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Abstract

We study the average village level effects of access to groundwater for irrigation on

the structural transformation of the rural economy. We exploit an absolute technolo-

gical constraint imposed by the laws of physics on the operational capacity of pumps

with depth of the water table in a fuzzy regression kink design. Our results show

that increased access to irrigation – measured as an additional standard deviation unit

(≡ 103 litres/ha/day) of groundwater – significantly boosts agricultural land produc-

tion. Farmers respond to an increase in groundwater for irrigation by expanding their

cultivated land area by 16%, and shifting away from drought tolerant crops. Further-

more, within the agricultural sector, we find that approximately 7 to 10% of cultivators

and manual labourers respectively shift from part-time to full-time employment. This

substantial shift in agricultural production translates into significant consumption gains

including: (1) 0.45 standard deviation units increase in an index of durable assets, (2)

5% drop in the share of the village population living below the poverty line, and (3) in-

crease in economic activity measured through night light. However, we find no evidence

of labour re-allocation between different sectors of the local village economy.
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1. Introduction

A rich theoretical literature continues to debate the mechanism through which industrial

growth is often preceded by unprecedented increases in agricultural output (Kuznets and

Murphy, 1966; Johnston, 1970; Syrquin, 1988; Herrendorf et al., 2014). Various theoretical

models suggest that in a closed economy, a boost to agricultural productivity generates

demand for manufacturing goods which leads to a re-allocation of labour away from agri-

culture (Gollin et al., 2002; Kongsamut et al., 2001; Ngai and Pissarides, 2007). However

this view has been challenged by research on open economies, which demonstrate that im-

proved agricultural productivity can retard industrial growth as the economy specialises in

the comparative advantage sector (Matsuyama, 1992; Field, 1978). Despite the centrality

of this discussion in understanding the development process of low-middle income coun-

tries, there has been very little accompanying empirical evidence identifying the process

by which shifts in agricultural productivity can alter the shape of the wider economy.

In this paper we provide direct empirical evidence on the effect of access to groundwa-

ter irrigation through private investment on agricultural production and the consequent

structural transformation of the rural economy in India. Irrigation is one of the most

conspicuous technologies for stimulating agricultural output. Primarily, improved pro-

ductivity occurs through a direct yield effect – irrigated agriculture is on average at least

twice as productive as rainfed (Faurès et al., 2002). Furthermore, the technology has also

been found to (1) minimise inter-annual income variability by reducing exposure to rainfall

shocks (Sarsons, 2015), (2) augment land endowments by introducing the possibility of a

second harvest (Blakeslee et al., 2020), and (3) complement other key inputs such as high

yielding varieties (Gollin et al., 2021).

Groundwater contributes the largest supply of irrigation water globally (Siebert et

al., 2010). In India, groundwater has been the main source of irrigation since the 1970s

(Mukherji et al., 2013). Unlike dam and canal infrastructure which require government

support for building and maintenance of the networks, groundwater can be accessed inde-

pendently by farmers through private investment in tube-wells. Recent estimates suggest

that groundwater now accounts for close to 70% of irrigated area across the country; com-

pared to only 20% by canals (Jain et al., 2019). Exploitation of this resource however, is a

growing concern – India has the fastest depleting aquifers in the world (Famiglietti, 2014;

Rodell et al., 2018). An understanding of how access to groundwater irrigation affects the

village economy, is therefore of crucial contemporaneous relevance.
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In order to accurately ascertain the causal effect of irrigation on structural shifts in

the rural economy we require an exogenous source of variation in access to groundwater.

An absolute technological constraint imposed by the laws of physics on the operational

capacity of centrifugal pumps with depth of the water table provides one such source of

variation. There are two types of pump technologies available – centrifugal and submersible.

Centrifugal pumps are installed on the surface and generate a pressure differential between

the water table and the pumping mechanism. The maximum pressure differential achievable

is created by a perfect vacuum in the pump mechanism. In this ideal state, Bernoulli’s

principle of fluid dynamics dictates that the maximum depth from which water can be

extracted is a constant at any given atmospheric pressure (Faber, 1995). For instance,

at sea level a pump generating a perfect vacuum will only be able to extract water from

up to 10.33 meters below ground level. Extracting water from greater depths requires

significantly more expensive submersible pumps,1 which are placed at the bottom of a

tube-well and pushes the water to the surface.

If all centrifugal pumps were homogenous in their ability to generate a perfect vacuum,

we would expect to see a sharp discontinuity in access to irrigation at a specific ground-

water depth with altitude. However, not all pumps operate at the same efficiency. For

instance at sea level, the operational depth of a centrifugal pump falls from 10.33 to 5.18

meters as pump efficiency falls to half of its maximum potential. Consequently, there only

exists a pump specific operational threshold; which we do not observe in the data. To guide

our identification strategy, we therefore propose a simple decision making framework faced

by farmers when deciding which irrigation technology to adopt. For groundwater depths

shallower than 10.33 meters, the more cost effective centrifugal pumps are the farmers

preferred choice. However as we approach the maximum theoretical depth for extracting

water, fewer and fewer of these pumps will be operational. As a result, we predict a decline

in centrifugal pump adoption with groundwater depth, culminating in zero adoption at

the maximum theoretical threshold. Furthermore, under liquidity constraints, we predict

an incomplete substitution to the more expensive submersible pumps. Given this trend

in adoption of irrigation technology, we expect a kink in the mapping between groundwa-

ter depth and water extraction for agricultural irrigation to coincide with the maximum

theoretical threshold. We exploit this quasi-random between-village variation in access to

irrigation at an exogenous groundwater depth in a fuzzy regression kink design.

1Based on an online search, centrifugal pumps cost approximately INR 16,000 (GBP 160), half the price
of submersible pumps.
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Our empirical analysis makes use of both existing and newly-assembled datasets. Our

assignment variable – groundwater level – is compiled using data published by the Central

Ground Water Board (CGWB) of India which monitors wells four times a year across

the country. We use the geographic positioning system (GPS) locations of these wells to

match this data to multiple external contemporaneous datasets. Irrigation data, including

ownership of centrifugal and submersible pumps, is compiled from the Minor Irrigation

Census. These censuses form the longest spanning database of information on irrigation

infrastructure at the village level. We draw from remote sensing, population and economic

censuses, as well as administrative micro-data in order to describe village level agricultural

production, amenities, demographics, sectoral labour allocation, as well as various measures

of consumption. The benefit of a village-identified dataset is that it enables us to leverage

spatial variation in groundwater at a high resolution and across a large geographic area.

This is especially important in our empirical approach, as regression kink designs are

notoriously demanding of sample size. However, a disadvantage of this data is that we are

limited to broad categories of outcomes of interest and cannot disentangle our results on a

finer scale.

We estimate the impact of access to irrigation as an additional standard deviation unit

(≡ 103 litres/ha/day) of groundwater on our outcomes of interest. We find that increases

in groundwater irrigation significantly boosts agricultural land production. Specifically,

agricultural yield (derived from remote sensing vegetation indices) increases by 9.8% in

the dry winter/Rabi growing season. Furthermore, farmers appear to re-optimise their

production strategies by moving away from drought tolerant crops, as well as bringing an

additional 16% of land area under cultivation. In accordance with other studies analysing

the impact of irrigation on poverty, we find significant gains to consumption (Duflo and

Pande, 2007; Sekhri, 2014). These are captured through three key variables: (1) share

of the village population living below the poverty line drops by 5.4%, (2) durable asset

index increases by 0.45 standard deviation units, and (3) average night-light intensity over

a five-year period (a remote sensing proxy for economic activity) rises by 18%. Together,

these results provide evidence for important returns to irrigation on consumption within

the village. However in a heterogeneity analysis by size of landholding, we find that benefits

from access to groundwater irrigation on agricultural production and consumption accrues

mainly to villages with larger landholdings.

The impact of increased access to irrigation on the labour market includes a shift

from part-time to full-time employment in the agricultural sector. Specifically, we find
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that groundwater irrigation increases the share of both cultivators and manual labourers

working full-time by 7% and 10% respectively. An increase in agricultural productivity

from access to irrigation, does not however appear to have strong effects on the sectoral

transformation of the village economy. We find no evidence of increased employment, or

number of village businesses established, across a range of sectors. Finally, we consider

the potential effect of access to irrigation on migration. Villages with higher agricultural

productivity may lead to a pooling in of labour, especially among working age men. While

we find a significant increase in the village population, we do not detect any shifts when

disaggregating the population by working age and gender.

Our paper is linked to a recent and growing literature providing empirical evidence on

how productivity shocks in agriculture affect structural shifts in the economy. This liter-

ature builds on macro-economic models which demonstrate how agricultural productivity

growth plays a key role in subsequent industrialisation, explaining cross-country disparities

in income (Gollin et al., 2002, 2007; Córdoba and Ripoll, 2009; Vollrath, 2011). These res-

ults have been corroborated empirically by two quasi-experimental, cross-country studies

on the impact of improved seed varieties (Gollin et al., 2021) and fertilizer use (McArthur

and McCord, 2017). Specifically, Gollin et al. (2021) find that the impact of high yielding

varieties on per capita GDP are associated with a rise in total factor productivity beyond

those simply derived from a boost in crop yields, therefore partially attributing these to

structural transformation. Analysing the effect of an increase in staple yields introduced by

improved fertiliser use, McArthur and McCord (2017) show that this generated a minimum

rise of 14% in GDP per capita and led to a 5% decline in the agriculture labour share over

a five year period.

Evidence of the role that agriculture plays in structural transformation at a more micro

level is mixed. In a study exploiting the spread of improved seed varieties in Brazil, Bustos

et al. (2016) are able to isolate two different types of productivity shocks – labour-saving

and land-augmenting. The authors find that adoption of labour-saving hybrid soy led to an

expansion of employment in the local manufacturing sector. Conversely, land-augmenting

maize led to an increase in the marginal product of labour in agriculture and consequently

a reduction in industrial employment. Exploring the promotion of advanced wheat pro-

duction technologies undertaken by Mussolini during his dictatorship, Carillo (2021) find

significant long-run positive effects on industrialisation and economic prosperity that con-

tinue to persist today. In contrast, Foster and Rosenzweig (2004) estimate structural change

from panel data on Indian villages, and show that boosts in agricultural productivity raise
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local wages and thereby hinder the potential for non-farm sectoral growth.

In two concurrent papers, Asher et al. (2021a) and Blakeslee et al. (2021) also aim to

estimate the impact of access to irrigation on the structural transformation of the Indian

rural economy. The identification in both of these papers relies on the unique geography of

canal irrigation networks. As a result, they both identify the treatment effect of being in the

command area of a canal. Blakeslee et al. (2021) find that structural transformation from

access to canal irrigation depends largely on the presence of a nearby town. Specifically,

they find that villages within a 2km distance of a town experience a drop in population

density and employment in non-agricultural sectors, while villages further away experience

a positive shift. Evaluating the long-run effects of canals, Asher et al. (2021a) find that

structural change from agricultural productivity increases is associated with the formation

and population growth of nearby towns. In contrast to these papers, our work focuses

on the dominant source of irrigation – groundwater – which requires significant private

investment from farmers. Consequently, we make use of more detailed census data on

irrigation practices to capture the intensive margin; providing insight into the returns to

private investment. Regardless of the type of irrigation, all three papers find very little

evidence for within village labour reallocation while geographic movement of labour is

dependent on access to outside opportunities.

Our paper is also closely linked to a strand of causally interpretable evidence on the

impacts of access to irrigation. The scarcity of such research is due in large part to the

empirical challenges involved in establishing reliable estimates. Our paper contributes to

a limited literature using quasi-experimental methods to evaluate the impact of this key

technology. Duflo and Pande (2007) analyse the distributional effects of irrigation dams in

India – the authors found that while beneficiaries living downstream from irrigation dams

increased their agricultural productivity and experienced lower levels of poverty, this was

counter balanced by increases in poverty in upstream populations. Evidence from private

investment in tube-wells for irrigation has been found to shift agricultural practices away

from drought-tolerant crops increasing land productivity (Hornbeck and Keskin, 2014),

while reducing water related conflict in the case of India (Sekhri, 2014). Furthermore, using

randomly located geological formations that store pockets of water in the bedrock, Blakeslee

et al. (2020) explore farmer adaptations to a drying up of these pockets of groundwater

for irrigation. The authors found that in such cases, there is a consequential decline in

farm income, however households appear to successfully offset these losses by reallocating

labour to off-farm employment.
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The rest of the paper is structured as follows. Section 2 describes the different tech-

nologies available to farmers for groundwater extraction, and outlines a simple decision

making framework for the adoption of these technologies. Our data sources are explained

in Section 3, and the empirical strategy including graphical evidence is presented in Section

4. Section 5 contains results on the impact of access to irrigation on the rural economy.

Finally, Section 6 concludes.

2. Background

Private investment in groundwater irrigation, the focus of this paper, is the fastest

growing source of irrigation water accounting for over 70% of the irrigated land in India.

In this section, we first describe the technologies available to farmers for extracting ground-

water. In particular, the role of groundwater depth in determining the most suitable pump

for water extraction. We then outline a simple decision making framework faced by farmers

when deciding which technology to adopt.

