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Abstract

I study the problem of monitoring in a dynamic setting, in which
the monitor’s ability to detect misbehavior is endogenous: In addition
to choosing the amount of fraud, a fraudster can privately develop
a hiding technology that makes misbehavior undetectable, and the
inspector can invest in R&D to recover her detection ability. In equilib-
rium, the inspector invests whenever she is sufficiently confident to be
lagging technologically. However, too much deterrence of detectable
fraud (e.g., high fines or more monitoring) induces the fraudster to
invest in hiding technologies, which triggers an arms race and can in-
crease the average quantity of misbehavior. The optimal policy trades
off less misbehavior, when detectable, with shorter technological cycles
(and higher spending in R&D). The model has applications to digital
security, drug smuggling, money laundering, doping, and tax evasion.

1. Introduction

Is there a limit to feasible deterrence? More monitoring and higher fines
are often seen as a solution to reducing the amount of misbehavior in society.
The success of such policies requires monitors to have the ability to detect
and punish misbehavior. However, fraud and crime are often characterized
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by their adaptive nature and investments in novel hiding technologies can
make misbehavior undetectable. For instance, cybercriminals can develop
new steganographic techniques that hide data stealing. Drug smugglers can
changes their smuggling routes or use more sophisticated transportation
methods (submarines, mules, etc.). Money launderers can relocate their
capital to tax havens. In these examples, adopting hiding technologies allows
criminals to act outside of the scope of enforcement until the monitor develops
adapted detection technologies.

Designing monitoring policies in this context can be challenging as a policy
that aims at more deterrence of detectable misbehavior increases incentives to
develop hiding technologies. For instance, more monitoring makes detectable
fraud less rewarding and can reduce misbehavior by fraudsters who do not
have access to hiding technologies. However, this “deterrence effect” comes
at the expense of making investments in hiding technologies more appealing,
reducing the scope of enforcement.1 As a reaction to these higher incentives,
monitors are required to acquire new detection technologies more frequently
in order to keep pace with the evolution of hiding technologies which leads to
a technological arms race between the two parties. Designing and evaluating
policies in these environments requires understanding not only their short-
term effects on the deterrence of detectable fraud but also their long-run
effect on the development of both fraud and detection technologies.

This paper studies the technological arms race between fraudsters and
monitors in a dynamic monitoring setting. Studying the monitoring problem
and the technology problem jointly contributes to the literature in three
ways: First, it sheds light on the impact of standard monitoring policy tools,
e.g monitoring rates and penalties, on the developments of new hiding and
detection processes. Second, it allows comparing seemingly diverse policies
using only their effects on short term payoffs and flow of information. Finally,
the paper contributes to the reputation literature à la Board and Meyer-ter
Vehn (2013) by studying an environment in which the technology state can
be manipulated by both players due to the arms race.

1Riley (2005) reports evidence of such effects in border control where higher monitoring
intensities displaced drug smuggling to unguarded portions of the border and made
smugglers adopt transportation technologies that are harder to detect, such as submarines,
lightplanes, mules, etc.
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The setting is a discrete-time model where one monitor, which I interpret
as a cyber-defender (henceforth the defender), seeks at reducing the harm
she incurs from a cyber-attacker (henceforth the attacker). The attacker
undertakes two actions: A short-term action which I interpret as the attack
intensity, affects flow payoffs for both players, and a long-term action of
investing in R&D, which affects the detectability of the attacks. Similarly,
the defender undertakes R&D investments in each period, and her ability to
detect attacks (henceforth monitoring ability) takes the form of a persistent
technology state: attacks are detectable only if she invested last.

Players have asymmetric information about the monitoring ability, known
only for the attacker, and the defender learns about this ability from past
detections. As detection (or its absence) is informative about whether a hiding
technology has been adopted, the defender can use information gathered
from the past to update her beliefs about the monitoring ability and make
investment decisions optimally. I study equilibria of the game that depend
only on the history since the last public signal of either an investment by
the defender or an attack detection.

A first step to studying this arms race is the analysis of the attackers
incentives to invest. Section 3.1 studies classes of equilibria that can emerge
as a function of the gains from becoming undetectable relative to the cost of
investing in hiding technologies. I show that any Markov perfect equilibrium
of the game belongs to three classes: When the gains are low, the equilibrium
is an "entente equilibrium" in which no player invests in R&D, and attacks
are always detectable. When these gains are high, two types of equilibria
can be sustained: "arms race equilibria" and "Complete hiding equilibria".
In arms race equilibria, the two players engage in a perpetual arms race
to determine which one has a technological advantage, and the defender
is always uncertain about her ability to detect attacks. Finally, complete
hiding equilibria are equilibria in which attacks are never detectable, and the
attacker always has a technological advantage. When both types of equilibria
can be sustained, arms race equilibria are the ones preferred by the defender
whereas the attacker prefers complete hiding equilibria.

A policy implication of this result is that policy interventions such as
raising fines or increasing the monitoring rates can lead players to engage in
a technological arms race. This effect makes evaluating policies challenging
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as the global effect on deterrence depends on the cost of the arms race and
its effect on the dynamics of attacks. Empirical evidence of such effects were
reported in a tax context by Bustos et al. (2022) and in custom control by
Yang (2008). In these two contexts, an increase in government monitoring
rates made it appealing to attackers to develop technologies that are not
detectable by the defender.

Section 3.2 studies the effect of monitoring policies on the intensive margin
of investments in arms race equilibria. These equilibria can be described
by cycles (see graph above) that start (and ends) after a public signal of a
detection (time t = 1, t = 3 and t = 3.8) or an investment by the defender
(time t = 2.5). Along the cycle, as the defender fails to detect attacks, she
becomes more pessimistic about her monitoring ability and, after failing for
a given amount of time, she invests in a novel detection technology. The
attacker reacts to these investments by investing in a hiding technology with
a strictly positive probability in the continuation game which implies that
the defender is always uncertain about her ability.

Developing a new fraud technology allows the attacker to remain unde-
tectable until the defender invest in a new detection technology. This implies
that he is indifferent and invests with an interior probability only if the
defender invests frequently enough. As an implication, policy interventions
that increase gains from becoming undetectable also lead to shorter technol-
ogy cycles. Intuitively, these interventions increase the attacker’s gains from
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investments and, in order to make up for these higher incentives and restore
indifference at the beginning of the cycle, the defender’s investments have to
be such that the technological advantage of the attacker lasts for a shorter
amount of time.

Section 4 is dedicated to studying applications and the effect of policy
intervention. I show that policies such as higher penalties for detected
attacks lead to less intense detectable attacks at the expense of more frequent
investments by both players, which creates a trade-off for policy designers.
I show that this type of policy interventions can backfire: reducing the
defender’s payoffs when he is detectable below a cutoff (or equivalently
increasing the penalties above a cutoff) leads to more intense attacks on
average. As a result, this type of policies can be Pareto-dominated, and there
exists an upper bound to feasible deterrence. Due to the R&D effect, I show
that policies that induce an arms race can be dominated by entente policies:
This is the case if the defender’s investment cost in detection technologies is
high or the attacker’s investment cost is low.

In addition to the attacker’s incentives, the intensity of the arms race
also depends on the defender’s speed of learning. Policies that increase the
arrival rate of detections while keeping short-term payoffs unchanged, for
instance, through an increase in monitoring rates and a reduction in penalties,
make monitoring more informative. I show that in this case, the defender
invests more aggressively; that is, for each attacker strategy, she invests more
frequently in R&D. As an outcome, these policies lead to lower probabilities of
investments by the attacker and a softer arms race. This policy intervention
leads to a Pareto improvement as the defender strictly benefits from fewer
investments by the defender, whereas the latter is indifferent between the
“old” and the “new” policy. As an implication, monitoring and punishment
are not perfect substitutes as a policy with higher levels of monitoring (and
lower level of punishment) leads to fewer investments in R&D by fraudsters
and, therefore, less fraud on average. This result contrasts with models ’a
la Becker in which this policy intervention would not affect misbehavior.
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1.1. Literature:

This paper relates to the literature on the optimal design of monitoring
policies following the seminal work by Becker (1968) (see Polinsky and Shavell
(2000) for a survey), Lazear (2006), Eeckhout et al. (2005), Gibson (2019),
Blundell et al. (2020) and Telle (2013) for more recent works) that studies
the effect of monitoring and levels of punishment on fraud. I contribute to
this literature by extending this approach to a dynamic setting where the
monitor’s ability to detect misbehavior is endogenous and depends on both
players’ available hiding and detection technologies.

This extension allows for taking into account the attackers’ outside options:
As a response to a harsher monitoring policy, higher fines, for instance, they
can either reduce misbehavior or adopt novel hiding technologies. I provide
conditions for this outside option to be relevant. Moreover, studying the
monitoring and the arms race problems jointly allows analyzing the effect of
monitoring policies on the intensity of the arms race, that is, the frequency
of investments by the two players. In contrast to this literature, I show that
this implies that harsher monitoring policies can lead to higher levels of
misbehavior under certain conditions.

