 - $m_H = 0.5$
 - $m_L = 0.1$
- Cases are going to differ in incidence and spending-to-income network

Network Effects: An Example

- Two households $m_H > m_L$.
 - $m_H = 0.5$
 - $m_L = 0.1$
- Cases are going to differ in incidence and spending-to-income network
- Case 1: Neutral incidence and network

- As if economy had a single household with $\overline{m} = \frac{m_L + m_H}{2}$
- Multiplier (M) given by

$$M = \frac{1}{1 - \overline{m}} = 1.43$$

• Case 2: Heterogeneous incidence and neutral network

• Initial transfer directed entirely to m_H

• Initial and higher "rounds" of multiplier are different

$$M=1+\frac{m_H}{1-\overline{m}}=1.71$$

Network Effects: Case 3

• Case 3: neutral incidence and biased network

• All marginal spending directed to sector employing m_H

• Higher "rounds" of multiplier propagates at m_H

$$M=1+\frac{\overline{m}}{1-m_H}=1.60$$

• Similar to setting in Guerreri, Lorenzoni, Straub and Werning (2020)

Network Effects: Case 4

• Case 4: neutral incidence and homophilic network

• All marginal spending directed to own sector

• Each shock propagates separately

$$M = \frac{1}{2} \left(\frac{1}{1 - m_L} + \frac{1}{1 - m_H} \right) = 1.56$$

- Model Setup and Multiplier
- **②** Data and Estimation
- Empirical Results
 - O Description of multipliers with many sources of heterogeneity
 - Implications for design of fiscal policy

Data and Estimation

$$M = \left(\boldsymbol{I} - \hat{\boldsymbol{C}}^{1}\boldsymbol{m}\boldsymbol{R}_{\boldsymbol{L}^{1}}^{1}\hat{\boldsymbol{L}}^{1}(\boldsymbol{I} - \hat{\boldsymbol{X}}^{1})^{-1}\right)^{-1}$$

$$M = \left(\boldsymbol{I} - \hat{\boldsymbol{C}}^{1}\boldsymbol{m}\boldsymbol{R}_{\boldsymbol{L}^{1}}^{1}\hat{\boldsymbol{L}}^{1}(\boldsymbol{I} - \hat{\boldsymbol{X}}^{1})^{-1}\right)^{-1}$$

• 2012 data, 51 states and 55 sectors (\approx 3-digit NAICS), 82 demographic groups

$$M = \left(\boldsymbol{I} - \hat{\boldsymbol{C}}^{1}\boldsymbol{m}\boldsymbol{R}_{\boldsymbol{L}^{1}}^{1}\hat{\boldsymbol{L}}^{1}(\boldsymbol{I} - \hat{\boldsymbol{X}}^{1})^{-1}\right)^{-1}$$

- \bullet 2012 data, 51 states and 55 sectors (pprox 3-digit NAICS), 82 demographic groups
- We estimate 3 key objects:

$$M = \left(\boldsymbol{I} - \hat{\boldsymbol{C}}^{1}\boldsymbol{m}\boldsymbol{R}_{\boldsymbol{L}^{1}}^{1}\hat{\boldsymbol{L}}^{1}(\boldsymbol{I} - \hat{\boldsymbol{X}}^{1})^{-1}\right)^{-1}$$

- $\bullet\,$ 2012 data, 51 states and 55 sectors ($\approx\,$ 3-digit NAICS), 82 demographic groups
- We estimate 3 key objects:
 - Regional input-output matrix (\hat{X}^1)
 - Combine national BEA IO tables and CFS microdata on flows of tradable goods across states (Caliendo et al. (2018)) Details
 - Assumptions: non-tradables all within-state, IO structure same in all states

$$M = \left(\boldsymbol{I} - \hat{\boldsymbol{C}}^{1}\boldsymbol{m}\boldsymbol{R}_{\boldsymbol{L}^{1}}^{1}\hat{\boldsymbol{L}}^{1}(\boldsymbol{I} - \hat{\boldsymbol{X}}^{1})^{-1}\right)^{-1}$$