A. Irrigation Pumps

The technology most suitable for extracting groundwater depends on the depth of the

water table in a given location. There are two main types of pump available, centrifugal

and submersible. Centrifugal pumps are the most widely adopted due to their affordability.

They are installed on the ground and create a vacuum with water moving up the tube from

an area of high pressure at the bottom of the well, to an area of low pressure in the pumping

mechanism (Figure 1). The extraction of water from a well using a centrifugal pump can

be described by Bernoulli’s principle of fluid dynamics (Faber, 1995) (Equation 1):

P1 +
1

2
ρv21 + ρgh1 = P2 +

1

2
ρv22 + ρgh2 (1)

Where the variables Pi, vi, and hi refer respectively to the pressure (kg/m/s2), velocity

(m/s), and height (m), between the pump (i = 2) and the water table (i = 1). The

constants, ρ and g are the density of water (997 kg/m3) and gravitational force (9.81

m/s2) respectively. Assuming constant flow velocity we can rewrite Equation 1 in the

following form:

h2 − h1 =
P1 − P2

ρg
(2)

As can be interpreted from Equation 2, under a perfect vacuum (P2 = 0 kg/m/s2) and a
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given atmospheric pressure, the depth from which water can be extracted with a centrifugal

pump is a constant. At sea level (P1 = 101, 325 kg/m/s2) this depth is 10.33 meters. In

real world circumstances however, it is unlikely that all pumps are able to create a perfect

vacuum. Specifically, as we demonstrate in Figure 2, the maximum pumping depth at sea

level falls from 10.33 to 5.18 meters as pump efficiency falls to half its maximum potential.

We can therefore expect that once the groundwater level falls below a pump efficiency

specific threshold, a centrifugal pump can no longer be used to access groundwater for

irrigation.

In a scenario where a centrifugal pump can no longer operate, submersible pumps can

provide an alternative technology for water extraction. A submersible pump is placed at

the bottom of the tube-well and pushes the water to the surface. Consequently, provided

it has sufficient horsepower, a submersible pump can extract water from any depth. This

functionality however, comes at more than twice the price of a centrifugal pump.2

B. Decision Making Framework

In this section we introduce a simple decision making framework for the adoption of

different irrigation technologies available to farmers. Consider a population of N farmers

indexed by i ∈ 1, ..., N , living in a geographically diverse set of V villages indexed by

v ∈ 1, ..., V . Each village has a given groundwater level λv.
3 In this context, farmer i

decides whether or not to invest in a single unit of irrigation when faced with his exogenous

groundwater level. We assume that one unit of irrigation is sufficient to irrigate the entire

land endowment, li, of the farmer. Consequently, farmers with the most land get the

highest returns from investment.

Based on Bernoulli’s principle of fluid dynamics, we know from Equation 2 that the

depth from which water can be extracted is a constant. At sea level, this depth is 10.33

meters. Below this threshold, k, no centrifugal pump can operate.4 If the water table depth

in a given village exceeds k, the farmer must incur the cost rs of a submersible pump if

he chooses to irrigate. Conversely, when λv < k, a centrifugal pump will operate and thus

enter the farmers’ set of choices as a more cost effective technology; rc < rs. However, the

2Based on an online search for a range of pump models for the Indian market, we found that the entry
price for a centrifugal pump is approximately INR 16,000 (equivalent to GBP 160), while a submersible
pump costs over INR 30,000 (GBP 300). To put these costs into context – the mean annual per capita
consumption in our sample of villages is approximately INR 18,000 (GBP 180).

3In reality the water table fluctuates temporally, however for ease of exposition we will just consider a
one time choice when faced with a fixed groundwater level.

4k corresponds to the difference in height outlined in Equation 2.
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functionality of a centrifugal pump will depend on its’ efficiency. This efficiency is random

with known probability distribution G(.) (and associated CDF g(.)) revealed to the farmer

only at the time of purchase. Additionally, there exists a groundwater specific efficiency

threshold, e(λ), below which a centrifugal pump will not function. As such, there is a

probability, g(e(λv)), that a farmer purchases a centrifugal pump which will not work.

When deciding on a technology, a farmer leverages all his current information. He also

considers his forward looking expectations, including pump efficiency, relative costs, and

yield increases from irrigation (which are assumed to be known to him). Specifically, a

risk neutral farmer will choose an irrigation technology simply to maximise his profits.

In doing so, he compares the following profit functions – irrigating with a submersible

pump (πIs
iv (p, rs, li)), irrigating with a centrifugal pump (πIc

iv (λv, p, rc, li)), or no irrigation

(πN
iv (p, li)) – which can be written as:

πIs
iv = pY I

i li − rs

πIc
iv = (1− g(e(λv)))(pY

I
i li − rc) + g(e(λv))(pY

N
i li − rc)

πN
iv = pY N

i li

(3)

Where p, rs, and rc are the prices of output, a submersible pump, and a centrifugal

pump respectively. Y I
i denotes agricultural yields when irrigating, and Y N

i is for yields

under no irrigation. As explained previously, a farmer is subject to a technology constraint

such that g(e(λv)) = 1 if λv > k.

Given this framework, we consider three representative case scenarios: (1) a farmer

whose liquidity constraint binds for both pump types, (2) a farmer who faces a liquidity

constraint only for the more expensive submersible pump type, and (3) a farmer that is

not liquidity constrained at all.

Case 1: Liquidity constrained for all irrigation technology. In this scenario, a

farmer cannot access either irrigation technology. He therefore receives πN
iv regardless of

groundwater depth.

Case 2: Liquidity constrained for submersible pumps only. The farmer cannot

afford the more expensive submersible pump. Therefore, if λv > k, he cannot access any

irrigation technology. Alternatively, if λv ≤ k, he will adopt a centrifugal pump when
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πIc
iv > πN

iv . Expanding on these profit functions we show that:

(1− g(e(λv)))(pY
I
i li − rc) + g(e(λv))(pY

N
i li − rc) > pY N

i li (4)

Rearranging Equation 4 demonstrates that a farmer will adopt a centrifugal pump if

the increase in revenue with irrigation multiplied by the probability of the pump working

is larger than the cost of the pump:

(1− g(e(λv)))(pY
I
i li − pY N

i li) > rc (5)

The probability of adoption therefore declines in g(e(λv)), up to the threshold λv = k.

Above this threshold, adoption is zero. Assuming G(.) is uniformly distributed and the

distribution of land holdings is orthogonal to λv, the decline in probability of adoption

will be linear with a kink in the slope marginally before the threshold.5 Furthermore, as

previously noted, given their higher marginal returns, farmers with the largest landholdings

are most likely to adopt even when λv − k is small.

Case 3: Not liquidity constrained. The farmer can purchase either of the irrigation

technologies. If λv > k a farmer will adopt a more expensive submersible pump when

πIs
iv > πN

iv – that is, when the increase in revenue from irrigation is greater than the cost

of a submersible pump. As a result, adoption above the threshold is not dependent on

groundwater depth:

(pY I
i li − pY N

i li) > rs (6)

If λv ≤ k a farmer will adopt a submersible pump if πIs
iv > πIc

iv > πN
iv . Therefore, a

farmer who is not liquidity constrained, and satisfies the condition in Equation 5, is now left

to consider whether the certainty in submersible pump functionality justifies the difference

in cost:

(1− g(e(λv)))(pY
I
i li − pY N

i li) > rs − rc (7)

Similar to Case 2 when the increase in revenue with irrigation multiplied by the prob-

ability of the centrifugal pump working is larger than the difference in cost between the

two types of irrigation technology, a farmer will adopt the submersible pump. This condi-

tion leads to a substitution from centrifugal to submersible pumps as groundwater depth

5Adoption will be zero when the largest farm is indifferent between adopting or not. That is, when:
(1− g(e(λv)))(pY

I
maxlmax − pY N

maxlmax) = rc
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increases and the probability of the centrifugal pump working declines.

Figure 3 sketches how we expect adoption may evolve with groundwater depth within

our decision making framework. Specifically, it is the subset of farmers that can afford

a centrifugal pump but not a submersible (i.e. Case 2) that generates a kink in overall

pump adoption and consequently irrigation. Additionally, under the assumption that when

g(e(λv)) = 0 – that is, centrifugal pumps work with certainty – then Equations 5 and 6

hold even for the smallest farmers. On the other hand, as λv − k becomes very small, only

the farmers with the largest landholdings are most likely to adopt centrifugal pumps.6

In the data we only observe what happens at aggregate when combining populations

regardless of their liquidity constraints. However, our model suggests that as long as a

large proportion of the population are partially liquidity constrained (i.e. Case 2) then we

can expect to observe a kink in pump adoption and consequently groundwater irrigation

close to the threshold k. We empirically demonstrate the presence and validity of this

relationship in Section 4. Our model also suggests that the returns to irrigation depends

on landholding size, such that farmers with larger landholdings benefit more from private

investment in groundwater irrigation. We test this prediction using a heterogeneity analysis

by landholding size, reported in Section 5, and demonstrate that investing in irrigation has

more meaningful implications for agricultural yield, and consequently consumption gains,

in villages were the median landholding size is above average.

3. Data

For the purpose of this study, we have assembled a high resolution dataset including

information on irrigation practices, as well as a range of features describing the rural eco-

nomy. We link observational groundwater data from wells across the country with multiple

external contemporaneous datasets to obtain a village level cross-section. Importantly for

our empirical approach, this enables us to leverage spatial variation in groundwater at a

high-resolution over a large geographical area.

Data on our assignment variable - groundwater level - come from the official website

of the Central Ground Water Board (CGWB).7 Since 1996, the CGWB has kept digitised

records from groundwater monitoring wells evenly spread across the entire country. In 2013,

the CGWB had a total of 17,116 monitoring wells covering 511 districts across 21 States.

6In Figure 3, we index the decision equation for small farmers as min, and for large farmers as max.
7Data can be downloaded in excel format from:http://cgwb.gov.in. We accessed this data in June

2020.
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Wells are identified by Global Positioning System (GPS) coordinates and are monitored

four times in the year – pre-monsoon, mid-monsoon, pre-winter, and post-winter8 – so as to

capture both seasonal and inter-annual variation. We construct our assignment variable as

the maximum groundwater depth recorded at any point over a three year period covering

2011-2013.9 As the water table fluctuates temporally, taking a three year horizon allows

us to account for some of this variation. As a robustness test, we present results when

constructing our assignment variable using a one and five year time period. Combining

village boundary shapefiles offered by the Socioeconomic Data and Applications Center

(SEDAC) of NASA,10 along with the GPS coordinates of wells, we create a village level

match. Specifically, we attribute the measure of our assignment variable to a village if

the well falls within the village boundary.11 Figure 4 presents a map of our final sample

of matched wells across the country, as well as whether these fall below or above the

operational threshold for centrifugal pumps. As Figure 4 plainly demonstrates, our data

on groundwater level provide the basis of our empirical approach – evenly distributed

high-resolution spatial variation across a large geographic coverage.

We compile data on irrigation practices from the Fifth Minor Irrigation (MI) Census

conducted in 2013.12 With the objective of collecting information to be used for the plan-

ning and management of water resources in the agricultural sector, the Government of

India has implemented a MI Census every 7 years since 1986-87.13 These Censuses provide

a countrywide database of groundwater and surface water infrastructure that have a cul-

turable command area of less than 2,000 hectares – known as minor irrigation schemes.14

Specific to the needs of our study, the Fifth MI Census has data on ownership of dif-

ferent pump types, including submersible and centrifugal. Importantly, there also exists

8With some regional variation, the monsoon/Kharif season is from June to October and the
winter/Rabi season is from November to March.

9Of the total groundwater monitoring wells sampled by the CGWB, not all are monitored four times a
year. As a result, our assignment variable can only be calculated for a subset of 8,549 wells.

10Shapefiles mapping the whole of India are available at:https://sedac.ciesin.columbia.edu/data/
set/india-india-village-level-geospatial-socio-econ-1991-2001.

11If more then one well was matched to the same village, an average of our assignment variable was
taken.

12Village level data from the MI Censuses are publicly available in excel format on the Government of
India open data platform at:http://data.gov.in. We accessed this data in June 2020.

13Background information on each Census (e.g. questionnaires and instruction manuals on data collec-
tion) as well as official reports and aggregated statistical tables can be found on the official website of the
MI Census at:http://micensus.gov.in.

14In contrast, medium and large irrigation schemes have a culturable command area of 2,000-10,000 ha
and above 10,000 ha respectively. These largely include dam and canal irrigation projects.
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information on pump capacity (horse power) and usage (pumping hours), which allow us

to calculate water input in litres following a standard engineering formula (Manring, 2013)

(see Appendix B for detail on the construction of this variable). This measure of irriga-

tion is also used in the recent work of Ryan and Sudarshan (2020) evaluating the effect of

groundwater rationing in Rajasthan.

Data on agricultural production based on direct field measurements is - to the best of

our knowledge - not available at the village level in India. We therefore rely on measures

of vegetation cover calculated from satellite images as a proxy for agricultural yield at the

village. Specifically, we use data from the Normalised Difference Vegetation Index (NDVI)

and the Enhanced Vegetation Index (EVI) estimated from images taken by the Moderate

Resolution Imaging Spectroradiometer (MODIS) sensor aboard NASA’s Terra satellite.