Moreover, I show that higher levels of punishment are no longer a substi-
tute for monitoring intensity (proposition 4). Monitoring has an informational
benefit to the monitor as it helps to assert whether attacks are detectable. In
this case, penalties are strategic complements for the attacker’s investments in
hiding technologies, whereas monitoring intensity can either be complements
or substitutes to these investments.

More closely related to this paper, following the seminal work of Board
and Meyer-ter Vehn (2013), an emerging literature studies learning in en-
vironments in which a myopic player’s actions depend on his beliefs about
a state that is partially controlled by a long term player’s investment (See
also Board and Meyer-ter Vehn (2022) and Dilmé (2019) for related works).
Halac and Prat (2016), Dilmé and Garrett (2019), and Varas et al. (2020)
extend this approach to environments with monitoring: A monitor’s ability
to detect fraud depends on the history of her investments only (Dilmé and
Garrett (2019)) or this history and exogenous shocks ( Halac and Prat (2016)
and Varas et al. (2020)). As I focus on the effect of monitoring policies on
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the arms race between the attacker and the defender, I depart from these
papers by developing a model in which (i) both players are forward-looking
and (ii) the monitor’s ability depends on both players’ investments. This
allows studying strategic complementaries between the short-term monitoring
problem and the long-term R&D race between the two players.

On an independent work, Marinovic and Szydlowski (2022) study a
setting where two forward-looking players (one principal and one agent) face
uncertainty about the state and where the arrival rate of detection depends
on this state and both players’ actions. The authors show that in this setting,
the agent has incentives to backload fraud as the principal becomes more
pessimistic. I study an environment in which both players can invest in
order to change the monitoring ability, which allows studying the arms race,
whereas Marinovic et al. focus on the experimentation problem of an agent
who wants to commit fraud and learn about this ability.

This paper also relates to the literature about crime displacement that
studies how monitoring crime in one location/technology displaces crime to
other locations/technologies (see Johnson et al. (2014) for a survey of the
criminology literature). See also Yang (2008) for an application to tariffs
avoidance, Ladegaard (2019) for the digital drug market, and Gonzalez-
Navarro (2013) for the location of auto theft. Finally, this paper relates to
the extensive literature that studies models with learning through exponential
bandits initiated by Keller et al. (2005) (see Bergemann and Valimaki (2006)
and Hörner and Skrzypacz (2017) for surveys). Under an arms race policy,
the defender’s problem in our model has the same structure as the one
studied in this literature; however, payoffs from detection and investments
are endogenous as they depend on the attacker’s investment strategy in
equilibrium.

2. The setting:

2.1. The model:

Consider a game where one defender (player D) and one attacker (player
A) repeatedly interact at a fixed time interval ∆. Time t ∈ {0,∆, 2∆...} is
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discrete and the horizon infinite and players discount the future at the same
rate e−r.
Actions, policies and states: For each t ≥ 0, players play a stage game
where the defender’s ability to detect ongoing attacks depends on a persistent
technology state θt ∈ {0, 1} to which I refer as the monitoring ability: Attacks
are detectable only if θt = 1. Without loss of generality, set θ0 = 1; That is,
attacks are detectable at the beginning of the game.

At the beginning of time t, the state θt−∆ is inherited from the past.
Then, players make simultaneous investment decisions αt ∈ {0, 1} for the
attacker and δt ∈ {0, 1} for the defender. Investment αt = 1 allows the
development of a new hiding technology that makes the attacks undetectable
and shift the monitoring ability to θt = 0 at a cost FA. 2 Similarly, δt = 1
is an investment in a detection technology that costs FD and allows the
defender to “regain" her ability to detect attacks by shifting her monitoring
ability to θt = 1. Not investing αt = 0 and δt = 0 is costless.

Following this investment stage, the attacker chooses the intensity of his
attack at ∈ [0, ā] which generates flow payoffs that depend on the monitoring
policy. Under a policy π, an attack intensity a generates an expected flow
utility uAπ (a, θ)∆ for the attacker, an expected flow utility uDπ (a, θ)∆ for the
defender and leads to detection at a rate θλπ(a)∆. We assume that: uAπ (a, 0)
and uAπ (a, 1) are single peaked.

The timing of the game at time t is the following:

• Stage 0: The state θt−∆ is inherited from the past, and the defender
updates her beliefs ρt about it,

• Stage 1: Both players simultaneously make investment decisions in
hiding and detection technologies,

• Stage 2: The state θt is determined and observed by the attacker,

• Stage 3: The attacker chooses an intensity of attack at,

• Stage 4: The outcome of detection is publicly observed, and stage
payoffs are realized.

2We refer the interested reader to Cabaj et al. (2018) for a review of the techniques
that can be used in the Cybersecurity context, for instance, and to Riley (2005) for an
application to border control
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Law of motion of the defender’s monitoring ability: The monitoring
ability θt is persistent and is determined by the last player who invested
in R&D (see figure 1 below): The defender can only detect attacks if she
invested last. More formally, denote by tD = max{τ ≤ t : δτ = 1} the period
of last investment by the defender and by tA = max{τ ≤ t : ατ = 1} the
period of last investment by the attacker. We have:

θt =

1 If tD > tA

0 Otherwise

.
Here, we set as a tie-breaking rule that if both players invest in the same

period, attacks are not detectable and θt = 0.3

Information structure and strategies: Set ωt ∈ {0, 1} a variable that
takes a value of ωt = 1 if the attack is detected at time t and ωt = 0
otherwise. A public history at time t in this game consists of detections
{ω0, ω∆, ..., ωt−∆} and the defender’s investments {α0, α1, ...αt−∆}.

Let hit be player i’s private history at the beginning of time t. The
private history for the defender hDt consists of the public history up to (but
not including) time t. A pure strategy for her is a choice of an investment
decision δt for each t and history hDt. A (pure) Markov strategy for the
defender consists on investment decisions δt as a function of her belief ρt
about θt. More formally, a pure Markov strategy for the defender σD is:

σD :[0, 1]→ {0, 1}

ρ→ δ

The attacker’s private history at the beginning of time t, hAt, consists of
the public history, investments α, the intensity of the attack a and the state
θ up to (but not including) time t. A strategy for the attacker consists of a
choice of the investment decision αt and the intensity of attack for each t and

3This tie-breaking rule has no qualitative impact on the equilibrium in the discrete-time
version of the game. However, it ensures that the limit case of the equilibrium as ∆ goes
to zero is equivalent to the equilibrium of the continuous-time version of the game.
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Figure 1: The monitoring ability as a function of time and investments

private history hAt. A Markov strategy for the attacker consists of investment
decisions and intensity of the attack as a function of (ρt, θt). Formally, a
pure Markov strategy for the attacker is a function:

σA :[0, 1]× {0, 1} → {0, 1} × [0, ā]

ρ× θ → α× a

The payoffs: Players are forward looking and discount future at the
same rate e−r∆ where r > 0 is a discount factor. The defender’s expected
payoffs at time t = 0 are:

UD
t = Ea,θ,δ

[ ∞∑
τ=0

e−r(τ−t)∆
(
uDπ (aτ , θτ )∆− δτFD

)]
(1)

The defender’s expected instantaneous payoffs at time t in equation (1)
can be decomposed into the flow utility given the attacker’s action and the
state uDπ (aτ , θτ )∆ and the cost of investing in detection technologies δtFM .
Similarly, denote by UA

t the attacker’s value function. We have:

UA
t = Eα,δ

[ ∞∑
τ=t

e−r(τ−t)(uAπ (aτ , θ)∆− ατFA

]
(2)

Where uAπ (aτ , θ)∆ is the expected benefit from the attack at time t and
ατF

A is the cost of investment in hiding technologies.

2.2. Illustrations and policy interventions:

In the model, we allowed for a general definition of utility functions
and arrival rate of detection. This allows for flexibility both in terms of
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policies and economic environments that could be studied. As stated above,
a policy is a set of functions (uAπ (a, 0), uAπ (a, 1), uDπ (a, 0), uDπ (a, 1), λ(a)) which
determine the arrival rate of detection and players payoffs as a function of
the attack intensity a and the state θ. In general, policy interventions can
affect one or many of these functions. As this paper aims to disentangle their
effects on investment and deterrence, I find it convenient to introduce the
two following examples as illustrations for the setting and the effect of policy
interventions on these functions.

Application to cybersecurity: The first application of interest is
cybersecurity. In this context, a service provider (the defender) seeks to
reduce the amount of data stolen by a cyberattacker. In each period, the
defender decides whether to invest in improving the ability of her system
to detect new types of attacks, whereas the attacker decides the amount of
data to steal and the whether to develop a new attack hiding technology.
It is of interest s to understand how changes in monitoring policies such as
increasing the punishment for detected attacks or increasing the monitoring
capacity, or instance by increasing the number of inspectors (cybersecurity
officers), for implementing a more stringent red-flags system affect the arms
race between these two players.