- 2012 data, 51 states and 55 sectors (pprox 3-digit NAICS), 82 demographic groups
- We estimate 3 key objects:
 - Regional input-output matrix (\hat{X}^1)
 - Combine national BEA IO tables and CFS microdata on flows of tradable goods across states (Caliendo et al. (2018)) Details
 - Assumptions: non-tradables all within-state, IO structure same in all states
 - **2** Rationing matrix $(R_{l_1}^1 \hat{L}^1)$
 - Combine estimate of earnings elasticity by MPCs from Patterson (2019) with industry labor shares and distribution of demographics across sectors Details
 - Assumptions: All firms ration similarly by worker MPC, all labor income earned within state where production takes place

$$M = \left(\boldsymbol{I} - \hat{\boldsymbol{C}}^{1} \boldsymbol{m} \boldsymbol{R}_{\boldsymbol{L}^{1}}^{1} \hat{\boldsymbol{L}}^{1} (\boldsymbol{I} - \hat{\boldsymbol{X}}^{1})^{-1}\right)^{-1}$$

- $\bullet\,$ 2012 data, 51 states and 55 sectors ($\approx\,$ 3-digit NAICS), 82 demographic groups
- We estimate 3 key objects:
 - Regional input-output matrix (\hat{X}^1)
 - Combine national BEA IO tables and CFS microdata on flows of tradable goods across states (Caliendo et al. (2018)) Details
 - Assumptions: non-tradables all within-state, IO structure same in all states
 - **2** Rationing matrix $(R_{l_1}^1 \hat{L}^1)$
 - Combine estimate of earnings elasticity by MPCs from Patterson (2019) with industry labor shares and distribution of demographics across sectors Details
 - Assumptions: All firms ration similarly by worker demographic, all labor income earned within state where production takes place
 - **③** Directed MPC matrix $(\hat{C}^1 m)$
 - Combine estimated MPCs by demographic with consumption basket shares from CEX and cross-state flows from CFS Details
 - Assumptions: linear Engel curves for each demographic group

- Model Setup and Multiplier
- Oata and Estimation
- Empirical Results
 - **0** Description of multipliers with many sources of heterogeneity
 - Implications for design of fiscal policy

Large dispersion in government purchase multipliers

Large dispersion in government purchase multipliers

• Aggregate government purchases multiplier: Response of GDP to GDP-proportional shock is 1.3 (Chodorow-Reich 2019, Ramey 2011)

Large dispersion in government purchase multipliers

- Aggregate government purchases multiplier: Response of GDP to GDP-proportional shock is 1.3 (Chodorow-Reich 2019, Ramey 2011)
- Even larger dispersion in transfer multipliers Details

• Observation 1: Basket-weighted network MPCs are very similar across population

- Observation 1: Basket-weighted network MPCs are very similar across population
- Observation 2: Basket-weighted network MPCs \approx benchmark average MPC

- Observation 1: Basket-weighted network MPCs are very similar across population
- Observation 2: Basket-weighted network MPCs \approx benchmark average MPC
- $\bullet \rightarrow$ Bias and homophily terms are both close to 0. Only incidence effect matters

Network details do matter for distribution of policy impacts

Figure: Change in GDP per capita from a \$1 per capita transfer shock in Michigan

Network details do matter for distribution of policy impacts

Figure: Change in GDP per capita from a \$1 per capita transfer shock in Michigan

• A uniformly-distributed \$1 transfer shock to MI generates 69 cents of aggregate GDP, only 29 cents of which is GDP in MI.