This data was used in the recent work by Asher and Novosad (2020) for their evaluation of

India’s national rural road expansion programme, and was made available by the authors

as part of their replication dataset.15 The authors extracted information on NDVI and

EVI from gridded datasets across India for nine 16-day periods from June to October –

covering the monsoon/Kharif growing season – and similarly from November to March

– covering the winter/Rabi growing season – over a fourteen year period (2000-2014).

This data was then matched to village boundary shapefiles. We leverage this raw data to

calculate three proxies for each vegetation index in each season – mean, maximum, and

the difference between early-season (taken as the mean of the first three 16-day periods)

and the maximum value observed. By differencing out non-crop vegetation (such as forest

cover) this latter proxy provides the most reliable measure of crop production. Appendix B

includes further information on how the indices and proxies are constructed, a discussion of

the literature on using remote sensing imagery to predict crop yields, as well as results from

validation tests showing the correlation between the indices and district level estimates of

agricultural production.

In this study we are not only interested in capturing changes to agricultural production

in response to irrigation access, but importantly changes in agricultural production choices.

We therefore leverage data from multiple external sources in order to obtain a range of

village level indicators on input use and crop choice. The Village Directory, administered

as part of the 2011 Population Census, keeps records of the three principle crops grown

15The paper by Asher and Novosad (2020) and its associated dataset is available at:https://www.aeaweb.
org/articles?id=10.1257/aer.20180268
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in each village.16 We use this information to create three binary measures of crop choice:

does a village grow winter crops, drought tolerant crops, or cash crops.17 In terms of

agricultural inputs, we also draw upon the 2011 Village Directory for our measures of

land area cultivated. Finally, we compile data on two indicators of technology adoption –

water-saving technology (drip and sprinklers) is obtained from the Fifth MI Census (2013)

and mechanised farm equipment collected as part of the Socio Economic Caste Census

(SECC) of India in 2012. The Government of India regularly conducts SECC surveys at

the individual and household level so as to determine eligibility into social programmes.

Village level aggregates of this survey, including household assets, are made available online

as part of the work of Asher and Novosad (2020).18

We draw on the 2011 Population Census for information on labour allocation of vil-

lage residents.19 Specifically, we obtain data on total employment, as well as for two

occupational categories of employment in the agricultural sector – cultivators and manual

labourers. Cultivators are those that cultivate their own land, while manual labourers work

for a daily wage. Data on these categories is available disaggregated by gender, enabling

us to test for shifts in labour allocation for men and women separately. Furthermore, the

data can also be disaggregated by time spent employed. Specifically, the Census of India

considers two types of workers – main/full-time workers are defined as those that are eco-

nomically active in an employment category for more than 6 months of the year, while

marginal/part-time workers are active for less than 6 months.

So as to obtain information on businesses at the village level, we make use of data

from the Sixth Economic Census conducted in 2013.20 The Economic Census is the only

complete enumeration of all economic establishments in India, formal and informal, with

16Data from the 2011 Population Census Village Directory can be downloaded from:https://
censusindia.gov.in/2011census/censusdata2k11.aspx. We accessed this data in June 2020.

17Winter season crops include: wheat, barley, potato, oilseed, and chickpea. Drought tolerant crops
(based on classification by the International Crops Research Institute for Semi-Arid Tropics) include: millet,
sorghum, maize, pigeon pea, and groundnut. Cash crops (these cannot be directly used for household
consumption as they require post-harvest processing, but are generally considered to be more profitable)
include: sugarcane, oilseed, cotton, and tobacco.

18As mentioned previously, the paper by Asher and Novosad (2020) evaluating India’s national rural road
construction programme and its associated dataset is available at:https://www.aeaweb.org/articles?id=
10.1257/aer.20180268

19Data from the 2011 Population Census can be downloaded at: https://censusindia.gov.in/

2011-Common/CensusData2011.html. We accessed this data in June 2020.
20This data is available on the National Data Archive site: http://microdata.gov.in/nada43/index.

php/catalog/47. We accessed this data in June 2020.
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no restrictions on size or location.21 Detailed records are kept on employment and business

characteristics (such as industry classification), but not on wages, inputs, or outputs. Com-

pared to the Population Census which includes employment records for village residents

even if these take place outside the village, the Economic Census concentrates on economic

activity only in village businesses. We calculate the share of the workforce employed in the

following sectors: agro-processing (this excludes crop production), livestock, construction,

manufacturing, and services. Among our sample, these five industries account for over

70% of those employed in village businesses. Additionally, we also report our results on

the total number of economic establishments in these industries.

In order to capture shifts in village demographics from migration in response to access to

groundwater irrigation, we consider four population indicators. We leverage the Population

Census of 2011 to obtain data on the total village population and to calculate the population

density. Additionally, we make use of the disaggregated population data by age and gender,

recorded by the SECC 2012, to capture the share of the total population as well as the

male population which are of working age (15 to 65 years).

As a final set of outcomes of interest, we look at a range of consumption indicators.

These are all obtained from the Socioeconomic High-resolution Rural-Urban Geographic

Dataset on India (SHRUG, Version 1.5).22 Night light, measured by satellites as the

pixel luminosity in a geographic polygon, is widely used as a proxy for economic activity

when direct measures are otherwise unavailable (Henderson et al., 2011) (see Appendix

B for a detailed discussion of this variable). For a more direct measure, we leverage

household micro-data collected by the India Human Development Survey-II in 2012 to

predict consumption on a range of asset and income variables equivalent to those recorded

in the SECC 2012 (these predicted variables are available in the SHRUG). Following the

methodology suggested by Elbers et al. (2003), we can then impute consumption using the

SECC asset and income data to generate village-level statistics for predicted consumption

per capita and the poverty rate (refer to Appendix B for further detail on how these

indicators are generated and a discussion of the literature on the methodology). Finally,

we look at an index of asset ownership – as recorded by the SECC 2012 – as well as each

individual major asset independently.

21An establishment refers to any unit where an economic activity is carried out; with the exception of
those engaged in crop production, defence, and government administration.

22For detailed information on the SHRUG, please refer to Asher et al. (2021b). The dataset, including
codebooks and references, can be found at:http://www.devdatalab.org/shrug
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As a robustness test to our identification strategy, we show that there does not exist a

kink in the relationship between groundwater level and a range of covariates. These covari-

ates should capture natural endowments of the village unrelated to groundwater irrigation.

Specifically, we consider: distance to the nearest river (obtained from the 2011 Village Dir-

ectory), an index of maximum potential yield calculated using the agro-ecological zones’

potential yield for 15 crops under rain-fed conditions (obtained from the SHRUG), and a

binary indicator for whether or not the village has tube-wells in the command area of a

dam and/or canal network (obtained from the Fifth MI Census).

We link all our different datasets at the village level. For variables coming from the

Population Census or Economic Census, these are directly matched to the SHRUG Dataset

of India (Version 1.5) using Census village identifiers. However for the wells and irriga-

tion data, we use a combination of Python and Stata code for fuzzy matching on names

adapted to the local Indian languages.23 This method resulted in a matching success of

approximately 80%. Table 1 provides summary statistics of all key variables on the final

sample size of 4,896 villages across 477 districts for 19 States of India. These statistics

suggest that in an average village, approximately 70% of the agricultural land is irrigated

by tube-wells. Agriculture is on average the largest employer with approximately 13% of

the workforce engaged as cultivators and 18% as manual labourers. Services on the other

hand, despite being the largest employer among village businesses, engages only 8% of the

workforce. Approximately 30% of the village population live below the poverty line.

4. Empirical Approach

In this paper, we are interested in capturing the effects of access to groundwater irrig-

ation on the structural transformation of the rural economy. Irrigation practices however,

are likely to be endogenous. For instance, we might expect that villages with better access

to markets are more likely to adopt irrigation. Any naive correlation estimates between

irrigation and economic outcomes will in such a case be biased; partially attributing the ef-

fect of irrigation to markets rather than the technology itself. In this section we introduce

our proposed empirical approach – fuzzy Regression Kink (RK) Design – to circumvent

this endogeneity issue. Furthermore, we present graphical evidence and estimation results

corroborating the validity of this method.

23We use the Masala Merge algorithm developed by Paul Novosad which modifies the Levenshtein edit
distance to lower the cost of certain substitutions that are common to Hindi. The code and information on
this algorithm is available on the authors’ website: https://www.dartmouth.edu/~novosad/code.html
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A. Regression Kink Design

To identify the true causal effect of irrigation, we use a fuzzy RK design which relies

on quasi-experimental variation in the likelihood of having access to groundwater around

a specific threshold.24 In our empirical model, the assignment function determining the

probability of being treated – that is having access to irrigation – is driven by a technological

constraint in centrifugal pump capacity with groundwater depth. Specifically, 10.33 meters

is the maximum theoretical groundwater depth – k – at which a centrifugal pump can

extract water for irrigation at sea level.25 Below this depth, the cost of irrigating increases

significantly due to the price differential of the more expensive submersible pumps.26 As

described further in the next subsection; we demonstrate that for our sample of villages,

there is in fact a discontinuity in the first-derivative of our assignment function at the given

threshold.

In our analysis, the change in slope of the assignment function at the kink is unknown

and must therefore be estimated based on observed data. Accordingly, we employ a fuzzy

RK design, in which both the assignment variable and the treatment variable may be ob-

served with error (Card et al., 2015b).27 Specifically, we expect a kink in the deterministic

relation between our treatment variable – irrigation, I – and our assignment variable –

groundwater depth, W – at k. It follows that if irrigation exerts a causal effect on our out-

come of interest – Y – we should expect to see an induced kink in the relationship between

Y and W at k. Accordingly, the causal impact can be estimated by dividing the change in

slope of the conditional expectation function for an outcome variable of interest (Equation

8), by the corresponding change in slope of the conditional expectation function for the

assignment function (Equation 9) at the kink point. Specifically, we obtain the numerator

of the fuzzy RK design estimand from the following parametric polynomial model:

24There has been increasing interest in adopting RK designs in the applied economics literature. The
most common application so far has been the use of kinks in unemployment benefit schedules to capture
the effect of these on labour market outcomes (Card et al., 2015a; Landais, 2015). A small but growing
literature has also used this method to evaluate a range of topics including, but not limited to, the effect
of coalition governments on fiscal policies (Garmann, 2014), financial aid on educational outcomes (Nielsen
et al., 2010), and demand for prescription drugs (Simonsen et al., 2016).

25k corresponds to the difference in height explained by Bernoulli’s principle of fluid dynamics outlined
in Equation 2.

26For detailed information on irrigation pump technologies available to farmers, including their costs,
refer to Section 2.

27The difference between a sharp and fuzzy RK design is that the fuzzy RK design estimand replaces
the known change in slope of the assignment rule at the kink with an estimate based on the observed data.
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E[Y |W = w] = µ0 +

 p̄∑
p=1

γp(w − k)p + νp(w − k)p ·D

 (8)

where D = 1[W ≥ k] is a binary variable indicating whether the village experienced

a groundwater level deeper than the threshold k at any point between 2011 to 2013. The

change in slope of the conditional expectation function of Y at the kink point is given by

ν1.

Similarly, we estimate the denominator of the fuzzy RK design estimand using the

following parametric polynomial form:

E[I|W = w] = α0 +

 p̄∑
p=1

ωp(w − k)p + πp(w − k)p ·D

 (9)

The change in slope of our treatment variable – I – at the kink point of the assign-

ment variable W is captured by π1. The impact of irrigation is therefore the ratio of the

coefficients – β = ν1/π1, and should be interpreted as the average treatment effect on the

treated. Standard errors for β are recovered using the Delta method.

All our main regressions are estimated using a linear functional form (p̄ = 1). However

as a robustness test, we compare our results when using a quadratic and cubic function.

As suggested by Calonico et al. (2014), we do not include covariates as controls especially

since these are shown not to be affected by the assignment function at the kink point. We

do however, include state dummies in all regressions. Furthermore, all main regressions

use a bandwidth (b) of 7 metres, such that |w− k| ≤ b. Our results however, are shown to

be robust to a range of bandwidth (down to 3 metres).

B. Impact of Groundwater Depth on Irrigation

Identification in a fuzzy RK design, requires two key assumptions (Card et al., 2015b):

(1) the conditional density of the assignment variable, given the unobserved error in the

outcome, is continuously differentiable at the kink point, and (2) the treatment assignment

function is continuous at the kink point (i.e., there is no jump in the direct marginal effect

of the assignment variable on the outcome of interest at the kink).28

Graphical evidence: We begin by showing graphical evidence to validate the fuzzy

28As explained by Card et al. (2015b), this condition is what differentiates an RK to an RD design. In
absence of this condition, wherein there exists a jump rather than a kink, an RD design would be used.
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RK design assumptions. In response to the first assumption on the smooth density con-

dition, we plot the probability density function of our assignment variable to check for

manipulation of ones’ position at the kink point. Note first that the exact location of the

kink point is village specific as it varies with air pressure at different altitudes, as shown in

Panel A of Figure 5.29 Panel B of Figure 5 shows the number of observations in each bin

for groundwater depth normalised at the kink point. The evolution of the distribution of

our assignment variable shows no signs of discontinuity at the kink point. This is further

supported by the McCrary test, commonly used in the RD literature, which estimates the

log change in height between bins at the kink point. Results from this test (displayed

directly on the graph) confirm that we cannot detect a significant discontinuity at the kink

point.