A first important characteristic of this environment is that it is hard
to punish cyberattackers legally as most of them use algorithms to hide
their identity to avoid punishment even in case of detection. Moreover,
some countries can be more lenient in terms of punishment, and the lack of
international cooperation in this context makes judiciary punishment very
rare. For this reason, I consider punishment which is independent of the
intensity of the attack. 4 Formally consider the following starting policy:

λπ(a) = am∆
4In section 4, I show the equivalent between a choice of security level and this type of

punishment
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Where m is the monitoring intensity. Players get flow payoffs:

uAπ (., θ) =
[
2
√
a− θmaP

]
∆1a>0

uDπ (., 1) = −hEθ[a(ρ, θ)]∆

1- The effect of punishment: A first policy intervention of interest is
a rise in the cost of being detected for the attacker. This policy intervention
impacts only the utility function of the attacker when attacks are detectable.
The objective is to study how higher levels of punishment increase her
incentives to invest for any given strategy by the defender and its long-run
impact on the arms race between the two players.

2- The effect of monitoring: Similarly, consider a change of policy
that increases the arrival rate of detection. From the attacker’s perspective,
monitoring and punishment are perfect substitutes: his payoffs depend only
on mP . As an implication, a new policy that reduces the punishment and
increases monitoring can lead to the same payoffs for both players. In
practice, increases in monitoring can be achieved by hiring new inspectors
(or cybersecurity officers), improving some aspects of the software, a more
stringent red-flags system, etc. 5

In a one shot-game, this policy intervention has no impact on payoffs.
However, from a dynamic perspective, as detections occur more frequently
when m is high, this policy intervention makes the defender become pessimist
faster (or equivalently, learn faster) under the new policy. It is interesting to
study the effect of introducing a more informative policy on the arms race. 6

3- The effect of the cost of cyberattacks: Finally, as stated above,
the cost of being detected often takes the form of a cost of intruding again in
the system. This aspect will be studied, and the extent to which punishment
and security are equivalent will be developed further.

5Note that as opposed to investments which are a qualitative increase in the ability to
detect fraud, monitoring is a quantitative shifter where, only when attacks are detectable,
higher monitoring leads to more detection

6Due to the impact on learning, and as opposed to the literature to the best of my
knowledge, this effect makes the choice of monitoring a qualitatively different decision
compared to the choice of punishment.
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Example 2: Border control:
The second application which is of interest is the problem of border

control. Consider a border control agency (the defender) that seeks to detect
the smuggling of illicit products to the country (drugs, weapons, etc.). In each
period, the defender decides whether to invest in acquiring novel detection
technologies, whereas the attacker makes an attack and investment decisions.
Investment by the border control agency can be interpreted as acquiring new
detection tools such as radars, satellites, patrol vehicles, etc., or acquiring
knowledge about more recent smuggling techniques. On the other hand, drug
smugglers can acquire vehicles such as submarines or light planes that are
hard to detect or change the route that they use.

In addition to the effect of monitoring and punishment discussed above,
policy design affects other aspects of the fraud environment: First, policies
shape the defender’s gains from detection by designing rewards for detected
smuggling. Moreover, as often in organized crime, the attacker’s payoffs
depend on the size of their market/territory. This size can be reduced, for
instance, by increasing monitoring in cities or the final consumers of illicit
goods. This type of policy measure is complementary to border control as
it reduces the demand for criminal activities. However, this reduction is
independent of the smuggling technology used, which implies different effects
on the arms race. To study the effect of these policy measures, consider a
starting policy π such that detection arrives at a rate:

λ(a) = m1a>0

Here, for simplicity we are assuming the arrival rate of detection m > to
be independent from a whenever a > 0. Flow payoffs under policy π are:

uAπ (a, θ) =
[
2
√
αa− θmaP

]
∆1a>0

Where α > 0 captures the size of the demand (for instance, the territory
controlled by the cartel). Note that as opposed to the previous example,
punishment P depends on the intensity of attacks. This captures the fact
that in practice, the punishment depends on the quantity of seized drugs or
weapons. On the other hand, the defender is interested in detecting attacks,
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in which case she receives a lump sum reward R. Her flow utility is:

uAπ (a, θ) = θmR∆

It is of interest to study the following changes of policies:
1- Downstream policies: Now consider a policy intervention which

consists of decreasing the downstream demand for illicit goods by decreasing
α.7 This policy is a demand shifter that affects the attacker’s payoffs in both
technology states; therefore, it deters attacks with a limited impact on the
attacker’s investment incentives.

2- Providing incentives to monitors: Finally, consider an increase
in the reward for detected smuggling R, and for the sake of exposition, we
will interpret investments in detection technologies as the defender’s private
effort to acquire knowledge about the latest smuggling techniques or newer
routes. In this case, the policy intervention affects the defender’s payoffs
only when attacks are detectable, leading to a change in her incentives to
invest for any given strategy by the attacker.

3. Preliminary analysis

Studying equilibria of this game requires (i) understanding when invest-
ments can emerge as an equilibrium outcome as a function of the policy
choice and investment costs and, (ii) in equilibria with investments, the
patterns of these investments and the evolution of the defender’s beliefs on
the equilibrium path. The objective of this section is to determine these
patterns and the determinants of attack intensities in equilibrium.

As investments can be wasteful, the first type of equilibria of interest
is such that the attacker has no incentives to invest and, therefore, no
player undertakes R&D investments. I refer to these equilibria as “entente
equilibria". Formally:

Definition 1. (Entente equilibria) An equilibrium is an entente equilib-
rium if for any time t, and any histories (hAt , hDt ) reached with a strictly

7Examples of such policies can be a large scale intervention to reduce the cartel’s area
of influence, an increase in monitoring in cities, awareness-raising, partial legalization, etc.
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positive probability; we have αt = δt = 0

The opposite of an entente equilibrium is equilibria, in which both players
engage in a perpetual arms race where investments never stop. That is, for
each point in time, both players invest in R&D in some future period for all
possible histories. This can be, for instance, the case when investment costs
are low for both players or their incentives, given the monitoring policy, are
high. I refer to these equilibria as arms race equilibria. More formally:

Definition 2. (Arms race Equilibria) An equilibrium is an arms race
if for any private history hit reached with a strictly positive probability and
for each player i ∈ {A,D}, there exists a continuation history, reached
with a strictly positive probability, such that player i invests. That is: ∀t :
∃τ1, τ2 > t : Ehτ1

[
ατ1

]
, Ehτ2

[
δτ2
]
> 0

Finally, for some policies or strategies by the attacker, the defender might
not have any incentives to engage in R&D, leading the attacker to always
have a technological advantage. These equilibria are referred to as “complete
hiding equilibria". Formally:

Definition 3. (Complete hiding equilibria) An equilibrium is a complete
hiding equilibrium if for any public history (ht) reached with a strictly positive
probability attacks are not detectable (θt|ht = 1 ), the defender does not
invest (δt|ht = 1), and the attacker only invests at the beginning of the game:
α0 = 1.

Denote by a∗(θ) = argmaxau
A
π (a, θ) the myopic attack intensity as a

function of the defender’s monitoring ability. We have:

Proposition 1. (Types of equilibria) For any policy π, an equilibrium
exists, moreover, the equilibrium is:

• An entente equilibrium if:

uAπ (a∗(0), 0)− uAπ (a∗(1), 1) < (1− e−r∆)FA

• An arms race policy or a complete hiding policy if:

uAπ (a∗(0), 0)− uAπ (a∗(1), 1) > (1− e−r∆)FA
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Proposition 1 describes investments in equilibria from an extensive margin
perspective. When the cost of investing in hiding technologies is sufficiently
high, the attacker has no incentives to invest in hiding technologies and no
player invests in R&D in equilibrium. When this cost is low relative to gains
from investments, the attacker engages in R&D, and two types of equilibria
can emerge: Arms race equilibria which are preferred by the defender, and a
complete hiding equilibrium which is the equilibrium preferred by the attacker.
While the complete hiding equilibrium has trivial dynamics, investments and
intensity of attacks under an arms race equilibrium depend on the defender’s
belief and will be analyzed intensively in the rest of the paper.

The defender’s beliefs: First, note that detection at time t is fully infor-
mative about the state being θt = 1. Therefore, in any MPE, beliefs depend
only on history since the last detection. I abuse notation and denote by
time t = 0 the first period after a detection. Finally, I anticipate that, in
equilibrium, the attacker invests in a hiding technology only at this period
(t = 0) and describe only the relevant law of motion of beliefs. Denote by ρt
the probability that attacks are detectable at the beginning of period t. We
have:

ρt =

1 If t = 0

ρt−∆
1−λπ(ât−∆(1))∆

1−ρt−∆λπ(ât−∆(1))∆ Otherwise

Where ât(1) is the defender’s belief about the intensity of attack at time
t if attacks are detectable. When ∆ goes to zero, beliefs at time t evolve
according to:

ρ̇τ = −ρτ (1− ρτ )λπ(âτ (1)) (3)

This equation captures the fact that as the defender fails to detect attacks,
her belief about her monitoring ability θt decreases. As detection is more
likely when the arrival rate of detection is high, beliefs decrease faster for high
values of λπ(âτ (1)). Note that this law of motion depends on the intensity of
the attack at each time τ . Therefore, these intensities have to be determined
in the equilibrium path.