- Model Setup and Multiplier
- Oata and Estimation
- Empirical Results
 - O Description of multipliers with many sources of heterogeneity
 - **@** Implications for design of fiscal policy **•** Summary

Simple MPC-targeting very effective for maximizing income

- Setting: Some amount of funds are available for fiscal spending, financing for such spending is fixed
- Question facing planner: how should they allocate funds across the economy? Details

Simple MPC-targeting very effective for maximizing income

- Setting: Some amount of funds are available for fiscal spending, financing for such spending is fixed
- Question facing planner: how should they allocate funds across the economy? Details

• The average MPC of the group is very highly correlated with multiplier for group transfer

Quantifying targetted transfers with the CARES act

• This paper developed a model to understand the propagation of fiscal shocks with rich household and firm heterogeneity

- This paper developed a model to understand the propagation of fiscal shocks with rich household and firm heterogeneity
- Expressed fiscal multipliers in terms of estimable sufficient statics that we took to the data

- This paper developed a model to understand the propagation of fiscal shocks with rich household and firm heterogeneity
- Expressed fiscal multipliers in terms of estimable sufficient statics that we took to the data
- Network structure matters for the *distribution* of policy impacts

- This paper developed a model to understand the propagation of fiscal shocks with rich household and firm heterogeneity
- Expressed fiscal multipliers in terms of estimable sufficient statics that we took to the data
- Network structure matters for the *distribution* of policy impacts
- For aggregate policy impacts, only MPC-incidence matters.

- This paper developed a model to understand the propagation of fiscal shocks with rich household and firm heterogeneity
- Expressed fiscal multipliers in terms of estimable sufficient statics that we took to the data
- Network structure matters for the *distribution* of policy impacts
- For *aggregate* policy impacts, only MPC-incidence matters.
- Given wide range of multipliers, targeting fiscal policy is important and surprisingly simple

Heterogeneous MPC-Incidence: Three amplifying forces

- A shock of a given size can load differentially onto higher- or lower-MPC households depending on industry/state shocked
- Three forces contribute positively to differences
Heterogeneous MPC-Incidence: Three amplifying forces

- A shock of a given size can load differentially onto higher- or lower-MPC households depending on industry/state shocked
- Three forces contribute positively to differences
 - Oemographic composition of states and sectors

Heterogeneous MPC-Incidence: Three amplifying forces

- A shock of a given size can load differentially onto higher- or lower-MPC households depending on industry/state shocked
- Three forces contribute positively to differences
 - Oemographic composition of states and sectors
 - 2 Labor shares for each sector and state

Heterogeneous MPC-Incidence: Three amplifying forces

- A shock of a given size can load differentially onto higher- or lower-MPC h ouseholds depending on industry/state shocked
- Three forces contribute positively to differences
 - Operation of states and sectors
 - 2 Labor shares for each sector and state
 - Ovariance between worker MPCs and elasticity of income to changes in output

Heterogeneous MPC-Incidence: One dampening force

- IO linkages narrow the heterogeneity across sectors/states
 - Inputs dilutes the MPC of workers receiving marginal dollars

Sorted purchases multipliers

Comparative Statics • Back

- In the paper we derive a number of comparative statics results which explore how changes in the network structure affect the distribution of fiscal multipliers
- Define the matrix:

$$\mathcal{M} = \textit{\textit{C}}_{\ell^1}^1\textit{\textit{I}}_{L^1}^1\widehat{\textit{L}}^1\left(\textit{\textit{I}} - \widehat{\textit{X}}^1
ight)^{-1}$$

Proposition 2

Consider a change in the economy such that \mathcal{M} is replaced with $\mathcal{M}' = \mathcal{M} + \varepsilon \mathcal{E}$. The effect on dY^1 of this change is given to first order in ε by:

$$rac{d}{darepsilon} dY^1|_{arepsilon=0} = (I-\mathcal{M})^{-1} \mathcal{E} (I-\mathcal{M})^{-1} \partial Q^1$$

where ∂Q^1 generalizes ∂Y^1 to the case with supply shocks.