The evolution of the relationship between centrifugal pump ownership and our as-

signment variable normalised at the kink point, provides evidence towards the second

assumption. Corroborating the technological constraint faced by centrifugal pumps with

groundwater depth, Panel A of Figure 6 demonstrates a clear kink in the slope of the

relationship at the given threshold. As hypothesised in our decision making framework,

we find a decline in the adoption of centrifugal pumps as groundwater depth increases, fol-

lowed by a sharp visible switch to a constant near zero adoption when groundwater depth

exceeds the threshold (w ≥ k). Furthermore, Panel B of Figure 6 shows a gradual increase

in submersible pump ownership – likely driven by bigger wealthier farmers switching to

this more expensive technology as the probability of a centrifugal pump operating declines.

However, it is also clear that this technology substitution is incomplete. Specifically, centri-

fugal pump adoption (nb/ha) declines from 0.08 to 0.01, while submersible pump adoption

only increases from 0.02 to 0.04 on the left of the threshold.

Importantly for our empirical approach, Panel C and D of Figure 6 exhibit a kink in the

relationship between irrigation (measured as litres/ha/day) and our assignment variable.

Specifically, as the depth of the water table increases, access to groundwater irrigation

for agriculture declines, followed by a sharp switch to a constant level of groundwater

extraction for depths greater than the threshold. This result provides confirmation that

our empirical approach is capturing a shift in irrigation at a given threshold driven by

an exogenous factor – the operational capacity of centrifugal pumps with groundwater

29Data on altitude was extracted from raster files for the whole of India, obtained from the ALOS
Global Digital Surface Model. A barometric formula was used to calculate atmospheric pressure with
varying altitude.
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depth.30

We expect that if irrigation has a causal effect on our outcomes of interest, we should

see an induced kink in the relationship between the outcome and groundwater depth at

the threshold. Panel A of Figure 7 exhibits this graphical evidence for our measure of

agricultural yield (NDVI-derived) in the dry winter/Rabi season. As the depth of the

water table increases and access to groundwater irrigation declines, so does agricultural

yields, followed by a sharp switch at the threshold. Conversely, with respect to covariates

unrelated to irrigation, we expect that the conditional expectation of any such covariate

should be twice continuously differentiable at the kink point. Panel D of Figure 7 exhibits

this pattern for distance to the nearest river, a natural endowment of a village unrelated

to the potential impact of irrigation.

Estimation results: Table 2 shows the results from our empirical specification out-

lined in Equation 9. We report the estimate for π1, which corresponds to the change in

slope of our treatment variable – irrigation from tubewells – at the kink point of the as-

signment variable – groundwater depth. Results based on a linear functional form suggests

a statistically significant positive evolution of the relationship between groundwater depth

and centrifugal pump adoption (Column 1) as well as groundwater extraction for irrigation

at the kink point. This result is consistent when considering the average irrigation over the

year (Column 3), as well as during the monsoon/Kharif (Column 4) and the winter/Rabi

season (Column 5) independently.

In support of our empirical strategy, we conduct various robustness tests. First, we

demonstrate that for our covariates – distance to the nearest river, whether the village has

pumps inside a canal command area, and maximum potential yield – there is no detectable

change in the slope of the conditional expectation function at the kink point (see Columns

6 to 8 of Table 2). Second, we analyse the sensitivity of our results to the choice of

polynomial order, reported in Panel B and C of Table A1. We find that the standard

errors in the quadratic functional form increase substantially and the results in this form

are no longer statistically significant. Third, we show that our results are consistent for

our assignment variable calculated as the maximum groundwater depth recorded at any

point over a one, three, or five year time horizon (see Table A2). Finally, we explore the

30As is explained in Appendix B, water extraction in litres (our measure of groundwater irrigation) is a
function of pump capacity, pump usage and depth of the water table. Holding all other factors constant,
as depth increases the flow rate of pumps will decrease. For depths deeper than the threshold, we observe
a slight increase in the use of submersible pumps. However, this is likely to be offset by the increase in
depth, thereby explaining the low correlation with pump adoption to the right of the threshold.
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sensitivity of the deterministic relation between groundwater irrigation and depth of the

water table at w = k to the choice of bandwidth level. As shown in Figure A1, our results

are consistent across bandwidth size down to 4 meters either side of the kink.

5. Results

In this section we report and discuss our results on the impact of groundwater irrigation

on the structural transformation of the rural economy. For each outcome variable we

report the beta estimate (with the heteroskedasticity robust standard errors in brackets)

corresponding to the ratio of the coefficients capturing the conditional expectation function

at the kink point from Equation 9 and Equation 8 (see Section 4 for more detail on the

estimation strategy). Our explanatory variable for access to irrigation is calculated as

litres/ha/day and standardised such that all results can be interpreted as the effect of a

one standard deviation (≡ 103 litres/ha/day) increase in irrigation.

A. Agriculture

Before all else, we evaluate the impact of groundwater irrigation on agricultural yields.

Leveraging two different vegetation cover indices – the Normalised Difference Vegetation

Index (NDVI) and the Enhanced Vegetation Index (EVI) – we construct three alternative

proxies of yield at the village level. These include the: mean, maximum, and difference

between early-season and the maximum. This latter proxy is our preferred outcome vari-

able for crop production. Previous research has shown that by differencing out non-crop

vegetation such as forest cover, it provides a more direct estimate of agricultural yield

(Rasmussen, 1997). Table 3 presents results on the effect of irrigation on these proxies for

both the monsoon/Kharif and the dry winter/Rabi growing season.

Focusing on the NDVI-derived differenced proxy for agricultural yield we find that ir-

rigation has a positive impact on crop production. This effect is concentrated during the

dry winter/Rabi season. We estimate an impact of 9.8% higher agricultural yield during

the winter/Rabi season for a one standard deviation increase in groundwater irrigation

use (Panel A Column 4 of Table 3). Graphical evidence presented in Panel A of Figure

7 corroborates this result. The plot demonstrates a sharp visible kink in the relationship

between the winter/Rabi differenced NDVI-derived value for agricultural yield and norm-

alised groundwater depth at the given threshold. This increase in yield however, is not

detected by the EVI-derived proxies (Panel B of Table 3). This is possibly because EVI

was partly developed to compensate for the effects of NDVI saturation over high biomass

areas such as forests (Huete et al., 2002; Gao et al., 2000). As a result, EVI tends to present
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relatively lower ranges over lower biomass sites, making it less sensitive in semi-arid agri-

cultural settings (see Appendix B for further details including a discussion of the literature

on using remote sensing imagery to predict crop yields).

During the monsoon/Kharif season, irrigation does not appear to have a signific-

ant impact on yield (when considering the differenced proxy, see Column 1 of Table 3).

This is to be expected, since unlike the dry winter months the monsoon season receives

heavy rainfall; hence reducing the reliance on irrigation for cultivation. Interestingly how-

ever, the average groundwater irrigation use is similar in both the monsoon/Kharif and

winter/Rabi season (see summary statistics for irrigation in Table 1). This implies a com-

parative inefficiency of irrigating in the monsoon/Kharif season. Evaluation of water use

efficiency has become a subject of intense debate in India. Scientific evidence drawing from

satellite imagery and field studies indicate that the Indian aquifers are being depleted at

an unprecedented rate relative to other countries (Famiglietti, 2014; Rodell et al., 2018;

Siebert et al., 2010). The treatment of groundwater as a common resource with very little

regulation, along with highly subsidised electricity for agricultural, are seen as the lead-

ing factors of mismanagement (Shah, 2013; Dubash, 2007; Badiani-Magnusson and Jessoe,

2018).

Having established the overall effects of access to irrigation on agricultural production,

we go on to analyse the pathways through which these effects may operate – over and above

the direct effect from watering. Improvements in agricultural yields could happen through

two main channels: (1) farmers may re-optimise their production strategy in response to

a reduced exposure to climate risk, and/or (2) conditional on higher yields translating to

higher profits, farmers may increase investment in other inputs.

In response to the first channel, we analyse shifts in crop choice (reported in Columns 4

to 6 of Table 4). We consider three categories of crops – those grown in the dry winter/Rabi

season, drought tolerant, and cash based – which are all characterised by an element of

risk. The winter/Rabi season receives very little rainfall, hence crops grown in this season

are much more vulnerable to weather shocks. Surprisingly, we find no significant shifts

towards these type of crops. Drought tolerant crops are resistant to semi-arid conditions

and are therefore an effective way of reducing exposure to rainfall shocks. We find that

25.4% fewer villages report one of their three most widely cultivated crops to be drought

tolerant in response to an increase of one standard deviation of irrigation groundwater use.

Finally, cash crops cannot be directly used for household consumption as they require post-

harvest processing. While these crops are generally considered to be quite profitable they
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are also more susceptible to price fluctuations. For farmers who rely on their agricultural

produce to feed their household, moving to cash crops can therefore often be considered

risky. While our point estimate on cash crops is positive, it is not statistically significant.

We investigate the second channel by considering investments in a range of inputs

(Columns 1 to 3 of Table 4). While we estimate a positive effect on ownership of mechanised

farm equipment and a negative relationship with the use of water-saving technologies (such

as drip and sprinklers), these are not statistically significant. However, there appears to be

a strong effect of irrigation on land extensification – an increase of one standard deviation

in irrigation results in an extra 15.9% of available agricultural land being cultivated.

In a further investigation, we attempt to estimate the effects of irrigation on the size

of landholdings. There is good reason to believe that shocks to land productivity could

have significant implications on the land market. For instance, those farmers that invest

in irrigation may buy out less productive non-irrigated farms. To test for this we analyse

the impact of access to irrigation on the share of households in four different landholding

categories – landless, 0-2, 2-4 and above 4 acres, reported in Table 5. While we see a

positive point estimate for the landless and the 0-2 acre category, this is not significantly

different from zero.

B. Consumption

Table 6 reports results on the impact of irrigation on measures of consumption at the

village level. Importantly, we find a 5.4% reduction in the village poverty rate for a one

standard deviation increase in groundwater irrigation for agriculture (Column 2). This

result agrees with other research which exploit quasi-experimental empirical approaches to

analyse the effect of irrigation on poverty alleviation (Duflo and Pande, 2007; Blakeslee et

al., 2020; Sekhri, 2014). This effect is further corroborated by our results on mean night

light intensity, measured over a 5 year period – a one standard deviation in irrigation leads

to an 18% increase in night time light (Column 3).

While our point estimate on consumption per capita is positive, it is not statistically

significant (Column 1). However, we further investigate the impact of irrigation on con-

sumption using a more direct measure – household microdata from the Socio Economic

Caste Census of India (2012) on asset ownership. We find a significant positive effect on

the index of household assets. A one standard deviation in groundwater irrigation increases

the asset index by 0.45 standard deviations (Column 4). This effect appears to be largely

driven by solid house construction – the share of households that own a solid house in-
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creases by 20% (see Table A3 which presents results on each component of the asset index

independently). As explained in Duflo and Banerjee (2011), investment in solid house con-

struction is a common form of informal savings among poor households. This implies that

improved access to irrigation provides households with additional cash in hand.

C. Labour

An increase in agricultural production with improved access to irrigation, may simul-

taneously increase demand for labour in this sector. This effect however, may be small

or even reversed if farmers switch to less labour intensive crops or replace labour activit-

ies with specialised mechanised tools such as transplanters and harvesters. Furthermore,

labour demand for agriculture is likely to be influenced by market opportunities in other

sectors. On-farm growth may spur production in off-farm sectors, therefore increasing de-

mand for labour in those industries. Alternatively, irrigation may provide some villages

with a comparative advantage in farming, thereby attracting labour away from other sec-

tors or less productive population centres. Characterised by these complex interactions,

the overall effect of irrigation on the labour market is ambiguous. We attempt to identify

the dominance of these different components by evaluating the impact of irrigation on

aggregate employment rates as well as shifts in the sectoral share of the workforce.

We begin our analysis of structural shifts in labour allocation, by analysing the effect

of irrigation on the share of the population employed at the village level (reported in Panel

A of Table 7, Columns 1 to 3). We find a 2.5% reduction in the share of the population

employed, which is statistically significant at the 10% level (Column 1). This decline

appears to be driven by a statistically significant 5.3% decline in female employment due

to irrigation (Column 3). In a time series analysis of employment trends in India spanning

3 decades (from 1990 to 2010), Mehrotra et al. (2014) describe women as the reserve army

of labour for the agricultural sector, called upon only in times of distress. Irrigation, which

appears to significantly improve agricultural sector productivity, may therefore be reducing

the need for female labour force participation. This drop may also be related to the ‘income

effect’; a trend suggesting that women appear to drop out of the labour force as households

become wealthier (Mehrotra and Sinha, 2017).

Agriculture is the largest employer in our sample of villages, with approximately 30%

of the workforce reporting their primary occupation to be either cultivation or manual

agricultural labour. In order to capture sectoral shifts in labour allocation to the agricul-

tural sector, we therefore present results on the share of the workforce employed in these
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categories. Results from this analysis are reported in Panel B of Table 7. We find that

there is no statistically significant shifts in labour allocation either into or out of the agri-

cultural sector. Specifically, we can only rule out a 0.44 standard deviation change in the

share of the workforce employed as cultivators and a 0.40 standard deviation change in the

workforce employed as manual labourers, with 95% confidence.