Proposition 2. (The intensity of attacks) In any Markov Perfect Equi-
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librium, the intensity of the attack is chosen myopically

Proposition 2 means that when attacks are detectable, the attacker under-
takes attack decisions without incorporating their effect on the continuation
game. As uAπ (a, θ) is single-peaked, this implies that this intensity depends
only on the state in equilibrium. First, note that this result is trivial as long
as we consider entente or complete hiding equilibria: In this equilibria, the
defender never invests, and the attacker faces a stationary problem whose
solution is the same as a one shot game.

Sketch of the proof: Consider any putative arms race equilibrium and
assume that in this equilibrium, the attacker invests with a probability 1 for
some history reached with a strictly positive probability. This implies that
the defender’s continuation belief is 0 and gains from investing are the highest.
Therefore, either she invests with probability 1, in which case the attacker
could benefit from postponing his investments, or the defender invests with
probability 0 for all other beliefs, in which case one can construct a deviation
where the attacker invests earlier (see appendix). As a result, in any arms
race equilibrium, it has to be that ατ < 1 for all τ and associated histories
hAτ .

Intuitively, this implies that never investing is also the best response for
the attacker in any arms race equilibrium, which implies that attacks are
detectable. As a result, his payoffs are the same as in a situation in which
the cost of investing is infinite, in which case, the unique best response is
to play the myopic action and never invest. Equivalently, this implies that
when detectable, the attacker can get no more than his payoffs from playing
his short time attack intensity forever.

In addition to simplifying the dynamics of beliefs in arms race equilibria,
proposition 2 implies that any two policies leading to the same short-term
payoffs and arrival rates of detection lead to the same investment profiles in
equilibrium.
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4. Results:

An arms race equilibrium can arise when both players have incentives to
invest in R&D in equilibrium. In this section, I study the determinants of
investments in these equilibria from an intensive margin and comparative
statics and the effect of policies changes on investments and payoffs.

4.1. The arms race equilibrium:

Proposition 3. (Arms race equilibria) If uAπ (a∗(0), 0)− uAπ (a∗(1), 1) >
(1− e−r∆)FA and FD < FD∗, an arms race equilibrium exists.
Any such an equilibrium is characterized by an initial belief ρ0 ∈ (0, 1) and a
stopping belief ρ∗ such that:

(i) The investment by the attacker α0 ∈ (0, 1) is :

• α(ρ) =


0 ∀ρ ∈ (ρ∗, ρ0)

1− ρ0 if ρ ≤ ρ∗

1− ρ0
ρ
if ρ ≥ ρ0

(ii) The investment strategy by the defender:

• δ(ρ) =

1 if ρ ≤ ρ∗

0 otherwise

(iii) An equilibrium length of the cycle: tA = 1
r
ln(1+ rFA

uAπ (a∗(0),0)−uAπ (a∗(1),1)−rFA )

(iv) The stopping belief ρ∗(ρ0) is reached at time tD such that:

r + X

ρ0
=
λπ(a∗(1))(1− e−rtD) + X

ρ0(1−ρ0)

eλπ(a∗(1))tD − 1

(v) The initial belief ρ0 is such that t∗ = tA = tD

Equilibrium cycles: Proposition 2 allows us to describe the beliefs and
technology cycles of this game (see figure 3). A cycle starts when both players
receive an informative signal about the state of the monitoring ability due
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to detection of an attack (time t=1, t=2.9 and t=3.6 in figure 3) or to an
investment in detection technologies (time t=2.5). The attacker invests with
a strictly positive probability α(ρ0) whenever a new cycle starts. This later
probability determines the defender’s initial belief ρ0 = 1− α(ρ0).

In the continuation game, the defender learns about her monitoring
ability through detection and its absence: As attacks can only be detected
if the attacker did not invest, failure to detect attacks makes the defender
increasingly pessimistic, and her belief decreases until it reaches a threshold
ρ∗ in which case she invests with probability δ(ρ∗) = 1 and the cycle ends.

The length of the cycles: I refer to the duration of this learning phase
as the length of the cycle t∗, which represents the amount of time that the
defender needs to be pessimistic enough to invest. When the attacker invests,
he can benefit from undetectable attacks for exactly t∗ periods. The length
of the cycles has to make him indifferent between his investment decisions
(iii).

On the other hand, the defender’s incentives to invest in detection tech-
nologies depend on her beliefs. As the continuation game after investing
is independent of the past histories, her incentives are higher when she is
more pessimistic. As an implication, for each initial belief ρ0, her investment
strategy is defined by a unique cutoff ρ∗(ρ0) such that she invests at the
period in which the belief ρ∗(ρ0) is reached. In other words, given her initial
belief, (iv) she experiments for tD periods before investing. Finally, in order
to be in equilibrium, it has to be that (v) tA = tD.

As the defender’s investment strategy is a cutoff strategy, the attacker
prefers investing “earlier” in the cycle in order to benefit from undetectable
attacks for longer. Therefore, he instantaneously reacts to the increase in the
defender’s beliefs by investing in hiding technology with (strictly) positive
probability.
The initial investment: In arms race equilibria, tD determines, for each
initial investment α0, the distance between the initial belief ρ0 and the
stopping belief ρ∗. On the other hand, tA determines the time at which the
stopping belief has to be reached in equilibrium in order for the attacker to be
indifferent. (vi) links, therefore distance ρ0− ρ∗ to time tA and can therefore
be interpreted as a condition about the speed of learning: Investments at the
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beginning of the cycle have to be such that the defender learns sufficiently
fast to invest exactly at time tA.

Note that (vi) admits at most two solutions, and the attacker is indifferent
between the two equilibria. I use as an equilibrium selection that players play
the equilibrium preferred by the defender, which is also the Pareto dominant
one.

4.2. Comparative statics in arms race equilibria:

In an arms race equilibrium, monitoring policies determine the intensity
of attacks and the frequency of investments studied in proposition 3. In order
to assess the effect of policy interventions, let us assume from here onward
that for all policies π ∈ Π, flow payoffs and arrival rate of detection are
continuously differentiable in the intensity of the attacks and that the arrival
rate of detection is non decreasing in the intensity of the attack (dλπ(a)

da
≥ 0).

Moreover, we assume that when there is no attack (a = 0), players get zero
payoffs and no detection can occur: uAπ (0, θ) = uDπ (0, θ) = λπ(0) = 0.

A. The effect of more informative policies: The first question of
interest in this type of environment is the effect of the arrival rate of detection
on the arms race. This arrival rate affects the defender’s investments through
two effects: First, it increases the likelihood of avoiding wasteful investments
by restarting cycles through detection rather than investments. The second
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effect of the arrival rate is that it affects the defender’s speed of learning and,
therefore, her investment strategy. In order to study the global effect on the
equilibrium, consider two policies π and π′ which lead to an arms race.

Definition 4. Fix a∗(1) and a∗′(1) the equilibrium intensities of detectable
attacks under policies π and π′.The policy π is more informative than the
policy π′ if it leads to a higher arrival rate of detection:

λπ(a∗(1)) > λπ′(a∗′(1))

.

Now, consider two policies that lead to the same flow payoffs; however,
one of them is more informative. These policies can be ranked as follows:

Proposition 4. (Pareto dominance of more informative policies)
Consider any two policies π and π′ which lead to the same equilibrium flow
payoffs ∀θ, i: uiπ(a∗(θ), θ) = uiπ′(a∗′(θ), θ) and denote by π the most informa-
tive policy. We have:
(i) The policy π induces less investments in R&D by the attacker: απ0 < απ

′
0

(ii) The policy π Pareto-dominates the policy π′

Proposition 4 allows comparing policies that are similar from a short-term
perspective. Under a more informative policy, the defender learns faster
about her monitoring ability. As a result, these policies induce her to invest
more aggressively in R&D, that is, for each initial belief ρ0, her stopping
belief ρ∗(ρ0) is reached earlier. However, from proposition 3, we know that
as the attacker’s short-term incentives to invest did not change, these two
policies entail the same length of the cycles. As a result, (i) the attacker has
to invest with a strictly lower probability under the most informative policy.
As an implication, flow payoffs given the state are similar under both policies.
However, the defender strictly benefits from having fewer investments in
hiding technologies in equilibrium, leading the policy π to Pareto dominate
the policy π′. 8

8Note that as one best response for the attacker is to never invest in any arms race
equilibrium, he is indifferent between the two policies.
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From a policy perspective, an example of policies that lead to the same
short-term payoffs but differ in their informativeness is policies that entail
the same expected punishment for misbehavior using different monitoring
intensities. Consider the policies defined in example 1, that is, for a ∈ [0, 1]
a policy π is characterized by:

λπ(a) = am∆

uAπ (., θ) =
[
2
√
a− θmaP

]
∆1a>0

uDπ (., 1) = −hEθ[a(ρ, θ)]∆

All policies π and π′ with associated monitoring rates and penalties
(m,P ) and (m′, P ′) respectively such that: mP = m′P ′ satisfy this condition.
Proposition 4 imply that if m > m′, then π Pareto dominates π′. Another
implication of this result is, as opposed to a situation without investments,
the fact that detection is informative about whether the attacker has access
to an undetectable attack technology, monitoring and punishment are not
perfect substitutes.