- Corollaries include:
 - I Higher multipliers with higher MPCs / labor shares
 - One dispersed multipliers with less connected IO matrix

Flynn, Patterson, and Sturm

Extension: Many Periods

• Allow set of periods $\mathcal{T}(\omega) \subseteq \mathbb{T}$ in which labor is rationed

Proposition 3

(Dynamic multipliers at the ZLB) Suppose that $r^t = \overline{r}^t$ for all $t \in T$. Then the general equilibrium effect on output dY of a partial equilibrium shock ∂Q is generically given by

$$dY^{\mathcal{T}} = \left(I - C_{y}^{\mathcal{T}} R_{L}^{\mathcal{T}} \hat{L}^{\mathcal{T}} \left(I - \hat{X}^{\mathcal{T}}\right)^{-1}\right)^{-1} \partial Y^{\mathcal{T}}$$

where $dY^{\mathcal{T}}$ and $dQ^{\mathcal{T}}$ are $\mathcal{T} \times \mathcal{I}$ -length vectors, $\hat{L}^{\mathcal{T}}$ and $\hat{X}^{\mathcal{T}}$ are diagonal matrices with entries corresponding to each rationing periods, and where $C_y^{\mathcal{T}}$ is the $(\mathcal{T} \times \mathcal{I}) \times (\mathcal{T} \times N)$ matrix of intratemporal marginal propensities to consume, which maps changes in the household income distribution during rationing periods to changes in the consumption of each good during rationing periods.

- Shocks in each rationing period can influence output in other rationing periods
- Need to consider intertemporal MPCs (Auclert et al 2018)

• More general rationing function: function of hypothetical labor supply (I_n^{*1}) and demand (L_n^{*1})

$$\ell_n^1 = R_n^S \left(\ell^{*1}, L^{*1} \right) \qquad \qquad L_i^1 = R_i^D \left(\ell^{*1}, L^{*1} \right)$$

• Our reduced form rationing function is a special case where:

- Pationing function satisfies free disposal and allocative efficiency (i.e. households can always work less)
- Interest rates are below efficient level (i.e. labor demand strictly exceeds supply)
- **③** Household preferences are GHH (i.e. I_n^{*1} not a function of fiscal policy)

- Define:
 - \hat{m} diagonal matrix of MPCs
 - 2 $\overline{C}_{\mu^1}^1$ normalized spending direction matrix
 - $\mathcal{G} \equiv l_{L^1}^1 \hat{L}^1 \left(I \hat{X}^1 \right)^{-1} \overline{C}_{y^1}^1$ map from household spending to others' income
 - b ≡ 1^T(I − Gm̂)⁻¹ − Vector of Bonacich centralities in spending network
 (b^{next})^T = b^TG − Average Bonacich centrality of households on whom I consume

Proposition 4

For any shock inducing a unit-magnitude labor incidence shock ∂y^1 :

$$\vec{1}^{T}dY^{1} = \underbrace{\frac{1}{1 - \mathbb{E}_{\partial y^{1}}[m_{n}]}}_{\text{Incidence multiplier}} + \underbrace{\mathbb{E}_{\partial y^{1}}[m_{n}]\left(\mathbb{E}_{\partial y^{1}}[b_{n}^{next}] - \frac{1}{1 - \mathbb{E}_{\partial y^{1}}[m_{n}]}\right)}_{\text{Biased spending direction effect}} + \underbrace{\mathbb{C}ov_{\partial y^{1}}[m_{n}, b_{n}^{next}]}_{\text{Homophily effect}}$$

- Use 2012 BEA make and use tables to construct national IO matrix
- Use 2012 CFS microdata on to compute gross trade flows between all state pairs for tradable commodities
- For nontradable sectors, we assume all production is within state
- Key Assumption: Input-output structure within each state is same as national IO matrix