Data from the Population Census of India allows us to further disaggregated our out-

come variables on employment in the agricultural sector by the time spent employed.

Specifically, we can consider two types of workers – full-time workers are those that are

economically active for more than 6 months of the year. As reported in Panel C of Table

7, we find that irrigation leads to a large and significant increase in the share of full-time

workers. Specifically, we find that a one standard deviation increase in groundwater ir-

rigation increases the share of the population in full-time employment by 10.3% (Column

1). This appears to be driven by an increase in both cultivators (Column 4) and manual

labourers (Column 7). This result would indicate that there is in fact an increase in la-

bour demand within the agricultural sector, which is absorbed by the existing labour force

extending there period of activity to cover both growing seasons.

We complement this occupational data in the agricultural sector recorded by the Pop-

ulation Census of India, with data from the Economic Census of India on employment in

village businesses, reported in Panel A of Table 8. We consider the share of the workforce

employed across all village businesses, as well as in the following sectors independently:

agro-processing, livestock, construction, manufacturing, and services. The point estim-

ate for employment in the agro-processing sector (most closely aligned to agriculture) is

negative, while point estimates in all the other sectors are positive. However, none are

significantly different from zero at the 10% level. In the case of the services sector, we

can only rule out a 0.41 standard deviation change in the dependent variable in response

to a one standard deviation change in irrigation. In Panel B of Table 8, we consider the

effect of irrigation on the number of business establishments in each industry. Here again

we do not detect any statistically significant shifts. Taken together, it would appear that

irrigation does not lead to substantive shifts in off-farm sectoral growth at the local level.

These results add to evidence from two concurrent papers, showing that access to irrigation

does not seem to cause significant shifts in structural transformation within villages in the

context of rural India (Asher et al., 2021a; Blakeslee et al., 2021).
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D. Demographics

As a final measure of interest we consider the effect of groundwater irrigation on village

demographics, reported in 9. We find an increase in the village population of approximately

34.7% in response to a one standard deviation increase in irrigation (Column 1). While this

is a large effect, it is imprecisely estimated and only significantly significant at the 10% level.

At this test size, we can only rule out a less than 5% increase in the village population. This

result is also reflected in our measure of population density. In an attempt to more directly

attribute this effect to labour migration, we estimate the impact of irrigation on the share

of the working age population – aged 15 to 65 years – both for the total population as well

as separately for the male population. Our point estimate is negative for the working age

population and positive for the male population, though neither is statistically significant.

It is possible that shifts in demographics from access to groundwater irrigation also

affect nearby agglomerations. Asher et al. (2021a) find that canals cause a 20% increase in

the population density of urban centres. Our measure of irrigation however, based on pump

functionality with groundwater at a highly localised level, will have a much higher degree

of spatial disaggregation relative to the large catchment area of a canal and therefore does

not lend itself for this type of analysis.

E. Heterogeneity by Landholding Size

In this paper, we consider the effect of access to the dominant source of irrigation for

Indian farmers – groundwater accounts for approximately 70% of irrigated land area across

the country. This type of irrigation technology, requires significant private investment from

farmers. Purchasing a centrifugal pump alone costs approximately INR 16,000 (GBP 160)

which is close to the average annual per capita consumption of households in our sample of

villages (see Table 1). Our decision making framework predicts that returns to investment

are likely to be more meaningful for farmers with larger landholdings. Given that we

reject consolidation of landholdings in response to irrigation (see Table 5), we treat ex-post

observation of landholdings as a covariate upon which to conduct heterogeneity analysis.31

Our results from this analysis suggest that for villages with high landholding size, ac-

cess to groundwater irrigation leads to consistently higher agricultural yields in the dry

winter/Rabi season; see Columns 1 to 6 of Table 10. For each of our proxies – mean,

31To conduct this analysis, we split our sample evenly by villages with high or low average village
landholding size, calculated as above or below the median respectively. We run regressions separately for
both samples and compare our results.
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maximum, and difference between early-season and the maximum – the point estimate for

high landholding villages is at least twice the value of those for low landholding villages.

This translates into significantly higher consumption gains among villages with larger land-

holdings (Column 7 and 8). However, despite incurring relatively higher returns villages

with larger landholdings show no evidence of labour re-allocation between local village

industries (Table 11).

6. Conclusion

First documented with regards to the Industrial Revolution in England during the 18th

century, scholars argued that an increase in agricultural productivity was a necessary pre-

cursor for industrial growth (Nurkse, 1953; Robinson, 1954). Since then, a large literature

has been devoted to chronicle the process of economic growth across countries, overwhelm-

ingly finding that this is accompanied by a process of structural re-allocation of labour away

from the agricultural sector towards the manufacturing and service industries (Herrendorf

et al., 2014). Leveraging this information, a number of theoretical models on structural

change have been formalised, placing agricultural growth as a catalyst for the process of

industrialisation (Gollin et al., 2002; Ngai and Pissarides, 2007). Conversely, other models

have suggested that agricultural productivity may in fact impede the process of growth

if the sector has a comparative advantage; thereby pooling in labour (Matsuyama, 1992).

Yet despite the centrality of this discussion in understanding the development process

of low-income countries, there exists remarkably little empirical evidence to support the

mechanisms suggested by these models.

In this paper, we estimate the impact of a shock to agricultural productivity – induced

by access to groundwater irrigation – on the structural transformation of the rural eco-

nomy in India. Primarily, we find that access to irrigation does in fact significantly boost

agricultural production. Furthermore, farmers appear to significantly re-optimise their

production strategies in terms of land area cultivated and types of crops grown. Secondly,

this production shock has a large and positive effect on alleviation of poverty at the village

level. Finally, irrigation appears to increase demand for labour in the agricultural sector

– with 7% of cultivators and 10% of manual labourers shifting from part-time to full-time

employment – as farmers now cultivate during the dry winter/Rabi season. However, it

does not lead to any significant shifts in labour re-allocation between sectors.

Since the onset of the Green Revolution in India during the 1960s, the Government has

adopted policies of providing free or largely subsidised electricity to farmers for irrigation
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in an effort to stimulate growth in the rural economy. Subsequently, the area irrigated by

groundwater has increased by over 500 percent between 1960 and 2010, now accounting

for close to 70% of the cultivated land area (Foster and Garduño, 2013). Exploitation of

this resource however, is now becoming a growing concern – India has the fastest depleting

aquifers in the world (Famiglietti, 2014). Given the seriousness and extent of these negative

externalities from promoting groundwater use, they should be balanced with reliable evid-

ence on the benefits of irrigation as an instrument to stimulate rural economic growth. The

results from this paper suggest the irrigation in the monsoon/Kharif season is relatively

inefficient in terms of yield benefits and should therefore be regulated. The major benefits

are accrued during the dry winter/Rabi season by allowing a reliable second cropping sea-

son. This increase in production is coupled with significant asset accumulation, reductions

in poverty, and stabilisation of inter-annual economic activity within the village.
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Figure 1: Pumping mechanism of a centrifugal pump

Notes: Extraction of water from a well using a centrifugal pump can be described by
Bernoulli’s principle of fluid dynamics (Equation 1). Assuming constant flow velocity, wa-
ter extraction is defined by Equation 2: h2 − h1 = P1−P2

ρg
, where P1 and P2 refers to pressure

from the water table and the pump respectively, ρ is the density of water (997 kg/m3), and g
the gravitational force (9.81 m/s2). The difference between h1 and h2 is the distance between
the ground level and the water table. Under a perfect vacuum (P2=0 kg/m/s2) and at-
mospheric pressure at sea-level (P1=101,325 kg/m/s2), the depth from which water can be
extracted is 10.33 meters.
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Figure 2: Effect of efficiency and altitude on the maximum pumping depth of a centrifugal
pump
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Notes: 100% pump efficiency occurs under a perfect vacuum (where P=0 kg/m/s2). 75%
and 50% pump efficiency indicates the corresponding percentage drop from a case of perfect
vacuum. The range of altitude plotted correspond to those found in our sample of villages.
Data on altitude was extracted from raster files for the whole of India, obtained from the
ALOS Global Digital Surface Model. A barometric formula was used to calculate atmospheric
pressure with varying altitude. Specifically, we estimate P = Pb.exp[

−gM(h−hb)
RTb

], where P
refers to pressure, g is the gravitational force, M is the molar mass of the Earth’s air, h is
height, R is the universal gas content, and T is temperature. Note that though the base values
for Pb, hb and Tb naturally evolve with altitude, these are in fact constant for the range of
altitude found in our sample.
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Figure 3: Illustrative diagram for the evolution of pump adoption with groundwater depth

Notes: It is the subset of farmers that can afford a centrifugal pump but not a submersible
(i.e. Case 2) that generates a kink in overall pump adoption and consequently irrigation.
The linear functional form requires that pump efficiency and land are distributed uniformly.
Additionally, under the assumption that g(e(λv)) = 0 – that is, centrifugal pumps work with
certainty – even the smallest farmers (whose decision equation is indexed by min) will adopt
centrifugal pumps. On the other hand, as λv − k becomes very small, only the farmers with
the largest landholdings (whose decision equation is indexed by max) are most likely to adopt
centrifugal pumps.
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Figure 4: Location of sample villages and their groundwater depth

Andaman and Nicobar

Andhra Pradesh

Arunachal Pradesh

Assam

Bihar

Chandigarh

Chhattisgarh

Dadra and Nagar Haveli
Daman and Diu

Goa

Gujarat

Haryana

Himachal Pradesh

Jammu and Kashmir

Jharkhand

Karnataka

KeralaLakshadweep

Madhya Pradesh

Maharashtra

Manipur

Meghalaya

Mizoram

Nagaland

NCT of Delhi

Odisha

Puducherry

Punjab

Rajasthan

Sikkim

Tamil Nadu

Tamil Nadu

Telangana

Tripura

Uttar Pradesh

Uttarakhand

West Bengal

Normalized Maximum Pumping Depth
−7 to 0
0 to 7

0

50

100

150

200

250

−6 −4 −2 0 2 4 6

Notes: Our total sample covers 4,896 villages across 477 districts amongst 19 States. Each
point on the map represents a village in this sample. The maximum groundwater depth below
which no centrifugal pump can operate is 10.33 meters. Red points correspond to villages with
depths deeper than 10.33 metres, while blue points are shallower.

38



Figure 5: Distribution of the assignment variable across the kink point
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Notes: The kink point refers to the groundwater depth below which no centrifugal pump can
operate – 10.33 meters. Panel A shows the distribution of the maximum pumping depth of a
centrifugal pump for villages in our sample. Panel B plots the number of observations in each
bin for groundwater depth normalised at the kink point. A fuzzy RK design requires for the
conditional density of the assignment variable, given the unobserved error in the outcome,
to be continuously differentiable at the kink point. The McCrary test, reported in Panel B,
provides an additional validation test by estimating the log change in height between bins at
the kink point.

39



Figure 6: Deterministic relation between groundwater depth and irrigation
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Notes: The x-axis in each panel represents our assignment variable – the maximum ground-
water depth recorded at any point between 2011-2013. This variable is normalised around
the kink point of 10.33 metres – the operational threshold for a centrifugal pump. Points
to the right of zero correspond to depths deeper than 10.33 metres, while those left of zero
are shallower. Each panel reports results on the deterministic relation between our assign-
ment variable and measures of pump adoption and irrigation. Pump adoption, calculated as
the number of pumps per agricultural land area, is reported for centrifugal and submersible
pumps in Panels A and B respectively. Irrigation, calculated as water input in litres (for
a complete discussion on the construction of this variable see Appendix B), is reported for
the monsoon/Kharif (June-October) and the dry winter/Rabi season (November-March) in
Panels C and D respectively. Each panel shows the mean values of the variable of interest
in each bin of the assignment variable. The bin size is 0.5. The red dashed lines display
predicted values of the regressions in the linear case allowing for a discontinuous shift at the
kink. Formal estimates of the kink for these variables using fuzzy RK regression analysis are
reported in Table 2.
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Figure 7: Deterministic relation between groundwater depth and a selection of outcomes
and covariates
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Notes: The x-axis in each panel represents our assignment variable – the maximum ground-
water depth recorded at any point between 2011-2013. This variable is normalised around
the kink point of 10.33 metres – the operational threshold for a centrifugal pump. Points to
the right of zero correspond to depths deeper than 10.33 metres, while those left of zero are
shallower. Each panel reports results on the deterministic relation between our assignment
variable and a selection of our outcome variables and covariates. We present graphical evidence
on three outcome variables: winter/Rabi agricultural yield (derived from NDVI – an index
of vetegation cover based on satellite imagery, for a complete discussion on the construction
of this variable see Appendix B) calculated as the log of the difference between early-season
and the maximum value (Panel A), agricultural land calculated as the percentage share of
village area used for agricultural purposes (Panel B), and the percentage share of households
in the village that own a solid house (Panel C). Additionally we present graphical evidence
for one covariate variable: distance, measured in kilometres, to the closest river (Panel D).
Each panel shows the mean values of the variable of interest in each bin of the assignment
variable. The bin size is 0.5. The red dashed lines display predicted values of the regressions
in the linear case allowing for a discontinuous shift at the kink. Formal estimates of the kink
for these variables using fuzzy RK regression analysis are reported in Tables 3, 4, A3, and 2
for Panels A, B, C and D respectively.
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Table 1: Descriptive statistics