B. The (non) deterrence effect of raising penalties: Raising penal-
ties is a policy intervention that makes detection more costly for the attacker.
As such, these policies make his flow payoffs lower for any given attack
intensity. On the other hand, this policy intervention does not affect the
defender’s payoffs nor the arrival rate of detection for a given attack intensity.
From an equilibrium perspective, this changes the optimal myopic attack in-
tensity, and by extension, given the result in proposition 2, it will change the
intensity of detectable attacks. More generally, define by “Purely deterrent
policy intervention," any policy intervention whose unique effect is reducing
gains from increasing the intensity of detectable attacks. Formally, fix π to
be an initial policy and consider a policy π′.

Definition 5. A policy intervention is purely deterrent if:
(i) ∀a : (uAπ′(a, 0), uDπ′(a, 0), uDπ′(a, 1), λπ′(a)) = (uAπ (a, 0), uDπ (a, 0), uDπ (a, 1), λπ(a))
and,
(ii) ∀a: uAπ′(a, 1) = uAπ (a, 1) + f(a) with f(a) ≥ 0 and strictly decreasing in a

22



Here (i) means that the policy intervention does not affect the defender’s
payoff functions, the arrival rate of detection, and the attacker’s flow payoffs
when attacks are not detectable. (ii) implies that gains from increasing the
intensity of the attack are strictly decreasing under the new policy. We have:

Proposition 5. (Effect of purely deterrent policy interventions)
Consider any purely deterrent policy intervention π′ 6= π and denote by a∗(θ)
and a∗′(θ) the intensities of attacks prior and after this change, we have:
(i) This change induces less intense detectable attacks: a∗(1) > a∗′(1)
(ii) Technology cycles are shorter under π′

(iii) A limit to deterrence: If a∗(0) > a∗(1), then ∃a such that is a′(1) < a

the policy intervention leads to higher average intensity of attacks

Purely deterrent policy interventions imply that the attacker gains less
from increasing his intensity of detectable attacks. As such, these policies
induce a “deterrence effect,” which is captured in (i). As a counterpart
to this deterrence effect, as these policies do not impact flow payoffs for
undetectable attacks, they lead to higher short-term gains from investing
in hiding technologies. As these gains are higher, the defender will need
to invest more frequently in order to keep the attacker indifferent (from
proposition 3) which leads to (ii) shorter technology cycles.

Finally, under certain conditions, shorter cycles entail an increase in
investments high enough to offset any possible gains from higher levels of
short-term deterrence (iii) of detectable attacks. In order to illustrate this
effect, consider first policy interventions which lead to lower equilibrium flow
payoffs for the defender when attacks are detectable. In this case, she invests
more aggressively for any initial belief ρ0. However, for a low enough, a
more aggressive best response is not sufficient to implement short enough
technology cycles. As a result, the attacker also changes his investment
strategy and invests more frequently in R&D, making the attack less likely
to be detectable in which case, the attacks are more intense.

The opposite case in which the defender earns higher flow payoffs when
attacks are detectable is more straightforward: The defender’s best response
is less aggressive, therefore, the two effects always drive the attacker’s invest-
ments in equilibrium to be higher.

From a policy perspective, this result implies that there is a limit to
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deterrence which could be achieve through these policies. In particular,
raising penalties is a special case of purely deterrent policy interventions and,
if too high, they can lead to an intensification of the arms race, inefficient
investment and higher and more sophisticated attacks.

To illustrate these effects, consider example 1 and a change of policy
to π′ which consists of setting P ′ = 2P . This change of policy has: (i) A
“deterrence effect” which decreases the intensity of detectable attacks from
a∗(1) = ( 2

mP
)2 to a∗′ = ( 1

mP
)2.

(ii) The second effect of this policy is that it reduces the length of the
technology cycle. As uAπ (a∗(1), 1) > uAπ′(a∗′(1), 1), gains from investing are
strictly higher. As an implication, the equilibrium under the new policy
requires the defender to invest more frequently in order to compensate for
this increase in incentives.

Discussion on the equivalence between punishment and secu-
rity: In a setting in which the attacker pays an intrusion cost whenever he
starts a new attack, either these intrusions are not profitable in some state θ
which is equivalent to saying uAπ (θ) = 0, or intruding is always profitable. In
this situation, each time he is detected, the attacker pays a new intrusion
cost to start an attack. In this case, the setting is similar to one in which
the attacker pays a penalty which is independent from the intensity of the
detected attack.

C. Downstream policies: In many environments, especially the ones
related to organized crime, monitors can intervene in many layers of the
production of the crime. For instance, consider drug smuggling: A country
can monitor smuggling at the borders and at the city level. The key difference
between these two modes of monitoring is that monitoring in cities does
not induce a technological response in terms of hiding technologies. More
generally, I refer to policy interventions that affect payoffs in both states as
a downstream deterrence policy. Formally:

Definition 6. A policy intervention π′ is a “downstream deterrence policy"
if ∃f(a), g(a) ≥ and strictly increasing such that ∀a:
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uDπ′(a, 0) = uDπ (a, 0)− f(a)

uDπ′(a, 0) = uDπ (a, 1)− g(a)

∀θ : uAπ′(a, θ) = uAπ (a, θ)

λπ′(a) = λπ(a)

As opposed to purely deterrent policies, these policies affect the attacker’s
payoffs in both states, therefore, they have a different impact on the arms
race and on the intensity of attacks. In particular, we have:

Proposition 6. (Effect of downstream deterrence policies) For any
initial policy π and downstream deterrent policy π′ such that uDπ (a∗(0), 0)−
uDπ (a∗(1), 1) > uDπ′(a∗(0), 0)− uDπ′(a∗(1), 1), we have:
(i) A short term deterrence effect: ∀θ, a∗(θ) > a∗′(θ)
(ii) Longer technology cycles: t∗ < t∗′ (iii) Less investments in hiding tech-
nologies: απ0 > απ

′
0

Proposition 6 studies the effect of downstream policies which reduce the
attacker’s short-term gains from investing. In addition to (i) reducing the
intensity of attacks these policies affect the arms race. In particular, (ii)
they lead to longer technology cycles. This effect is due to per-period gains
being lower, therefore, the attacker only invests if he could "enjoy" being
undetectable for longer. This implies that the attacker’s response has to be
such that he reduces the defender’s incentives to invest and a softer best
response by the later. To achieve this, it has to be that he invests less in
hiding technologies at the beginning of each cycle.

As an implication, these policies do not face the same type of constraints
as the purely deterrent policies as they soften the arms race. Therefore,
higher levels of deterrence can be achieved, nevertheless they can be more
costly as they involve monitoring a wider area for instance.

D.Optimality of arms race policies: In order to determine the opti-
mal policy, policy makers compare the optimal arms race policy to policies
which implement entente equilibria. When the attacker’s investment cost is
high, or the defender’s investment cost is low, the former invests in hiding
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technologies with lower probabilities under an arms race policy. This implies
that in this situation, the cost of investments in arms race equilibria are
lower. Formally:

Proposition 7. The optimal policy: Policies which implement arms race
are optimal if and only if:
Given the attacker’s cost of investment FA, the defender’s cost of investing
is low: FD ≤ ¯FD(FA) Given the defender’s cost of investment FD, the
attacker’s cost of investing is high: FA ≤ ¯FA(FD)

This is an implication of proposition 3 as lower investment costs imply
that, given an initial belief ρ0, the stopping belief ρ∗ is increasing in FD.
As a consequence, lower investment costs for the defender make her invest
more frequently for any initial belief. However, as the length of the cycle
is determined by the attacker’s incentives, initial investments have to be
such that this length is constant. (vi) in proposition 2 implies that learning
has to be slower in that case, which in turn is associated with higher initial
beliefs. In conclusion, lower investments costs for the defender are associated
with less investment in hiding technologies and, therefore, higher gains for
the defender to engage in the arms race.Similarly, an increase in the cost of
investment in hiding technologies leads to longer cycles which, in equilibrium,
is associated with slower learning and less investment in these technologies.

In addition to the effect of the costs, optimality of the arms race policy
is determined by both player’s payoffs given states. This aspect is important
in contexts such as smuggling where, the flow payoffs depend on the charac-
teristics of the smuggled goods whereas smuggling technologies are not. We
can show that:

Proposition 8. Fix the costs of investments FA and FD and the optimal
entente policy π′. The arms race policy π is not Pareto dominated only if,
for X and Y > 0:
Given uDπ (a∗(θ), θ): uAπ (a∗(0), 0)− uAπ (a∗(1), 1) ≤ X.
Equivalently, uAπ (a∗(θ), θ): uDπ (a∗(1), 1)− uDπ (a∗(0), 0) ≥ X.

Here, the optimal arms race policy is not dominated whenever the defender
has low gains from investing. When this is the case, he only invests if the
attacker waits for sufficiently long before making investment decisions. This
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later condition requires investment probabilities by the attacker to be low
and as a result, this leads to less wasteful investments in hiding and detection
technologies. Similarly, when the cost of having undetectable attacks is high
for the defender, she invests frequently unless the attackers invests with
sufficiently low probabilities.

This result leads to two predictions: First, arms race should be observed
in environments where fraud is costly for instance. As weapons and terrorism
are more costly for society that drug smuggling, this threat induces more
aggressive monitoring policies and leads to an arms race. This arms race is
beneficial as the gains from less attacks are higher that the cost of having
frequent investments. On the other hand, when attackers have few gains
from investing, the perspective of engaging in an arms race is not costly for
society, thus, arms race is desirable.