▶ Back

$$\left(R_{L^{1}}^{1}\widehat{L}^{1}\right)_{rn,si} = \underbrace{\mathbb{I}[r=s]}_{\substack{\text{Within}\\\text{State}}} \underbrace{\alpha_{ir}}_{\substack{\text{Labor Share}\\\text{of Output}}} \underbrace{\underbrace{y_{inr}}_{\sum_{n}y_{inr}}}_{\substack{\text{Nationing on MPCs}}} \underbrace{\left(1 + \xi\left(MPC_{n} - \overline{MPC}_{ir}\right)\right)}_{\text{Rationing on MPCs}}\right)$$

- Assume all labor income earned within state where production takes place $(\mathbb{I}[r = s])$
- ② Compute labor shares of output from BEA for each sector and state $(lpha_{\it ri})$
- **(a)** Use ACS to compute income shares of demographics in sectors and states (y_{inr})
- Use LEHD to estimate exposure to business cycle shocks by worker demographic (ξ) (Patterson 2019)
 Figure
 - Key Assumption: All firms ration similarly by worker demographic

Back

 $\widehat{C}^{1}m_{(S \times I) \times (S \times N)}$: demographic *n* in state *s*'s MPC for good *i* in state *r*

Use PSID and CEX to estimate MPC_n using methodology of Blundell, Pistaferri and Prestion (2008), Guvenen and Smith (2014) and Patterson (2019) Figure Petails

- MPC for capitalists of 0.028 (Chodorow-Reich, Nenov, and Simsek 2019)
- Ise CEX to compute consumption basket shares for each demographic α_{ni}
 - Key Assumption: Linear Engel curves for each demographic group
- **③** Use CFS to compute consumption trade flows across states λ_{irs}
 - Assume all non tradables consumed within state

- Multiplier changes over time as fundamentals of economy change
 - The role of IO linkages: An economy with no intermediate inputs has the same aggregate multipliers but more heterogeneity in spending multipliers (Figure)
 - The decline of the labor share: The fall in the labor share from 2000 to 2012 lead to smaller purchases multipliers Figure
 - Rising labor income inequality: Can change multipliers if it changes MPCs or shuffles workers across industries/regions

• Household Problem:

$$(\ell_n^2, c_n^1, c_n^2) \in \underset{\ell^2, c^1, c^2}{\arg \max} u_n^t(c^1, \ell_n^1) + \beta_n u_n^t(c^2, \ell^2)$$

s.t $p^1 c^1 + \frac{p^2 c^2}{1+r} + \tau_n^1 + \frac{\tau_n^2}{1+r} = \ell_n^1 + \frac{\ell^2}{1+r}$
 $\ell_n^1 - p^1 c^1 - \tau_n^1 \ge \underline{s}_n$

• Social welfare for fiscal policy (G, τ) :

$$W(G,\tau) \equiv \sum_{n \in \mathbb{N}} \lambda_n \mu_n W_n(I_n^1(G,\tau),\tau_n)$$

• $l^1(G, \tau)$: household labor income consistent with rationing equilibrium with fiscal policy given by (G, τ) .

(1)

Back

• Direct payments in CARES Act: \approx \$1,200 to those making less than \$75,000

- Direct payments in CARES Act: \approx \$1,200 to those making less than \$75,000
- In our model, increased GDP by 79 cents per dollar spent

Back

- Direct payments in CARES Act: \approx \$1,200 to those making less than \$75,000
- In our model, increased GDP by 79 cents per dollar spent

• Takeaway 1: With maximum transfer of \$1,200, income-targeting was very effective (1.79 vs. 1.8)

- Direct payments in CARES Act: \approx \$1,200 to those making less than \$75,000
- In our model, increased GDP by 79 cents per dollar spent

- Takeaway 1: With maximum transfer of \$1,200, income-targeting was very effective (1.79 vs. 1.8)
- Takeaway 2: Could have generated more stimulus with larger transfer to higher-MPC households (1.8 vs. 2.02)