Mean SD N Source (Year)
(1) (2) (3) (4)

Panel A: Irrigation
Monsoon/Kharif irrigation (ltr/ha/day) 65.494 141.903 4896 MIC (2013)
Winter/Rabi irrigation (ltr/ha/day) 68.121 144.894 4896 MIC (2013)
Irrigation average (ltr/ha/day) 66.873 142.736 4896 MIC (2013)
Tube-wells (nb/ha) 0.083 0.147 4896 MIC (2013)
Centrifugal pumps (nb/ha) 0.034 0.092 4896 MIC (2013)
Share of agricultural area irrigated by tube-wells (%) 70.122 45.650 4896 MIC (2013)

Panel B: Demographics and amenities
Population (nb) 4253.026 5261.223 4896 PC (2011)
Share of population is literate (%) 61.349 11.709 4896 PC (2011)
Share of population from scheduled castes (%) 18.160 15.677 4896 PC (2011)

Panel C: Consumption
Per capita consumption (′000 Rs./annum) 18.070 4.717 4896 SECC (2012)
Share of households are BPLa (%) 30.930 18.362 4896 SECC (2012)
Share of households who own a solid house (%) 40.716 28.570 3600 SECC (2012)

Panel D: Agriculture
Average village landholding size (ha) 3.427 5.746 3600 SECC (2012)
Share of households who own mechanised equipment (%) 4.078 6.894 3600 SECC (2012)
Share of workforce are cultivators (%) 13.319 10.239 4896 PC (2011)
Share of workforce are labourers (%) 18.394 11.951 4896 PC (2011)

Panel E: Industry
Number of establishments (nb) 249.779 457.944 4896 EC (2012)
Share of workforce employed (%) 21.247 19.165 4896 EC (2012)
Share of workforce in agro-processing (%) 0.262 1.090 4896 EC (2012)
Share of workforce in manufacturing (%) 3.606 5.904 4896 EC (2012)
Share of employment in services (%) 8.824 9.262 4896 EC (2012)
Share of employment in construction (%) 0.263 0.724 4896 EC (2012)

Notes: For additional details on the source of data and construction of each variable, refer to Section 3. The total sample with
non-missing observations across all our outcomes of interest and within our bandwidth (7 metres) covers 4,896 villages across
477 districts in 19 States. Variables obtained from the SECC however, have a slightly reduced sample covering 3,600 villages.
aPoverty line is set at Rs.31/day.
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Table 2: Estimated kink in the deterministic relation of groundwater depth with pump adoption, groundwater irrigation,
and covariates

Pump adoption Groundwater irrigation Covariates

Centrifugal Submersible Average Monsoon Winter Distance to Inside a canal Potential
pumps pumps Kharif Rabi nearest river command area yield
(nb/ha) (nb/ha) (standardised) (standardised) (standardised) (km) (binary) (index)

(1) (2) (3) (4) (5) (6) (7) (8)

π1 0.003*** 0.000 0.090*** 0.091*** 0.087*** 0.332 0.006 0.013
(0.001) (0.001) (0.012) (0.012) (0.012) (0.329) (0.004) (0.012)

Mean 0.034 0.041 -0.000 -0.000 0.000 21.783 0.081 -0.081
SD 0.092 0.095 1.000 1.000 1.000 23.185 0.273 0.963

N 4896 4896 4896 4896 4896 4896 4896 4896

Notes: This table presents estimates on the effect of groundwater depth on pump adoption, irrigation, and covariates. π1 is the estimated change
in slope of the assignment rule at the kink (based on Equation 9). Pump adoption, calculated as the number of pumps per agricultural land area, is
reported for centrifugal (Column 1) and submersible (Column 2) pumps. We calculate irrigation as water input in litres. However, for the purpose of
interpretation across all regressions, we standardise these variables (for a complete discussion on the construction of these variables, see Appendix B). Our
measure of irrigation is reported in Columns 3 to 5 as an average over the year, as well as independently for the Monsoon/Kharif (June-October) and
the dry Winter/Rabi season (November-March) respectively. We consider three covariates (reported in Columns 6 to 8) capturing village-level ecological
endowment variables unrelated to irrigation. Distance to the nearest river captures the minimum distance, measured in kilometres, to the closest river.
Inside a canal command area is a binary variable for whether the village has tube-wells located in the command area of a dam/canal irrigation network.
Maximum potential yield is an index calculated using the agro-ecological zones’ potential yield for 15 crops under rain-fed conditions. All regressions
include state dummies. Heteroskedasticity robust standard errors are reported in parentheses. * significant at 10% ** significant at 5% *** significant at
1%.
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Table 3: Impact of groundwater irrigation on agricultural yield

Monsoon/Kharif Winter/Rabi

Differenced Mean Max Differenced Mean Max
(ln) (ln) (ln) (ln) (ln) (ln)

(1) (2) (3) (4) (5) (6)

Panel A: Agricultural yield, NDVI-derived
Irrigation 0.036 0.050** 0.070*** 0.098*** 0.012 0.084***

(standardised) (0.062) (0.023) (0.027) (0.035) (0.021) (0.030)

Mean 3411.471 4331.142 6621.835 253.350 5022.151 5273.851
SD 1229.687 837.629 1065.302 1575.954 1200.486 1266.292

Panel B: Agricultural yield, EVI-derived
Irrigation 0.037 0.033 0.042 -0.009 0.008 0.005

(standardised) (0.068) (0.026) (0.034) (0.038) (0.018) (0.028)

Mean 2400.768 3049.306 4603.180 1734.291 2938.172 4671.421
SD 1014.689 628.628 966.622 959.040 759.095 1055.848

N 4896 4896 4896 4896 4896 4896

Notes: This table presents fuzzy RK estimates on the effect of groundwater irrigation on agricultural
yield. Irrigation intensity is calculated as litres/ha/day and standardised. We rely on measures of
vegetation cover using satellite imagery – NDVI (reported in Panel A) and EVI (reported in Panel B) – as
indicators for agricultural yield. Calculated over a three year period (2011-2013), we consider three proxies
specific to each agricultural season – maximum, mean, and the difference between early season and the
maximum value. The Monsoon/Kharif season (reported in Columns 1 to 3) is based on data from June
to October, and the dry Winter/Rabi season (reported in Columns 4 to 6) covers November to March.
For a complete discussion on the data and how each proxy is calculated refer to Appendix B. Summary
statistics for all our proxies are reported on the level form of the variables. All regressions include state
dummies. Heteroskedasticity robust standard errors are presented in parenthesis. * significant at 10% **
significant at 5% *** significant at 1%.
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Table 4: Impact of groundwater irrigation on agricultural production choices

Inputs Crop choice

Mechanised Water-saving Agricultural Winter/ Drought Cash
equipment technology land Rabi tolerant

(%) (%) (%) (binary) (binary) (binary)

(1) (2) (3) (4) (5) (6)

Irrigation 1.208 -4.493 15.972*** 0.071 -0.254*** 0.050
(standardised) (1.558) (2.794) (4.580) (0.062) (0.084) (0.072)

Mean 4.078 3.228 64.364 0.242 0.315 0.198
SD 6.894 15.485 25.330 0.429 0.465 0.398

N 3600 4896 4896 3848 3848 3848

Notes: This table presents fuzzy RK estimates on the effect of groundwater irrigation on agricultural produc-
tion choices. Irrigation intensity is measured as litres/ha/day and standardised. Columns 1 to 3 considers
the effect of irrigation on three measures of inputs: mechanisation – calculated as the percentage share of
households who own mechanised farm equipment (e.g. tractors, harvesters etc.), water-saving technology –
calculated as the percentage share of tube-wells which are adapted to water-saving mechanisms (i.e. which use
drip and sprinklers), and agricultural land – calculated as the percentage share of village area used for agricul-
tural purposes. Columns 4 to 6 present estimates on the effect of irrigation on three binary measures of crop
choice: does a village grow winter crops (wheat, barley, potato, oilseed, and chickpea), drought tolerant crops
(millet, sorghum, maize, pigeon pea, and groundnut), or cash crops (sugarcane, oilseed, cotton, and tobacco).
All regressions include state dummies. Heteroskedasticity robust standard errors are presented in parenthesis.
* significant at 10% ** significant at 5% *** significant at 1%.

45



Table 5: Impact of groundwater irrigation on the distri-
bution of landholdings

Landless 0-2 Acres 2-4 Acres 4+ Acres
(%) (%) (%) (%)

(1) (2) (3) (4)

Irrigation 1.522 0.491 -2.543 0.601
(standardised) (4.699) (3.746) (1.575) (2.587)

Mean 55.696 22.641 9.271 12.081
SD 22.904 19.078 7.296 12.756

N 3600 3600 3600 3600

Notes: This table presents fuzzy RK estimates on the effect of ground-
water irrigation on the distribution of landholdings. Irrigation intensity
is measured as litres/ha/day and standardised. Results are reported for
four categories of land acreage – 0, 0-2, 2-4, and over 4. Each variable
is calculated as the percentage share of households who own that specific
landholding size. All regressions include state dummies. Heteroskedasticity
robust standard errors are presented in parenthesis. * significant at 10%
** significant at 5% *** significant at 1%.
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Table 6: Impact of groundwater irrigation on consumption

Consumption Poverty Mean night Household
per capita rate light assets

(ln) (share) (ln) (index)

(1) (2) (3) (4)

Irrigation 0.060 -0.054* 0.178** 0.451*
(standardised) (0.039) (0.028) (0.081) (0.230)

Mean 18.215 0.316 6.715 0.317
SD 4.900 0.190 4.665 0.994

N 4896 4896 4896 3600

Notes: This table presents fuzzy RK estimates on the effect of groundwater ir-
rigation on consumption. Irrigation intensity is measured as litres/ha/day and
standardised. We consider two household level measures of consumption (repor-
ted in Columns 1 and 2): imputed log consumption per capita and the share of
the population living below the poverty line (set at Rs.31/day). For a complete
discussion on the data and construction of these variables refer to Appendix B.
Additionally, we rely on measures of night light luminosity from satellite images
as a proxy for consumption (reported in Column 3). We calculate the average
of mean night light over a five year period (2009-2013). For a complete discus-
sion on the data and construction of this variables refer to Appendix B. Finally,
household asset ownership (reported in Column 4) is an index calculated as the
village-level average of the primary component of indicator variables for all house-
hold assets captured in the Socio Economic Caste Census (2012). Table A3 in
Appendix A presents results for the effect of irrigation on each asset independ-
ently. Summary statistics for consumption per capita, as well as those for night
light, are reported on the level form of the variable. All regressions include state
dummies. Heteroskedasticity robust standard errors are presented in parenthesis,
except for consumption and poverty which report bootstrapped standard errors.
* significant at 10% ** significant at 5% *** significant at 1%.
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Table 7: Impact of groundwater irrigation on agricultural sector employment

Total Cultivators Manual labourers

Person Male Female Person Male Female Person Male Female
(%) (%) (%) (%) (%) (%) (%) (%) (%)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Share of working age population
Irrigation -2.481* 0.404 -5.316** 0.506 1.599 -0.614 -1.701 -1.035 -2.576

(standardised) (1.464) (0.903) (2.550) (1.605) (1.862) (1.674) (1.850) (1.839) (2.215)

Mean 44.582 55.390 33.280 13.319 18.250 8.176 18.394 18.915 17.786
SD 10.354 6.539 17.372 10.239 11.718 10.727 11.951 11.637 14.588

Panel B: Share of workforce
Irrigation - - - 2.521 2.957 0.557 -1.849 -1.905 0.285

(standardised) (-) (-) (-) (3.099) (3.244) (3.408) (3.393) (3.166) (4.319)

Mean - - - 29.224 32.873 21.774 39.853 33.957 49.613
SD - - - 19.585 20.428 21.570 21.502 20.032 27.084

Panel C: Share of full-time workers
Irrigation 10.289*** 8.637*** 8.019* 6.648** 5.347* 2.307 10.224** 8.046 9.763*

(standardised) (3.583) (3.147) (4.610) (3.239) (2.916) (5.074) (4.971) (4.902) (5.421)

Mean 73.651 81.052 59.401 84.616 89.091 67.317 61.758 68.384 52.010
SD 21.592 18.970 29.319 20.191 18.401 32.115 30.915 30.358 34.540

N 4896 4896 4896 4896 4896 4896 4896 4896 4896

Notes: This table presents fuzzy RK estimates on the effect of groundwater irrigation on employment of the village population in
the agricultural sector. Irrigation intensity is measured as litres/ha/day and standardised. Alongside total employment (reported
in Columns 1 to 3), we consider two specific occupational categories in agriculture: cultivators (reported in Columns 4 to 6) are
those who cultivate their own land, and manual labourers (reported in Columns 7 to 9) are those who work for a daily wage.
Furthermore, we disaggregate each of our categories by gender. Panel A reports results on the percentage share of the working
age population employed, calculated - for total employment as well as specific to each category - as the ratio of those employed to
the total population of working age. Panel B reports results on the percentage share of the workforce engaged in each category,
calculated as the ratio of those employed in that category to the total workforce. Panel C reports results on the percentage share
of full-time workers (those that work for more than 6 months of the year), calculated - for total employment as well as specific to
each category - as the ratio of full-time workers to the total workforce. All regressions include state dummies. Heteroskedasticity
robust standard errors are presented in parenthesis. * significant at 10% ** significant at 5% *** significant at 1%.
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Table 8: Impact of groundwater irrigation on industrial sectoral employment and number of
establishments