5. Conclusion

Detection of fraud can be challenging and often depends on both the
attack and the detection technologies. As these technologies are endogenously
developed, the attacker and the defender often engage in an arms race where
the latter faces uncertainty about the former’s technology. I construct a
model to study these interactions and the effect of policy interventions on
the dynamics of attacks and investments .

When engaging in the arms race, the defender learns about her monitoring
ability through detection and, as she fails to detect attacks, she becomes
more pessimistic and invests in a novel detection technology. The attacker
reacts to this investment by investing in a hiding technology with a strictly
positive probability, leading to cyclical patterns in these environments. Both
the length of these cycles and the investment in each cycle depend on the
monitoring policy. More stringent defense policies such as higher penalties
lead to less intense attacks when they are detectable at the cost of a potentially
more intense arms race in the equilibrium, which creates a tradeoff for the
policymaker.

I show that the arms race policies are not Pareto-dominated when the
defender’s investment cost is low, the attacker’s investment cost is high.
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When this is the case, the attacker invests with a lower probability in hiding
technologies in equilibrium which implies that engaging in the arms race is
less costly to the defender and for deterrence.

The model has a few implications in term of optimal design of monitoring
policies: First, any two policies that lead to the same "short term deterrence"
when technologies are fixed and that have the same cost can be ranked:
The most informative policy (such as higher monitoring rather that more
punishment) is better as it induces less investments in hiding technologies.
More importantly, it highlights some effects of this design that are important
for evaluating policies: As higher levels of monitoring lead to more technology
adoption, using detect fraud as a proxy for realized fraud can be misleading
and one has to also evaluate the impact of this policy on the adoption of
hiding technologies.

The model also leads to some verifiable empirical predictions. In environ-
ments where detection is informative about the technology state, one should
expect serial correlation in detections as one detection implies that in the
following period the monitor is more likely to be able to detect fraud. A sec-
ond prediction, is that harsher defense policies with either more monitoring
or higher penalties can lead to a more intense arms race between the two
players. These policies can therefore harm the defender by inducing more
investments in hiding technologies, in which case, the average intensity of
attacks can be higher.

Through this paper, I restricted attention to a game with only one
attacker and one defender. A natural extension is to consider multiple
attackers in order to study the effect of learning about a whole population
on the dynamics. Similarly, in an environment with multiple defenders,
incentives to free-ride on each other’s learning can emerge and make maximal
security more desirable.
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6. Appendix

Proof for proposition 1:
Part 1: A policy is an entente policy if and only if ūAπ

1−e−r∆ −
uAπ

1−e−r∆ > FA is
an entente policy.

Note first that an equilibrium without investment exists as, if ∀t, αt = 0,
the defender’s best response is to never invest. The attacker’s best response
to this strategy is to play according to the no investments benchmark. To
show that, note first that as the attacker’s action when attacks are not
detectable have no impact on the continuation history, his attack intensity
when it is the case is the same as the no investment benchmark. Therefore,
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his flow payoffs are ūAπ leading to payoffs ūAπ
1−e−r∆ − F

A.9 We also have:

uAπ
1− e−r∆ >

ūAπ
1− e−r∆

Therefore, no investments is indeed an equilibrium under this policy. Now, I
show that this is the unique equilibrium.

Case 1: Assume there exists a such that under policy π: ūAπ ≤ uAπ (a, 1),
then the policy π is an entente policy

Proof: Set (σA, σD) any equilibrium strategies and define by p(ht) the
probability of reaching the history ht in equilibrium and by p(ht+∆|ht) the
distribution of the continuation histories.

For the sake of contradiction, assume that there exists an equilibrium in
which the attacker invests and denote by H1 the set of histories such that
attacks are detectable and by H0 its complementary set where attacks are
not detectable. The attacker’s payoffs can be written as:10

UA
0 =

∞∑
t=0

e−rt
[∑
ht

p(ht)Ea,α[uπ(a, θ)− αFA|ht]
]

That is, at each time t, he gets an expected utility which depends on the
probability of reaching a history ht times the instantaneous payoffs associated
with his action. Note that as the defender’s actions are part of the public
history, their impact on the attacker’s payoffs is taken into account through
the history. We have:

9Note that here I am abstracting away from the posibility of investing several times as
redundant investments are is wasteful and leads to payoffs strictly lower than ūAπ

1−e−r∆
10Here, the attacker’s choice of attack’s intensity when attacks are not detectable has

no impact on the continuation history, therefore, when it is the case he will choice the
same action as in the no investment benchmark
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UA
0 =

∞∑
t=0

e−rt
[∑
ht

p(ht)Ea,α[uπ(a, θ)− αFA|ht]
]

=
∞∑
t=0

e−rt
[ ∑
ht∈H1

p(ht)Ea,α[uπ(a, θ)− αFA|ht] +
∑

ht∈H0

p(ht)Ea,α[uπ(a, θ)− αFA|ht]
]

≤
∞∑
t=0

e−rt
[ ∑
ht∈H1

p(ht)Ea,α[uAπ (a, 1)− αFA|ht] +
∑

ht∈H0

p(ht)Ea,α[uπ(a, θ)− αFA|ht]
]

<
∞∑
t=0

e−rt
[ ∑
ht∈H1

p(ht)Ea,α[uAπ (a, 1)|ht] +
∑

ht∈H0

p(ht)Ea,α[uπ(a, θ)|ht]
]

≤ uAπ
1− e−r∆

Here, the first inequality is obtained by using the assumption of some
attack intensity delivering a higher utility (ūAπ ≤ uAπ (a, 1)). The second
inequality uses FA > 0 and finally, as these payoffs are reachable a strategy
σA
′ in which ∀ht : α(ht) = 0, these payoffs are lower than the maximal payoffs

that the attacker can get in the benchmark without investments. This, the
attacker has a strictly profitable deviation: A contradiction.

Case 2: Assume that ∀a: ūAπ > uAπ (a, 1), then the policy π is an entente
policy.

Proof: Similarly, assume that there exists an equilibrium in which the
attacker invests with a strictly positive probability at some history hτ at
time τ . Define by p(ht) to be the probability of reaching the history ht in
the continuation game. The attacker invests at time τ implies that ατ = 1 is
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one best response, therefore, we have:

UA(hτ ) =
∞∑
t=0

e−r(t−τ)
[ ∑
ht∈H1

p(ht)Ea,α[uπ(a, θ)− αFA|ht] +
∑

ht∈H0

p(ht)Ea,α[uπ(a, θ)− αFA|ht]
]

= −FA + ūAπ +
∞∑
t=1

e−r(t−τ)
[∑
ht

p(ht)Ea,α[uπ(a, θ)− αFA|ht]

≤ ūAπ
1− e−r∆ − F

A −
∞∑
t=1

e−r(t−τ)
[∑
ht

p(ht)Ea,α[αFA|ht]
]

≤ ūAπ
1− e−r∆ − F

A

<
uAπ

1− e−r∆

Where the first inequality come from using ūAπ > uAπ (a, 1) and the last one is
obtained by using ūAπ

1−e−r∆ −
uAπ

1−e−r∆ > FA. The intuition here is that, as the
attacker gets strictly higher flow payoffs when attacks are not detectable, he
can do no better than keeping his technological advantage forever and get
payoffs of ūAπ

1−e−r∆ − F
A, however, these payoffs are lower than the ones he

can secure by never investing.

Part 2: An equilibrium exists.

Proof: From part 1, we know that an equilibrium exists whenever
ūAπ

1−e−r∆ −
uAπ

1−e−r∆ > FA. When it is not the case, we show that there always
exists a complete hiding equilibrium. By definition of the complete hiding
equilibrium, the attacker always invests whenever θ = 1. Therefore, the
defender’s payoffs are:

UD
0 = max

δ

uDπ
1− e−r∆ −

∞∑
t=0

e−r∆tδtF
D

This leads to δt = 0 for all t. Now, we show that the attacker is in
best response investing following each detection. As not investing at time 0
leads to a continuation game which is the same as the whole game G, we have:
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UA
0 = max

a,α
(1− α)

(
uπ(a, 1) + e−r∆UA

0 ) + α
( ūAπ

1− e−r∆ − F
A
)

This is a linear function of α and α < 0 is a best response only if α = 0 is
also a best response, meaning that:

UA
0 = uAπ (a, 1)

1− e−r∆

≤ uAπ
1− e−r∆

Where the weak inequality comes from the optimality of the attacker’s action
in the no-investment benchmark. However, as ūAπ

1−e−r∆ −
uAπ

1−e−r∆ < FA, we
have a contradiction and therefore, the unique best response for the attacker
is α0 = 1 and we conclude that he is in best response and that whenever
ūAπ

1−e−r∆ −
uAπ

1−e−r∆ < FA, a complete hiding equilibrium exists.

Part 3: If ūAπ
1−e−r∆ −

uAπ
1−e−r∆ < FA, any Markov Perfect Nash equilibrium

under the policy π is either an arms race of a complete hiding equilibrium.

