Down-payment requirements and consumption responses to income shocks

Kasper Kragh Balke¹ Markus Karlman² Karin Kinnerud³

¹University of Oslo

²NHH Norwegian School of Economics

³BI Norwegian Business School

August 24, 2022

EEA

<ロト < 母ト < 目ト < 目ト 三日 のへの</p>

BACKGROUND

After the Great Recession, the use of down-payment requirements has increased substantially

· · 프 · · · 프 ·

< 4 P ►

This paper

We analyze how down-payment requirements affect

- Different households' marginal propensity to consume (MPC)
- Aggregate demand responses to income shocks and macroeconomic policies

Method

- Simple theoretical framework
- Quantitative heterogeneous-household life-cycle model of the U.S. economy

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

PREVIEW OF RESULTS

We find that

- In contrast to a traditional borrowing constraint, a down-payment constraint causes some households' MPC to increase and others' to decrease
- The mean MPC is U-shaped in the down-payment requirement
- A stricter down-payment constraint reduces the cash-flow channel of monetary policy and alters the effectiveness of fiscal transfers

Literature Review

《曰》 《問》 《문》 《문》 문법

Conceptual framework

BALKE ET AL.

DOWN-PAYMENT REQUIREMENTS

EEA 3 / 13

TWO-PERIOD MODEL

$$\max_{c_1,c_2,b} U(c_1) + U(c_2) \ s.t.$$
$$c_1 = y_1 - b$$
$$c_2 = y_2 + b$$
$$b > b$$

BALKE ET AL.

Down-payment requirements

EEA 4 / 13

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへで

Two-period model

$$\max_{c_1,c_2,b} U(c_1) + U(c_2) + \mathbb{I}\Psi \ s.t.$$
$$c_1 = y_1 - b$$
$$c_2 = y_2 + b$$
$$b \ge \underline{b}$$
$$\mathbb{I} = \begin{cases} 1 \text{ if } b \ge b^* \\ 0 \text{ else.} \end{cases}$$

BALKE ET AL.

Down-payment requirements

EEA 4 / 13

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへで

TWO-PERIOD MODEL

 $\max_{c_1, c_2, b} U(c_1) + U(c_2) + \mathbb{I} \Psi \ s.t.$ $c_1 = y_1 - b$ $c_2 = y_2 + b$ $b \ge \underline{b}$ $\mathbb{I} = \begin{cases} 1 \text{ if } b \ge b^* \\ 0 \text{ else.} \end{cases}$ $y_1 + y_2 = 1$

EEA 4 / 13

EEA 5 / 13

590

《日》 《圖》 《图》 《臣》 문법

MAKING IT MORE DIFFICULT TO BORROW AGAINST FUTURE INCOME

EEA 5 / 13

INCREASING THE DOWN-PAYMENT REQUIREMENT

EEA 5 / 13

INCREASING THE DOWN-PAYMENT REQUIREMENT

- A down-payment requirements is not just a borrowing constraint
 - A stricter down-payment requirement increases some households' MPC whereas it decreases others'

EEA 5 / 13

315

The timing of house purchases

Introduce a full life cycle

- Age 23 82, retire at age 65
- Upward-sloping earnings profile until retirement
- One representative household at each age

(日) (四) (종) (종) (종)

The timing of house purchases

Introduce a full life cycle

- Age 23 82, retire at age 65
- Upward-sloping earnings profile until retirement
- One representative household at each age

STRICTER DOWN-PAYMENT REQUIREMENT

EEA 7 / 13

(日) (四) (종) (종) (종)

STRICTER DOWN-PAYMENT REQUIREMENT

• Households postpone house purchases

- More poor hand-to-mouth
- Fewer wealthy hand-to-mouth

EEA 7 / 13

(日) (四) (王) (王) (王)

MEAN MPC & SHARES OF HAND-TO-MOUTH

BALKE ET AL.

Down-payment requirements

EEA 8 / 13

214

イロト イヨト イヨト イヨト

MEAN MPC & SHARES OF HAND-TO-MOUTH

- A stricter down-payment constraint increases the share of poor HtM, if there is an occasionally-binding traditional borrowing limit
- Mean MPC is U-shaped

BA	LKE	EΤ	AL

EEA 8 / 13

Quantitative analysis

BALKE ET AL.

DOWN-PAYMENT REQUIREMENTS

EEA 8 / 13

MODEL OVERVIEW

- Life-cycle model with overlapping generations and incomplete markets
- Utility from consumption and housing services and a warm-glow bequest motive
- Permanent and transitory income shocks
- $\bullet\,$ Three assets: houses h, liquid bonds b, and long-term mortgages m
- Competitive rental housing market
- Include main features of U.S. tax code w.r.t. housing and mortgages
- Explicit payment-to-income and down-payment requirements

Households' dynamic problem Calibrat

BALKE ET AL.

EEA 9 / 13

(日) (四) (王) (王) (王) (王)

MODEL VS DATA DISTRIBUTIONS

Results: LIFE-CYCLE EFFECTS

RESULTS: MEAN MPC & SHARES OF HTM

Implications for Monetary policy Fiscal policy

BALKE ET AL.