Total Agro-processing Livestock Construction Manufacturing Services
(1) (2) (3) (4) (5) (6)

Panel A: Share of workforce (%)

Irrigation 0.983 -0.235 1.167 0.150 0.026 0.313
(standardised) (3.043) (0.180) (1.617) (0.120) (1.009) (1.479)

Mean 21.247 0.262 4.924 0.263 3.606 8.824
SD 19.165 1.090 9.572 0.724 5.904 9.262

Panel B: Establishments (nb)

Irrigation 83.095 -0.644 19.087 1.565 2.570 41.841
(standardised) 53.002 1.247 22.069 1.177 10.703 28.921

Mean 249.779 2.076 68.078 2.612 38.548 122.033
SD 457.944 7.389 171.334 7.444 79.370 226.965

N 4896 4896 4896 4896 4896 4896

Notes: This table presents fuzzy RK estimates on the effect of groundwater irrigation on employment and number of
business establishments within the village. Irrigation intensity is measured as litres/ha/day and standardised. Panel
A reports results on sectoral employment. This is measured as the percentage share of the workforce employed, both
in total for all village businesses (Column 1) as well as in each of the following sectors independently: agro-processing
(this excludes crop production), livestock, construction, manufacturing, and services (Columns 2 to 6 respectively).
Panel B reports results on the number of establishments. This is also reported in total for all village businesses, as well
as for each industry independently. All regressions include state dummies. Heteroskedasticity robust standard errors
are presented in parenthesis. * significant at 10% ** significant at 5% *** significant at 1%.
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Table 9: Impact of groundwater irrigation on the village population

Population Population Working age Male working
density population age population

(ln) (ln) (%) (%)

(1) (2) (3) (4)

Irrigation 0.347* 0.445*** -0.455 0.676
(standardised) (0.179) (0.147) (0.838) (1.188)

Mean 7.783 5.888 61.295 71.144
SD 1.105 0.951 4.744 6.849

N 4896 4896 3600 3600

Notes: This table presents fuzzy RK estimates on the effect of groundwater irrigation on
village population. Irrigation intensity is measured as litres/ha/day and standardised.
We consider four measures of population - log of population in 2011, log of population
density in 2011, share of the population that is of working age (15 to 65 years), share
of the male population that is of working age (15 to 65 years). All regressions include
state dummies. Heteroskedasticity robust standard errors are presented in parenthesis. *
significant at 10% ** significant at 5% *** significant at 1%.
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Table 10: Impact of groundwater irrigation on measures of agricultural yield and consumption
by landholding size

Winter/Rabi agricultural yield, NDVI-derived Consumption

Differenced Mean Max Mean night light
(ln) (ln) (ln) (ln)

High Low High Low High Low High Low
(1) (2) (3) (4) (5) (6) (7) (8)

Irrigation 0.159 0.079 0.082 0.015 0.233** 0.069 0.496** 0.072
(standardised) (0.108) (0.055) (0.069) (0.032) (0.108) (0.044) (0.234) (0.135)

Mean 86.272 191.609 4900.922 5162.482 4985.818 5351.233 6.321 6.609
SD 1485.692 1443.166 1138.975 1196.587 1266.923 1211.838 4.090 4.667

N 1772 1773 1772 1773 1772 1773 1772 1773

Notes: This table presents fuzzy RK estimates on the effect of groundwater irrigation on agricultural yield and consump-
tion by landholding size. The sample is split by villages having high or low landholding size, calculated as the village
average landholding being above or below the median respectively. Irrigation intensity is calculated as litres/ha/day and
standardised. We rely on measures of vegetation cover using satellite imagery – NDVI – as indicators for agricultural yield
during the dry winter/Rabi season (November to March). Calculated over a three year period (2011-2013), we consider
three proxies – maximum, mean, and the difference between early season and the maximum value (reported in Columns
1 to 6). For a complete discussion on the data and how each proxy is calculated refer to Appendix B. Additionally, we
rely on measures of night light luminosity from satellite images as a proxy for consumption (reported in Columns 7 and
8). We calculate average of mean night light over a five year period (2009-2013). For a complete discussion on the data
and construction of these variables refer to Appendix B. All regressions include state dummies. Heteroskedasticity robust
standard errors are presented in parenthesis. * significant at 10% ** significant at 5% *** significant at 1%.
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Table 11: Impact of groundwater irrigation on the sectoral share of the workforce by landholding size

Cultivators Manual labourers Construction Manufacturing Services
(%) (%) (%) (%) (%)

High Low High Low High Low High Low High Low
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Irrigation -2.794 5.041 1.908 0.378 -0.933 0.366 0.135 0.026 -2.340 2.375
(standardised) (9.171) (4.882) (10.066) (5.230) (2.670) (1.739) (0.322) (0.187) (4.056) (2.600)

Mean 30.908 28.035 43.438 36.526 3.086 4.217 0.220 0.295 7.714 9.951
SD 20.131 19.305 21.478 20.898 5.440 6.231 0.626 0.774 7.939 10.006

N 1772 1773 1772 1773 1772 1773 1772 1773 1772 1773

Notes: This table presents fuzzy RK estimates on the effect of groundwater irrigation on the sectoral share of the workforce by
landholding size. The sample is split by villages having high or low landholding size, calculated as the village average landholding being
above or below the median respectively. Irrigation intensity is measured as litres/ha/day and standardised. We report results for 5
sectors: cultivators, manual labourers, manufacturing, construction, and services. The percentage share of the workforce engaged in
each sector is calculated as the ratio of those employed in that sector to the total workforce. All regressions include state dummies.
Heteroskedasticity robust standard errors are presented in parenthesis. * significant at 10% ** significant at 5% *** significant at 1%.
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Appendices

A. Additional Tables and Figures

Figure A1: Estimated kink in the deterministic relation between irrigation and groundwater
depth at a range of bandwidths
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Notes: The plot presents point estimates and 90% confidence intervals for the linear specific-
ation of Equation 9 on our measure of irrigation at one meter interval bandwidths. Irrigation,
is calculated as water input in litres measured as an average over the year and standardised
for the purpose of all regressions (for a complete discussion on the construction of this variable
see Appendix B). The regression is estimated using heteroskedasticity robust standard errors
and includes state dummies.
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Figure A2: Estimated kink in the relation between key outcome variables and groundwater
depth at a range of bandwidths
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Panel A: Winter/Rabi agricultural yield, NDVI-derived
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Panel B: Agricultural land (%)
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Panel C: Share of full-time workers (persons) (%)
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Panel D: Share of HHs who own a solid house (%)

Notes: Each plot presents point estimates and 90% confidence intervals for the linear specific-
ation of Equation 8 at one meter interval bandwidths for a selection of our outcome variables.
The four outcome variables reported here include: winter/Rabi agricultural yield (derived
from NDVI – an index of vetegation cover based on satellite imagery) calculated as the log
of the difference between early-season and the maximum value (Panel A), agricultural land
calculated as the percentage share of village area used for agricultural purposes (Panel B),
percentage share of full-time workers (those that work for more than 6 months of the year)
to the total workforce (Panel C), and the percentage share of households in the village that
own a solid house (Panel D). All regressions are estimated using heteroskedasticity robust
standard errors and include state dummies.
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Table A1: Estimated kink in the deterministic relation of groundwater depth with pump adoption, groundwater
irrigation, and covariates for different functional forms

Pump adoption Groundwater irrigation Covariates

Centrifugal Submersible Average Monsoon Winter Distance to Inside a canal Potential
pumps pumps Kharif Rabi nearest river command area yield
(nb/ha) (nb/ha) (standardised) (standardised) (standardised) (km) (binary) (index)

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Linear
π1 0.003*** 0.000 0.090*** 0.091*** 0.087*** 0.332 0.006 0.013

(0.001) (0.001) (0.012) (0.012) (0.012) (0.329) (0.004) (0.012)

Panel B: Quadratic
π1 0.008** -0.003 -0.036 -0.020 -0.049 -0.053 -0.010 -0.035

(0.004) (0.005) (0.042) (0.042) (0.042) (1.164) (0.015) (0.042)

Panel C: Cubic
π1 -0.003 -0.006 -0.162* -0.161* -0.164* -0.656 -0.007 0.071

(0.008) (0.013) (0.095) (0.094) (0.096) (2.802) (0.036) (0.100)

N 4896 4896 4896 4896 4896 4896 4896 4896

Notes: TThis table presents estimates on the effect of groundwater depth on pump adoption, irrigation, and covariates for varying functional form.
π1 is the estimated change in slope of the assignment rule at the kink (based on Equation 9). Panel A presents estimates using a linear functional
form, Panel B is quadratic, and Panel C is cubic. We calculate irrigation as water input in litres. However, for the purpose of interpretation across
all regressions, we standardise these variables (for a complete discussion on the construction of these variables, see Appendix B). Pump adoption,
calculated as the number of pumps per agricultural land area, is reported for centrifugal (Column 1) and submersible (Column 2) pumps. Our measure
of irrigation is reported in Columns 3 to 5 as an average over the year, as well as independently for the Monsoon/Kharif (June-October) and the
dry Winter/Rabi season (November-March) respectively. We consider three covariates (reported in Columns 6 to 8) capturing village-level ecological
endowment variables unrelated to irrigation. Distance to the nearest river captures the minimum distance, measured in kilometres, to the closest
river. Inside a canal command area is a binary variable for whether the village has tube-wells located in the command area of a dam/canal irrigation
network. Maximum potential yield is an index calculated using the agro-ecological zones’ potential yield for 15 crops under rain-fed conditions. All
regressions include state dummies. Heteroskedasticity robust standard errors are reported in parentheses. * significant at 10% ** significant at 5%
*** significant at 1%.
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Table A2: Estimated kink in the deterministic relation
of groundwater depth with irrigation over varying time
horizons

Irrigation

Average Monsoon/Kharif Winter/Rabi
(standardised) (standardised) (standardised)

(1) (2) (3)

Panel A: 1 year
π1 0.026*** 0.029*** 0.022**

(0.009) (0.009) (0.009)

Panel B: 3 years
π1 0.090*** 0.091*** 0.087***

(0.012) (0.012) (0.012)

Panel C: 5 years
π1 0.088*** 0.088*** 0.086***

(0.013) (0.013) (0.013)

N 4896 4896 4896

Notes: This table presents estimates on the effect of groundwater
depth on irrigation for varying time horizons. π1 is the estimated
change in slope of the assignment rule at the kink (based on Equation
9). The assignment variable is defined as the maximum groundwater
depth recorded at any point over a 1, 3, and 5 year time horizon pre-
ceding 2013. We calculate irrigation as water input in litres. However,
for the purpose of interpretation across all regressions, we standard-
ise these variables (for a complete discussion on the construction of
these variables, see Appendix B). Our measure of irrigation reported
in Columns 1 to 3 is an average over the year, as well as independently
for the Monsoon/Kharif (June-October) and the dry Winter/Rabi
season (November-March) respectively. All regressions include state
dummies. Heteroskedasticity robust standard errors are reported in
parentheses. * significant at 10% ** significant at 5% *** significant
at 1%.
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Table A3: Impact of groundwater irrigation on ownership
of assets

Solid house Refrigerator Vehicle Phone
(%) (%) (%) (%)

(1) (2) (3) (4)

Irrigation 19.991*** 2.150 3.524 5.808
(standardised) (6.217) (2.377) (3.125) (4.356)

Mean 40.716 8.799 19.707 68.053
SD 28.570 12.957 15.411 24.972

N 3600 3600 3600 3600

Notes: This table presents fuzzy RK estimates on the effect of ground-
water irrigation on ownership of assets. Irrigation intensity is measured as
litres/ha/day and standardised. Columns 1 to 4 present estimates on the
percentage share of households in the village that own each of the following
specific assets: solid house, refrigerator, vehicle, and phone respectively. All
regressions include state dummies. Heteroskedasticity robust standard er-
rors are presented in parenthesis. * significant at 10% ** significant at 5%
*** significant at 1%.
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B. Data

B1 Irrigation

According to a standard engineering formula, three main factors affect water extraction

from irrigation pumps – capacity, use, and well depth (Manring, 2013). We leverage data

collected by the Fifth Minor Irrigation (MI) Census in 2013 on irrigation practices to

calculate village-level indicators for pump capacity and usage.32 Specifically, we measure

pump capacity as the average horse power of pumps in a village. Usage is measured as the

total number of pumping hours per day in a village.33 We use our assignment variable –

the maximum groundwater depth recorded at any point over a three year period covering

2011-2013 – as our measure for well depth.34 Using these three factors as outlined in

Equation 10, we are able to calculate our main variable for irrigation in terms of water

input in litres:

Wi(HiDi) = ρ
PiHi

Di
(10)

where i denotes a village, Pi is pump capacity, Hi is usage, and Di is the depth from which

water is lifted. The physical constant ρ, is given by:

ρ = c
E

dg
(11)

where c is a constant to correct units and account for friction, E is pump efficiency, d is

density of water, and g is the gravitational constant. Values for the constants used in the

calculation of ρ are provided below in Table A4.