Exploring constant consumption shares assumption

Figure: Estimated Directed MPCs Vs. CEX basket-weighted MPCs

Substantial MPC Heterogeneity Across Demographics

Figure: Heterogeneity in MPCs by Demographic Group (Patterson 2019)

• Following Gruber (1997) use panel structure of PSID:

$$\Delta C_{it} = \sum_{x} \left(\beta_x \Delta E_{it} \times x_{it} + \alpha_x \times x_{it} \right) + \delta_{s(i)t} + \varepsilon_{it}$$

 C_{it} = consumption expenditure, E_{it} = labor earnings, x = demographics, state-by-time FEs

- Instrument for income changes using unemployment shocks
- Using CEX: estimate demand for food expenditure as function of durable consumption, non-durable consumption, demographic variables and CPI prices
- Assuming monotonicity, invert to predict total consumption in the PSID using demographics and food expenditure

Relationship between MPC and Exposure to the Business Cycle

Figure: Earnings Elasticity and MPCs (Patterson 2019)

Empirical irrelevance of the bias and homophily effects is a robust feature economy

Homophily and Bias under Alternative Specifications

Welfare Effects from Targeted Spending in Great Recession

• Welfare gain from spending one dollar in specific industry-state in Great Recession

- Takeaway 1: Welfare gain highly correlated with output multiplier
- Takeaway 2: Welfare gain highly correlated with size of rationing wedge

• Rationing wedge: wedge in the first-period intratemporal Euler equation

$$v_n^{1\prime} = \beta_n \frac{1+r^1}{1-\phi_n} v_n^{2\prime} (1+\Delta_n)$$

- Assume households within group are homogenous \rightarrow adjustments on intensive margin
- Households have slack borrowing constraints ($\phi_n = 0$)
- Households apply zero utility discount rate to the future $(\beta_n(1+r^1)=1)$
- Households have quadratic labor disutility with parameter
- Intuition: household working less are underemployed since wages are fixed and preferences imply no discounting

Bacl

- Assumption 1: For all i and z_i, production F(X_i, L_i, z_i) is continuous, weakly increasing, strictly quasi-concave, and homogeneous of degree one in (X_i, L_i). Further, labor is essential in production, i.e. F(X_i, 0, z_i) = 0, and production is strictly increasing in labor. Finally, there exists some p
 ∈ R^{I^t}₊ and {X_i, L_i}_{i∈I^t} s.t. for all i, F(X_i, L_i, z_i) ≥ 1 and p
 ¯X_i + L_i ≤ p_i.
- Assumption 2: For any $\varrho, y^1, \tau, \theta$: for each good *i*, some household type *n* has $c_{ni}^t > 0$.
- Assumption 3: The primitives satisfy the following properties:
 - **()** The consumption and labor functions c_n^t and l_n^1 are continuous in r^1 and y^1 .
 - **②** For all $n, \varrho, \tau_n, \theta_n$, $p^1 c_n^1(\varrho, y_n^1, \tau_n, \theta_n)$ is weakly increasing in y_n^1 .
 - **③** For any p, τ, θ : there exists $\overline{y} \in \mathbb{R}_+$ and $\overline{c} < 1$ such that for all $n \in N$, $r^1 \in [\underline{r}, \overline{r}]$, and $y_n^1 > \overline{y}$, we have that $p^1 c_n^1(\varrho, y_n^1, \tau_n, \theta_n) \leq \overline{c} y_n^1$.
 - **(**) Interest rates have an upper and lower bound, i.e. $r^1(Q) \in [\underline{r}, \overline{r}]$ and r is differentiable.
- Under Assumption 1, 2 and 3, there exists a rationing equilibrium