Down-payment requirements

EEA 12 / 13

・ロト ・ 同ト ・ ヨト ・ ヨト

CONCLUSIONS

Using a simple conceptual framework we show that

- A down-payment constraint is very different from a traditional borrowing constraint: some households' MPC increases and others' decreases
- Mean MPC is U-shaped in the down-payment requirement

(日) (四) (종) (종) (종)

CONCLUSIONS

Using a simple conceptual framework we show that

- A down-payment constraint is very different from a traditional borrowing constraint: some households' MPC increases and others' decreases
- Mean MPC is U-shaped in the down-payment requirement

In a quantitative analysis we find that

- The minimum mean MPC (5% lower than today) is achieved when the down-payment constraint is approximately 40 percent
- A down-payment requirement has implications for both monetary and fiscal policy

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Extra slides

LITERATURE REVIEW

- Empirical studies on macroprudential policies in the mortgage market **Aastveit et al. (2020)**; Acharya et al. (2020); Lim et al. (2011); Peydro et al. (2020); **Van Bekkum et al. (2019)**
- Households' MPCs Agarwal and Qian (2014); Fagereng et al. (2021); Parker et al. (2013)
- Theoretical investigations of importance of illiquid assets and constraints Boar et al. (2020); Greenwald (2018); Kaplan and Violante (2014)
- Monetary policy and debt Angelini et al. (2012); Calza et al. (2013); Cloyne et al. (2019); Di Maggio et al. (2017); Ferrero et al. (2018); Flodén et al. (2020); Guren et al. (2021); Holm et al. (2021); Kinnerud (2022); Verner and Gyöngyösi (2020)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

HOUSEHOLDS' DYNAMIC PROBLEM

For each $k \in \{R, B, S, RF\}$:

$$V_{j}^{k}(z,x,h,m) = \max_{c,s,h',m',b'} U_{j}(c,s) + \beta \mathbb{E}\left[\phi_{j}V_{j+1}(z',x',h',m') + (1-\phi_{j})U^{B}(q')\right]$$

s.t.

$$c+b'+\mathbb{I}^{R}p_{r}s+\mathbb{I}^{B}(1+\varsigma^{b})p_{h}h'+\mathbb{I}^{RF,S}(1-\varsigma^{s})p_{h}h+\mathbb{I}^{RF}\varsigma^{r}\leq x+m'$$

"Expenditures"

"Money to spend"

HOUSEHOLDS' DYNAMIC PROBLEM

For each $k \in \{R, B, S, RF\}$:

$$V_j^k(z, x, h, m) = \max_{c, s, h', m', b'} U_j(c, s) + \beta \mathbb{E} \left[\phi_j V_{j+1}(z', x', h', m') + (1 - \phi_j) U^B(q') \right]$$

s.t.

ũ

$$\underbrace{c+b'+\mathbb{I}^{R}p_{r}s+\mathbb{I}^{B}(1+\varsigma^{b})p_{h}h'+\mathbb{I}^{RF,S}(1-\varsigma^{s})p_{h}h+\mathbb{I}^{RF}\varsigma^{r}}_{\text{"Expenditures"}} \leq \underbrace{x+m'}_{\text{"Money to spend"}}$$

$$\begin{split} \mathbb{I}^{B,RF}m' &\leq (1-\theta)p_hh' & \text{LTV constraint} \\ \mathbb{I}^{B,RF}\left(\frac{\chi_{j+1}m' + (\tau^h + \varsigma^I)p_hh'}{z}\right) &\leq \psi & \text{PTI constraint} \\ \mathbb{I}^Sm' &\leq (1+r_m)m - \chi_jm & \text{Min payment} \\ s &= h' & \text{if } h' > 0 \\ m' &\geq 0 & \text{if } h' > 0 \\ m' &= 0 & \text{if } h' = 0 \\ c &> 0, s \in S, h' \in H, b' \geq 0. \end{split}$$

Back to Model

CALIBRATION

• Parameters that can be directly calibrated from data are set in that way

Independently calibrated parameters

• That leaves 7 parameters that are calibrated internally to match cross-sectional and life-cycle moments

Internally calibrated parameters

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

INDEPENDENTLY CALIBRATED PARAMETERS

Parameter	Description	Value
σ	Coefficient of relative risk aversion	2
τ^{ss}	Social security tax	0.153
τ^h	Property tax	0.01
r	Interest rate, bonds	0
r^m	Interest rate, mortgages	0.036
θ	Down-payment requirement	0.10
ψ	Payment-to-income requirement	0.177
δ^h	Depreciation, owner-occupied housing	0.03
ς^{I}	Home insurance	0.005
ς^b	Transaction cost if buying house	0.025
ς^s	Transaction cost if selling house	0.07
R	Replacement rate for retirees	0.5
B^{max}	Maximum benefit during retirement	60.4

Back to Calibration

EEA 4 / 7

INTERNALLY CALIBRATED PARAMETERS

Parameter	Description	Value	Target moment	Data	Model
α	Consumption weight in utility	0.778	Median house value-to-earnings, age 23–64	2.26	2.26
β	Discount factor	0.953	Mean net worth, over mean earnings age 23–64	1.38	1.38
v	Strength of bequest motive	4.20	Mean net worth age 75 over mean net worth age 50	1.64	1.64
Ψ	Utility bonus of owning	0.3	Mean own-to-rent size	1.80	1.94
δ^r	Depreciation rate, rentals	0.055	Homeownership rate, age 23–35	0.44	0.37
$\underline{\mathbf{h}}$	Minimum owned house size	181	Homeownership rate, all ages	0.67	0.67
ς^r	Refinancing cost	2.524	Refinancing share, homeowners	0.08	0.08
λ	Level parameter, tax system	1.695	Average marginal tax rates	0.13	0.13
τ^p	Progressivity parameter	0.142	Distribution of marginal tax rates	N.A.	N.A.

Back to Calibration

EEA 5 / 7

MONETARY POLICY: CASH-FLOW EFFECTS

(A) Consumption response (%) 1 ppt hike (B) Consumption response, mortgage effect

Back to Results

BALKE ET AL.

DOWN-PAYMENT REQUIREMENTS

EEA 6 / 7

・ロト ・ 同ト ・ ヨト ・ ヨト

FISCAL TRANSFERS

Mean MPC for different income groups

EEA 7 / 7

315

イロン スロン メロン メロン