Proof: First note that in part 2, we showed that a complete hiding
equilibrium always exists in this case. Now we will show that if there exists
another other equilibrium, then this equilibrium is an arms race.

Step 1: In any Markov perfect equilibrium which is not a complete
hiding equilibrium, the attacker invests with interior probability at the initial
belief ρ0.
Proof: Assume that the attacker invests with a probability 1 at the initial
belief (α(ρ0) = 1). The best response for the defender is to never invest
which means that this equilibrium is a complete hiding equilibrium: A con-
tradiction.
Similarly, assume that α(ρ0)) = 0, then ρ0 = 1 and for any time t such that
ρt = 1, ρt+∆ = 1, therefore the attacker never invests and gets payoffs of
UA
π . The defender’s best response is to never invest. A strictly profitable

deviation for the attacker is to set α0 = 1 and get payoffs ŪA
π − FA > UA

π : A
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contradiction.
Therefore, in any equilibrium which is not a complete hiding equilibrium,
the attacker invests with an interior probability at belief ρ0.

Step 2: In any equilibrium, which is not a complete hiding equilibrium,
where the attacker invests with probability 1 for some belief ρ∗ 6= ρ0, reached
with strictly positive probability, we have UA

π (ρ∗) ≥ UA
π (ρ0).

Proof: First assume that there exists a belief ρ∗, reacher with a strictly
positive probability, such that the attacker invests with probability 1. ρ∗ is
reached with a strictly positive probability implies that not investing prior to
reaching belief ρ∗ is a best response for the attacker. Therefore, his payoffs
at belief ρ ≥ ρ∗ can be rewritten as follows:

UA(ρt, 1) = uAπ (a, 1)∆ + e−r∆
[
λπ(a)UA

π (ρ0) + (1− λπ(a))UA(ρt+∆, 1)
]

(4)

Note first that in any such equilibrium, ūAπ
1−e−r∆ − F

A ≥ UA
π (ρ0). Indeed,

assume not and denote by t∗ the time at which belief ρ∗ is reached if there is
no detection and by Pt = Πt

τ=0λ(a(ρt)) the probability of reaching each time
t. We have:

UA
π (ρ0) = 1

1−∑t∗−∆
τ=0 Pτ

[[ t=t∗−∆∑
t=0

e−rt(Ptu(a(ρt)))
]

+ Pt∗e
−rt∗UA(ρ∗)

]

<
1

1−∑t∗−∆
τ=0 Pτ

[[ t=t∗−∆∑
t=0

e−rt(Ptu(a(ρt)))
]

+ e−rt
∗
UA

0

]

≤ max
at

1
1−∑t∗−∆

τ=0 Pτ

[[ t=t∗−∆∑
t=0

e−rt(Ptu(a(ρt)))
]

+ e−rt
∗
UA

0

]
= uAπ

1− e−r∆

The first equation is just a rewriting of the attacker’s payoff function as
being the sum over t of the utilities he gets once reaching beliefs ρt times the
probability of reaching belief ρt which is Pt. And the term frac11−∑t∗−∆

τ=0 Pτ

comes from the fact that conditional on detection or investment by the de-
fender, the game reboots and the continuation payoffs are UA

0 . The first
inequality is due to assuming that the attacker’s payoffs are lower at belief
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ρ∗. This means that the attacker can get higher payoffs if he could reboot
the game and move back to belief ρ0 whenever belief ρ∗ is reached. The
maximal payoffs he could get in that case are reached without investing and
are therefore weakly lower than uAπ

1−e−r∆ . However, as never investing allows
him for secure at least uAπ

1−e−r∆ , this implies that he has a strictly profitable
deviation: A contradiction. Therefore, UA

π (ρ∗) ≥ UA
0 .

Step 3: In any equilibrium, which is not a complete hiding equilibrium,
where the attacker invests with probability 1 for some belief ρ∗ 6= ρ0, reached
with strictly positive probability, we have UA

π (ρ∗) ≥ UA
π (ρ) for all ρ ≥ ρ∗.

Proof: The proof is similar to step 2. Assume not and that there exists
a belief ρ′, we can construct a strategy which is feasible in which for each
t ≥ t∗, the attacker plays a mixed strategy which follows the same distribu-
tion of actions as the one whhich follows time t(ρ′). This strategy allows
reaching strictly higher payoffs. This strategy is itself weakly dominated by
the strategy of never investing and playing the optimal short term action
which is a contradiction.

Step 4: In any equilibrium, which is not a complete hiding equilibrium,
where the attacker invests with probability 1 for some belief ρ∗ 6= ρ0, reached
with strictly positive probability, the defender invests with a strictly positive
and interior probability at belief ρt∗−∆.
Proof: Consider time t∗ −∆. Assume first that the attacker invests with
probability 1 at belief ρt−∆, the belief ρ∗ is never reached in equilibrium: A
contradiction. Similarly, Assume first that the attacker invests with probabil-
ity 0 at belief ρt−∆, the attacker’s payoffs are:

UA
π (ρt∗−∆) = max

a
u(a)− e−r∆

[
λ(a)UA

π (ρ0) + (1− λ(a))UA(ρt∗ , 1)
]

We have ∀a:
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uAπ (a, 1) + e−r∆
[
λπ(a)UA

π (ρ0) + (1− λπ(a))UA(ρt∗ , 1)
]

≤ uAπ + e−r∆
[
λπ(a)UA

π (ρ0) + (1− λπ(a))UA(ρt∗ , 1)
]

< ūAπ + (1− e−r∆)FA + e−r∆
[
λπ(a)UA

π (ρ0) + (1− λπ(a))UA(ρt∗ , 1)
]
≤ ūAπ + (1− e−r∆)FA + e−r∆UA(ρt∗ , 1)

Investing at time t−∆ provides payoffs of ūAπ+(1−e−r∆)FA+e−r∆UA(ρt∗ , 1)
which implies that the attacker has a strictly profitable deviation and con-
tradicts the definition of ρ∗. Here the first inequality comes from optimality
of uAπ in the stationary technology benchmark and the second one is due to
UA
π < ŪA

π − FA. This implies that in any such an equilibrium, the defender
invests with a strictly positive and interior probability at time t∗ −∆ which
concludes this proof.

Step 5: There exists no equilibrium which is not a complete hiding
equilibrium and in which the attacker invests with probability 1 at some
belief.

Proof: Note consider equation 4 and assume that given some continuation
payoffs UA

π (ρ0) and UA(ρt+∆, 1), for two attack intensities a and a′ with a > a′

an attack intensity a provides higher payoffs the ones given by a′. We have:

uAπ (a) + e−r∆UA(ρt+∆, 1) + e−r∆λ(a)
[
UA
π (ρ0)− UA(ρt+∆, 1)

]
≥ uAπ (a′) + e−r∆UA(ρt+∆, 1) + e−r∆λ(a′)

[
UA
π (ρ0)− UA(ρt+∆, 1)

]
This inequality can be rewritten as:

uAπ (a)− uAπ (a′) +
(
λ(a)− λ(a′)

)
e−r∆λ(a)

[
UA
π (ρ0)− UA(ρt+∆, 1)

]
≥ 0

As λ(a) in increasing in a, this implies that for all belief ρ with the associated
time τ(ρ) such that

[
UA
π (ρ0)− UA(ρτ+∆, 1)

]
≥
[
UA
π (ρ0)− UA(ρt+∆, 1)

]
, we

have:

uAπ (a)− uAπ (a′) +
(
λ(a)− λ(a′)

)
e−r∆λ(a)

[
UA
π (ρ0)− UA(ρτ+∆, 1)

]
≥ 0
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This implies that attacker would again prefer the higher action. We also
have from step 3 that ∀ρ : UA

π (ρ) < UA
π (ρ∗). This implies that the lowest

attack intensity is played at time t∗ −∆.
From the defender’s perspective, as she invests at time t∗ −∆ and not after
t∗, we have: UD

π (ρt∗) ≥ UD
π (ρt∗−∆). This implies:

ρuDπ (a(ρ), 1) + (1− ρ)uDπ + e−r∆UD
π (ρ∗)

≤uDπ + e−r∆UD
π (ρ∗)

⇐⇒ uDπ (a(ρ), 1) ≤ uDπ (0)

Not, as ∀ρ : a(ρ) > a(ρt∗−∆), we have:

∀ρ : uDπ (a(ρ), 1) ≤ uDπ (0)

This implies that ∀ρ < ρ∗ : UD
π (ρ) ≤ UD

π (ρt∗−∆). This implies that
UD
π (ρ0)−FD < UD

π (ρt∗−∆) which contradicts investing being a best response
for the defender. Therefore, the unique equilibrium such that the attacker
invests with probability 1 at some belief is the complete hiding equilibrium.
Step 6: Any equilibrium in which not investing is a best response for the
attacker for all beliefs is an arms race equilibrium.
Proof: As never investing is a best response for the attacker, his pay-
offs are UA

π and, by optimality of a∗(1), the attack intensity when attacks
are detectable is the same as the no investment benchmark, therefore, for
any belief, the defender’s payoffs when she does not invest can be rewritten as:

UD(ρ) = ρūDπ + (1− ρ)uDπ + e−r∆UD
π (ρt+∆) (5)

This function is strictly increasing in ρ whenever ūDπ > uDπ (See Keller,
Rady and Cripps (2005).),11, therefore, if there exists a belief such that the
defender invests with a strictly positive probability, she also invests with
probability 1 for all lower beliefs which implies that there exists no history
such that she stops investing and this equilibrium is an arms race.