- Assumption 1: For all *i* and *z_i*, production $F(X_i, L_i, z_i)$ is continuous, weakly increasing, strictly quasi-concave, and homogeneous of degree one in (X_i, L_i) . Further, labor is essential in production, i.e. $F(X_i, 0, z_i) = 0$, and production is strictly increasing in labor. Finally, there exists some $\overline{p} \in \mathbb{R}_+^{\mathcal{I}^t}$ and $\{X_i, L_i\}_{i \in \mathcal{I}^t}$ s.t. for all *i*, $F(X_i, L_i, z_i) \ge 1$ and $\overline{p}X_i + L_i \le \overline{p}_i$.
- Assumption 2: For any $\varrho, y^1, \tau, \theta$: for each good *i*, some household type *n* has $c_{ni}^t > 0$.
- No Substitution Theorem: Under Assumptions 1 and 2, for a given z^t , there exists a unique p^t consistent with rationing equilibrium, independent of demand.

- No Substitution Theorem: Under mild assumptions, for a given z^t , there exists a unique p^t consistent with rationing equilibrium, independent of demand.
 - Key point: unit cost is fixed in response to demand shock and technologically determined
 - The idea is that prices are grounded through labor costs
 - Suppose 1 industry price pinned down by price of labor
 - Suppose another industry uses industry 1 as input price also pinned down by labor
 - And so on...
 - Theorem shows intuition carries over to more general case

Understanding Bias and Homophily Terms: Two Offsetting Effects

- *Empirical Fact 1:* High MPC households consume from low labor share industries, creating negative homophily (Hubmer 2019)
- Empirical Fact 2: Substantial fraction of demand remains local, creating positive homophily

The heterogeneity come entirely from direct incidence

Regional Demand Linkages: Regional Spillovers

Change in GDP from \$1 shock in Michigan

• About half of total amplification comes from cross-state spillovers (Auerbach et al. 2020)

Regional Demand Linkages: Per Capita Spending

Change in GDP / capita from \$1 / capita shock in Michigan

IO linkages dampen the distribution of multipliers

- IO linkages narrow the heterogeneity across sectors/states
 - Inputs dilutes the MPC of workers receiving marginal dollars

Sorted purchases multipliers

Even larger dispersion in transfer multipliers

▶ Back

- Transferring \$1 to all households generates 0.77 dollars of GDP per dollar spent
- Transferring \$1 to highest multiplier group generates 1.78 dollars of GDP per dollar spent

Multipliers and the decline of the labor share

- Consider the decline in the labor share by industry from 2000-2012, keeping all else equal
- Assume the difference in labor income to a factor with MPC = 0

- Assume the following conditions:
 - Consumption preference and labor rationing are homothetic (i.e. marginal change is the same as the average)
 - No households are net borrowers in period 1
 - No government spending
- Then, for a GDP-proportional demand shock, the incidence and bias effects are 0
 - Each household's marginal consumption is proportional to its initial consumption → income-weighted average of marginal consumption is proportional to output.
 - Households with different consumption bundles → some households experience a greater change in income
 - Those households have different MPCs from the average \rightarrow homophily possible.
When does this collapse to classical Keynesian multiplier?

• If all industries have a common rationing-weighted average MPC, m, then

$$\vec{1}^T dY^1 = rac{1}{1 - \mathbb{E}_{y*}[m_n]} = rac{1}{1 - m}$$

- No matter where the shock hits, the aggregate consumption response is the same
- Special case of this: single good and single household

Back

• Planner wants to direct labor income to the most severely unemployed households

$$dW = \sum_{n \in \mathbb{N}} \underbrace{\frac{l_n^2 - l_n^1}{l_n^2}}_{\substack{\text{Labor Wedge}\\\text{Income}}} \times \underbrace{(dl_n^1)}_{\substack{\text{Labor Income Effect}\\\text{of Stimulus}}}$$

- In this case, optimal to target on the *combination* of labor wedges and household MPCs
- Under some standard assumptions, the labor wedge is given by the percent change in hours of group (Assumptions)
- Implication: Targeting auto industry in Great Recession improved welfare over and above the effect it had on total output

Back