Calculated in this manner, we obtain a litres/day measure of groundwater extraction for

irrigation. We then scale this by village size, generating a litres/ha/day variable. For the

purpose of all our regressions, we further standardise this variable such that all results can

be interpreted as the effect of a one standard deviation increase in irrigation.35 To provide

some context, one standard deviation is approximately equivalent to 103 litres/ha/day.

32Background information on each Census (e.g. questionnaires and instruction manuals on data collec-
tion) as well as official reports and aggregated statistical tables can be found on the official website of the
MI Censuses at:http://micensus.gov.in. Village level data from each MI Census is publicly available in
excel format on the Government of India open data platform at:http://data.gov.in

33Data on usage is available disaggregated by season. This allows us to calculate water input independ-
ently for both the monsoon/Kharif and the winter/Rabi season. We obtain an annual measure by taking
an average across the seasons.

34For information on how this data is compiled, refer to the part on groundwater in Section 3.
35To standardise the variable we subtract the mean and divide by the standard deviation of the sample

for each observation.

58

http://micensus.gov.in
http://data.gov.in


Table A4: Constants used in water input calculation

Variable Value Units Source

c 3.6× 106 Ryan and Sudarshan (2020)
E 0.25 Ryan and Sudarshan (2020)
d 103 kg/m2 Manring (2013)
g 9.81 m/s2 Manring (2013)

Notes: The table shows the values of the constants used in the calcu-
lation of ρ in Equation 11. While density of water (d) and the grav-
itational constant (g) are standard in the literature (Manring, 2013),
the values for pump efficiency (E) and friction (c) were obtained by
Ryan and Sudarshan (2020) from case studies on irrigation pumping
technology in India.

B2 Agricultural Production

Data on agricultural production based on direct field measurements is not available at

the village level in India. We therefore rely on measures of vegetation cover calculated

from satellite images as proxies for village agricultural yield. Specifically, we use data

from the Normalised Difference Vegetation Index (NDVI) and the Enhanced Vegetation

Index (EVI) estimated by the United States Geological Survey from images taken by the

Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard NASA’s Terra

satellite. Evidence suggests that NDVI values obtained from MODIS predict land use –

to the extent of classifying general crop types – with 90% accuracy (Wardlow and Egbert,

2010). With respect to crop yields, Labus et al. (2002) find that NDVI values from MODIS

are able to successfully predict the growth profile of wheat at both the regional and farm

level in Montana, USA. In a study of millet in Senegal, Rasmussen (1997) estimates a

correlation coefficient of 72% between NDVI and actual yield. Additionally, the author

finds that subtracting early-season NDVI from the peak integral NDVI values significantly

improves the level of explained yield variance – an approach we therefore adopt in our

empirical analysis. Comparisons of EVI and NDVI have found that both indices produce

equivalent crop classification results (Wardlow and Egbert, 2010) and are equally successful

at predicting yields (Kouadio et al., 2014). EVI has been found to be especially sensitive

to high biomass locations and tends to present relatively lower ranges over lower biomass

sites (Gao et al., 2000).

In order to determine the spatial distribution of plants from satellite images, the ve-

getation indices exploit the natural strong differences in plant reflectance. Specifically, the

green photosynthetically active pigment in plant leaves – chlorophyll – strongly absorbs vis-

ible red light (RED). Conversely, the cell structure of leaves, strongly reflects near-infrared
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light (NIR). As a result, healthy vegetation absorbs most of the visible light that hits it

and reflects a large portion of the near-infrared light. Therefore, in a given pixel, if there is

more reflected radiation in the near-infrared wavelengths than in the visible wavelengths,

we can concur that the vegetation cover is likely to be dense. Formally, NDVI is calculated

as:

NDV I =
ρNIR − ρRED

ρNIR + ρRED
(12)

where ρNIR (846–885 nm) and ρRED (600–680 nm) are the surface reflectance for the re-

spective MODIS bands. MODIS captures data in 36 spectral bands ranging in wavelength

from 0.4 to 14.4 µm. The bands covering the wavelengths of interest for the purpose of

capturing vegetation cover are generated at a global scale and a resolution of 250 m. Each

image represents a 16-day composite, such that the value of each pixel is optimised follow-

ing an algorithm which accounts for cloud cover obstruction, image quality, and viewing

geometry. The images are published by the IRI/LDEO Climate Data Library.36 The EVI

is estimated in the same manner as the NDVI, but uses additional wavelengths from the

blue band so as to account for atmospheric disturbance and background corrections. For

an in-depth review of the literature and methods on calculating vegetation indices based

on satellite imagery, refer to Huete et al. (2002).

As part of their research evaluating India’s national rural road expansion programme,

Asher and Novosad (2020) compiled data on the NDVI and EVI at the village-level across

India for the years spanning 2000-2014. Specifically, the authors downloaded composite

images for nine 16-day periods from June to October so as to cover the monsoon/Kharif

growing season, and similarly from November to March so as to capture the winter/Rabi

season. Each composite image was then spatially averaged to village boundaries and a

range of proxies for agricultural production – based on evidence from previous research

evaluating the accuracy of vegetation indices from satellite imagery – were calculated for

each year and season. This data is made publicly available as part of the replication material

of their published paper.37 We employ three proxies calculated for both the NDVI and

EVI in each growing season: (i) the mean value (Mkhabela et al., 2005), (ii) the maximum

value (Labus et al., 2002), and (iii) the difference between the maximum value and the

early season value (taken as the average of the first three 16 day periods) (Rasmussen,

1997). This third proxy enables us to subtract interference from non-crop vegetation such

as forest cover, thereby providing a more accurate measure for agricultural production.

All our proxies are calculated as an average over a three-year period covering 2011-2013,

36Information on MODIS and images for Asia can be found on the site of the IRI/LDEO Climate Data
Library:https://iridl.ldeo.columbia.edu/index.html?Set-Language=en

37The paper by Asher and Novosad (2020) and its associated dataset is available at:https://www.aeaweb.
org/articles?id=10.1257/aer.20180268
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coinciding with the time horizon of our assignment variable. Finally, for more interpretable

results of our regression analysis, all proxies are log transformed.

As a validation test of these vegetation indices to proxy for agricultural production

in the case of Indian villages, Asher and Novosad (2020) provide correlation estimates

between the proxies and district level measures of agricultural output. Table A5 presents

the replication of these results. Specifically, the authors ran panel regressions (2000-2006)

of the differenced NDVI and EVI proxy on agricultural output obtained from the Planning

Commission’s district-wise domestic product data. An R-squared of over 70%, when using

district-year fixed effects, suggests a strong correlation between the proxies and district

level estimates of agricultural output.

Table A5: Correlates of NDVI and EVI proxies on district
agricultural output

Differenced NDVI (ln) Differenced EVI (ln)

(1) (2) (3) (4)

Output (ln) 0.331 0.233 0.235 0.197
(0.042) (0.040) (0.046) (0.041)

R2 0.74 0.78 0.85 0.89

N 2124 2124 2124 2124
District FE Yes Yes Yes Yes
Year FE No Yes No Yes

Notes: This table replicates the results from Asher and Novosad (2020)
evaluating the validity of vegetation indices as proxies of agricultural pro-
duction. The NDVI and EVI proxy are based on satellite images, calculated
as the difference between early season and the maximum value. Agricultural
output is obtained from the Planning Commission’s district-wise domestic
product data. Heteroskedasticity robust standard errors are presented in
parenthesis.

B3 Consumption

Most developing countries do not collect detailed information on income or consumption

as part of their censuses. As such, estimates of these economic indicators at a high geo-

graphic resolution are often unavailable at regular time intervals. Policy makers (especially

the World Bank) and researchers have therefore recently relied on a method developed by

Elbers et al. (2003) which uses an imputation rule derived from a household survey to

generate small-area estimates of consumption in census data (Bedi et al., 2007). In a

comparison of methods, McKenzie (2005) show that this prediction method through aux-
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iliary surveys most accurately predicts non-durable consumption. Hentschel et al. (2000),

demonstrate that this method produces unbiased estimates of poverty.

Since the early 1990s the Government of India has conducted national socioeconomic

censuses collecting information at both the individual and household level on caste, occu-

pation, earnings, and assets, in order to determine the eligibility of households into various

welfare schemes (Alkire and Seth, 2013). In 2012, the fourth such Socio Economic Caste

Census (SECC) was implemented.38 In that year, the India Human Development Survey-II

(IHDS-II) was also conducted. It recorded direct measures of household consumption, as

well as equivalent questions to the SECC on household assets and earnings.39 Following

the methodology of Elbers et al. (2003), Asher et al. (2021b) use the IHDS-II data to

predict household level consumption in the SECC dataset. Specifically, the researchers

first estimate regressions of total household consumption on dummy variables of assets

and earnings in the IHDS-II.40 Coefficients from these regressions are then used to impute

household level consumption values in the SECC. Finally, based on these household level

values the researchers generate village level statistics for mean predicted consumption per

capita and the share of the population below the poverty line.41 Bootstrap estimates of

these village level indicators are made available by the research team on the Socioeconomic

High-resolution Rural-Urban Geographic (SHRUG, Version 1.5) open data platform for

India.42 We take these 1000 bootstrapped variables for predicted consumption per capita

(for the purpose of the regression, these variables are log transformed) and share of the

population below the poverty line, and run an additional bootstrap process on our main

sample of villages when estimating the effect of access to irrigation on these indicators.

As outlined in the work of Elbers et al. (2003), this bootstrapping process is required to

obtain correct standard errors and p-values on our estimates.

Specific to our setting of Indian villages, Asher et al. (2021b) provide three validation

tests for the bootstrap estimates of consumption used in our analysis. First, the distribution

of the consumption estimates at the village level matches broadly to that found in two

38Information on the census can be found on the SECC website:https://secc.gov.in/welcome. Though
the Government initially made the raw data public, only aggregated information is now available on the
website.

39Information and data related to this survey can be found on the platform of Data Sharing for Demo-
graphic Research:https://www.icpsr.umich.edu/web/pages/DSDR/index.html

40These are the exact same variables as those recorded in the SECC. They include: type of roof and wall
material, number of rooms, ownership of phone, house, vehicle, land, kisan credit card, and refrigerator, as
well as the highest individual income in the household.

41The official poverty line for rural India is set at Rs.27/day, based on the Planning Commission’s
Tendulkar Committee Report in 2014.

42For detailed information on consumption data using the SHRUG open data platform, please refer
to Asher et al. (2021b). The dataset, including codebooks and references, can be found at:http://www.
devdatalab.org/shrug
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national surveys conducted at the same time and at the same geographic level (IHDS-II

and the National Sample Survey-2012). Second, there is a strong covariance between the

district level predicted consumption estimates and those in the original household survey

(IHDS-II). Third, by identifying how each component used in the imputation rule affects the

difference in average consumption between the estimates and the original survey (IHDS-II),

the researchers find that the transformation of asset ownership to consumption assumes a

similar relationship across datasets. These findings provide confirmation that the predicted

consumption estimates are valid proxies of the direct survey measures.

B4 Night Light

As an additional proxy for consumption, we leverage remote sensing imagery on Night-

Time Light (NLT) at the village level across India. Initiated by the work of Henderson et

al. (2011), NTL has since become a widely used proxy for economic activity. Researchers

have adopted night-time luminosity to effectively capture GDP growth (Henderson et al.,

2011), cross-sectional GDP Bleakley and Lin (2012), urbanisation (Harari, 2020), public

expenditure (Hodler and Raschky, 2014), and employment (Mellander et al., 2015). In an

analysis of Indian villages, Asher et al. (2021b) find that night light is a highly statistically

significant proxy for a range of development outcomes including - population, employment,

per capita consumption, and electrification.

Night-time luminosity data is made available by the U.S. National Oceanographic and

Atmospheric Administration (NOAA). The observations are assembled by the Operational

Linescan System (OLS) aboard the Defense Meteorological Satellite Program (DMSP)

satellites. A total luminosity value ranging from 0-63, is reported in grid cells covering a

resolution of 1km x 1km. A description of the satellite instrumentation, data collection,

and processing methods for NTL is detailed in the work of Elvidge et al. (1997). Asher

et al. (2021b) leverage this data to verify the effectiveness of night-time luminosity as a

proxy for development indicators at the village level in India. As part of this work, the

researchers compile a panel of NTL from 1994 to 2013 matched and aggregated to villages

and towns across the country.43 This dataset is made available by the research team on the

Socioeconomic High-resolution Rural-Urban Geographic (SHRUG, Version 1.5) open data

platform for India.44 We make use of data on the average pixel luminosity at the village

level.45 Specifically, we measure the average of mean night light for a village over a five

year period, from 2009 to 2013, as our main proxy for economic activity (for the purpose

43The data is calibrated for consistent estimation across time, as suggested by Elvidge et al. (1997).
44For detailed information on NTL data using the SHRUG open data platform, please refer to Asher et

al. (2021b). The dataset, including codebooks and references, can be found at:http://www.devdatalab.
org/shrug

45Average luminosity in a given year is calculated by dividing total luminosity by the village area.
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of the regression, this variable is log transformed).
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