11A more explicit computation is provided when proofing step 1 of proposition 3
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On the other hand, if ūDπ < uDπ , the defender never invests and the unique
equilibrium is a complete hiding. I conclude that any equilibrium is therefore
either a complete hiding or an arms race equilibrium.

Proof for proposition 2:

Note that in both the complete hiding and the entente equilibrium, this
equivalence is trivial as the state is fixed for all the duration of the game
and (i) both players get similar short term payoffs to the non investment
benchmark and (ii) the defender never invests in equilibrium and (iii) the
attacker’s either never invests if it is an entente policy or invests with proba-
bility 1 and time 0.
Now, assume that the equilibrium is an arms race equilibrium, and denote
by π and π′ two strongly short-term-equivalent policies. Consider any equi-
librium investment probabilities under policy π: α(ρ) and δ(ρ). At reach
time t, each player’s instantaneous payoffs depend only on the state, and
are equal under both policies. Moreover, as the two policies are strongly
short-term-equivalent policies and using the fact that the attacker plays
the myopic attack intensities in any arms race, this implies that playing
any investment probability distribution generate the same probability distri-
butions over investments deliver the same payoffs under policies π and π′.
Finally, as the arrival rate of detections is the same under both policies (
λπ(a∗π) = λπ′(a∗π′)), the expected state given any history is the same under
both policies (equivalently, the law of motion of beliefs given investment
probabilities is the same under both policies), therefore, the expected gains
from investing for player i player j plays a given distribution over investments
is the same over both policies, therefore, απ and δπ are also best responses
against each other under policy π′ which concludes the proof.

Proof for proposition 3:

Step 1: In any arms race equilibrium, investments strategies are in cutoff
strategies with:
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α(ρ) =

∈ (0, 1) if ρ = ρ0

0 Otherwise
.

δ(ρ) =

1 if ρ ≤ ρ∗

0 Otherwise
.

Proof: First, note that by proposition 1 step 5, in any arms race equi-
librium, the attacker invests with interior probability at the initial belief ρ0

and from step 6 the attacker’s action is the myopic action.
Now, the defender’s payoffs are:

UD(ρ) = δUD + (1− δ)
[
ρūDπ + (1− ρ)uDπ + e−r∆UD

π (ρt+∆)
]

(6)

For any belief ρ∗ such that the defender invests,
Now, denote by σ′ the strategy which consists of playing a′(ρ) = a(ρ)

and α′(ρ) = 0 the strategy which consists of never investing and playing the
same attack intensity as under the equilibrium strategy. From step 4, σ′ is
a best response as not investing is a best response for all beliefs under the
equilibrium strategy. This strategy delivers payoffs U ′(ρ) such that:

∀ρ : U ′(ρ) ≤ u(a∗)−ma∗S
1− e−r∆

Where a∗ solves (u′)−1(a∗) = mS. This implies that UA
0 = u(a∗)−ma∗S

1−e−r∆ .
Moreover, as the upper bound on the right hand side is uniquely reached
through a stationary attack intensity a∗, we obtain ∀ρ : a(ρ, 1) = a∗.
Now, the defender’s value function at time t can be rewritten as:

UD
t = −h(ρa∗ + (1− ρ))∆ +max

δ
e−r∆

[
δ(UD

0 − FD) + (1− δ)E[UD
t+∆]

]
(7)

This problem is analogical to the one player version of Keller et. al
(2005). Investing (δt = 1) delivers payoffs that are independent from period
t’s state, therefore, it plays a similar role as pulling the safe arm, whereas not
investing means that the defender continues experimenting and gets payoffs
that depend on period t’s: Investments play therefore the same role as pulling
the risky arm in K.R.C. The payoff function in 8 is monotonically decreasing
in ρ, therefore, the defender’s strategy is a cutoff strategy (as ∀ρ, ρ′ with
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ρ′ < ρ : UD(ρ) < UD(ρ0)− FD =⇒ UD(ρ′) < UD(ρ0)− FD). Therefore, as

∆ goes to zero, in any arms race equilibrium: δ(ρ) =

1 if ρ ≤ ρ∗

0 Otherwise
.

Finally, the difference between the attacker’s payoffs as a function of states is

UA(ρ, 0)− UA(ρ, 1) =
t∗∑

τ=t(ρ)
e−r(τ−t(ρ)(u(1)− u(a∗))∆

This function is strictly decreasing in t(ρ), therefore, either the attacker
never invests or invests at the beginning of the cycle which concludes our
proof.

Part 2: Equilibrium characterization:

Step 1: The equilibrium attack intensities are: a(ρ, θ) =

1 if θ = 1

a∗ Otherwise

Proof: See step 4 in part 1.

Step 2: The length of the cycle is tA = 1
r
ln(1 + rFA

u(1)−u(a∗)+rmS−rFA )
Proof: From part 1, we have α(ρ0) ∈ (0, 1). Denote by tA the period at which
the defender invests. For the attacker to be in best response, it has to be that:

t∗∑
τ=0

e−rτu(a∗)∆ = −FA +
t∗∑
τ=0

e−rτu(1)∆

⇐⇒
t∗∑
τ=0

e−rτ (u(1)− u(a∗))∆ = FA

⇐⇒ FA =
[
u(1)− u(a∗)

]
∆1− e−rt∗

1− e−r∆

⇐⇒ e−rt
∗ = 1− FA(1− e−r∆)

(u(1)− u(a∗))∆

⇐⇒ t∗ = 1
r
ln
( (u(1)− u(a∗))∆

(u(1)− u(a∗))∆− FA(1− e−r∆)
)

= 1
r
ln
(
1− FA(1− e−r∆)

(u(1)− u(a∗))∆− FA(1− e−r∆)
)

Step 2: The defender’s stopping belief satisfies:
Proof: Consider any belief ρ ∈ (ρ∗, ρ0). In this belief, the defender does not
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invest and her value function evolves according to:

UD
t = −h(ρa∗ + (1− ρ))∆ +max

δ
e−r∆E[UD

t+∆]
]

(8)

Using 1− r∆ as a limit for e−r∆ when delta goes to 0, I follow Keller et
al., I rewrite the value function in equation 8 as:12

rUD(ρ) = −h(ρa∗ + (1− ρ)) + amρ
[
U0 − UD(ρ)− (1− ρ)UD ′(ρ)

]
The general solution to this differential equation is:

UD(ρ) = −h
r

+ ρ

r + a∗m
(h(1− a∗) + a∗mUD

0 ) + C(1− ρ)( ρ

1− ρ)− r
a∗m

Finally, using value matching (UD
0 = UD(ρ∗) +FA), we solve for C and have:

C = 1
1− ρ∗

( ρ∗

1− ρ∗
) r
a∗m

[h
r

+ UD
0 − FD

]
−
( ρ∗

1− ρ∗
)1+ r

a∗m 1
r + am

(
h(1− a∗) + a∗mUD

0

)
= 1

1− ρ∗
( ρ∗

1− ρ∗
) r
a∗m

[(h
r

+ UD
0 − FD

)
− ρ∗

(
h(1− a∗) + a∗mUD

0

)]
We finally get, given ρ∗ and UD

0 :

UD(ρ) = −h
r

+ ρ

r + a∗m
(h(1− a∗) + a∗mUD

0 )

+ 1− ρ
1− ρ∗

( ρ∗

1−ρ∗
ρ

1−ρ

) r
a∗m

[(h
r

+ UD
0 − FD

)
− ρ∗

(
h(1− a∗) + a∗mUD

0

)]
12as step 2 boils down to an adaptation of the cooperative problem in Keller et al., some

parts of the proof will be skipped and I refer the interested reader to that paper for a
more detailed proof
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Finally, we use UD
0 as being a fixed point for this equation and smooth

pasting, we have:

U(ρ∗) = 1
r + a∗mρ∗

[
− h(ρ∗a∗ + (1− ρ∗)) + a∗mρ∗UD

0

]
= UD

0 −
1

r + a∗mρ∗

[
h(ρ∗a∗ + (1− ρ∗)) + rUD

0

]

Finally, using simple algebra we derive ρ∗(ρ0) described in proposition 2.

Part 3: Existence
Proof: (to be completed) The proof is structured as follows: First, I assume
that there exists some FD such that an arms race equilibrium exists for some
tA.
Step 1: We show that for all tA′ > tA, an arms race equilibrium exists,
therefore, the set of lengths of the cycle that can be supported as an arms
race equibrlium is compact.
Step 2: using the fact that the defender’s payoffs are continuous and increasing
in ρ0, we show that for all ρ0, and all FD ′ = FD UD

0 − FD > 0, UD
0 − FD >

0 =⇒ UD
0 − FD ′ > 0, therefore, the set of lengths of the cycle that are

supported under FD ′ is bigger which concludes the proof.
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