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Abstract

How do people save across their portfolio of assets in a lifetime? Using a dynamic lifecycle
model of saving and portfolio choice featuring risky labor income, housing, and safe and risky
financial assets inside and outside pension plans with comprehensive choice architecture, we
examine the behavior of members of an industry-wide retirement fund to assess how standard
saving motives, pension defaults, investment returns, preferences and frictions interact to drive
lifetime savings across major asset classes. Our results show considerable heterogeneity in
what motivates people how to save. First, we find that financial and housing assets are largely
driven by consumption smoothing motives. While these motives also affect plan choices, their
role in pension accumulation is more limited due to default switching costs. Removing such
costs, on the other hand, encourages pension savings at the expense of financial wealth but
not of housing. In fact, we find higher pension assets to drive up housing wealth throughout
the lifecycle, as people - anticipating a wealthier retirement and to avoid potentially larger
adjustment costs later in life - lock in higher housing investments early on. Second, being
luxury goods, bequest motives lead to higher DC take-up and riskier portfolios, but only to
a modest mid-life financial savings boost. Third, precautionary savings that insure against
wage risks have similar plan effects to bequests, although they do not translate in any wealth
dynamic. Finally, removing costless redraws on mortgages leads to higher financial savings,
again displacing pension balances considerably more than housing wealth.
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1 Introduction

How do people save across their portfolio of assets in a lifetime? First, recall the canonical lifecycle

model prediction that overall wealth accumulation exhibits a familiar hump shape (Modigliani,

1986), with wealth built up during working years and consumed in retirement. Three key saving

motives were found to shape this pattern - i.e., consumption smoothing, bequests and precautionary

saving. Early in one’s working life, wealth can be significantly affected by labor income risks that

trigger precautionary savings (Gourinchas and Parker, 2002), and by volatile transfers such as

bequests (De Nardi, 2004). During more mature years, saving is more predominantly driven by

consumption smoothing and leaving bequests (Gomes et al., 2021), with job tenure and mobility

(Brown, 1989; Jung and Kuhn, 2019), investment returns (Benhabib et. al, 2019), preference

heterogeneity (Krusell and Smith, 1998) and lifetime earning dynamics more generally (Guvenen

and Smith, 2014) further affecting the link between all saving motives and so, wealth accumulation.

Setting aside overall levels, however, there are also significant advantages to diversifying one’s

portfolio as well as accumulating wealth via portfolios with different compositions over the life-

cycle (Iacoviello, 2011; Flavin and Yamashita, 2011; Kraft and Munk, 2011; Kraft et al., 2018;

Gomes et al., 2021).1 Given the role private pensions have come to play in the provision of re-

tirement income (Amaglobeli et al., 2019) and the worldwide shift from defined benefit (DB) to

defined contribution (DC) plans that increasingly rely on defaults (OECD, 2019),2 the quality of

people’s portfolio decisions will thus bear increasing weight on their old age savings adequacy.

So how do standard saving motives and pension choices, investment returns, preferences and

frictions interact to drive lifetime savings across the main asset classes? To answer this question,

we solve (via novel non-convex optimization) and estimate (via Monte Carlo machine learning) a

rich structural lifecycle model of optimal consumption and portfolio choice - involving real (hous-

ing) and financial wealth in safe and risky assets inside and outside pension plans - in the presence

of uninsurable labor income risk and borrowing constraints. In doing so, we use panel administra-

tive data on members of an industry-wide retirement fund matched with nationally representative

1See also Poterba et al. (1995), Ameriks and Zeldes (2004), Benzoni et al. (2007).
2Plan defaults assign specific outcomes for key decisions (e.g., participation, contribution rates, investment alloca-

tions, benefit type, etc.) when no active choice is made. While theoretically harmless as long as people can easily opt
out, research suggests they can significantly affect pension savings (Madrian and Shea, 2001; Dobrescu et al., 2018).
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survey data. The retirement fund we study - Unisuper - is one of the largest in Australia, it covers

all higher education and research sector employees and offers both DB and DC plans, each with

several reversible and irreversible defaults related to plan type, voluntary contributions and invest-

ment choice. Using a multi-step process, we link Unisuper records with Household, Income &

Labour Dynamics in Australia (HILDA) data on a wide variety of assets and liabilities, and pro-

ceed in two steps. First, we document the relation between the major asset classes (i.e., housing

and financial assets inside and outside pension plans) and identify the factors associated with their

levels and prevalence. Second, we use our rich structural model to assess whether these empirically

motivated elements can explain the data profiles and run counterfactuals to quantify the extent to

which they do so.

The structural lifecycle model we develop considers that working individuals earning stochas-

tic labor income consume and save via real and financial assets inside and outside pension plans

to maximize expected lifetime utility. People in our model can either rent or own a house, with

homeowners being allowed to borrow against their real assets by taking a collateralised mortgage.

As in our institutional context, pension wealth gets decided in a rich setting that combines auto-

matic plan enrolment with reversible and (time-sensitive) irreversible plan defaults: upon being

hired, individuals are automatically enrolled in a DB plan and, within the first period, they have a

one-off option to switch to DC. Each period they can also decide to (i) voluntarily contribute and

override the default (0%) voluntary contribution rate, and (ii) opt out of the default (balanced) asset

allocation, by choosing a different share of pension wealth to be invested in risky assets. Switch-

ing out of plan defaults incurs the cost of acquiring information, operationally making the change,

and/or forgoing the liquidity of saving outside the pension plan. Finally, we include stochastic dis-

count rates and housing preferences to account for preference heterogeneity potentially affecting

the wealth distribution (Krusell and Smith, 1998; Guvenen and Smith, 2014; Stachurski and Toda,

2019) and homeownership profiles (Ngai and Sheedy, 2020).

To the best of our knowledge, ours is the first structural study to examine the allocation of

wealth across the major liquid and illiquid, risky and safe asset classes in a setup that fully fleshes

out pension choices related to plan type, contributions and asset allocations, each with its own

default options. The main advantage of this setup is that it allows us to conduct counterfactual
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simulations that can identify the economic drivers shaping not only the overall wealth profiles

but also those of each main asset class separately. We also manage to circumvent a few chal-

lenges related to estimating lifecycle models. First, our rich panel data on a sizeable sample of

individuals with different ages and job tenures allows us to disentangle the age vs. cohort vs.

time effects in wealth accumulation (Ameriks and Zeldes, 2004). Second, we limit the issue of

potential measurement errors that can notoriously affect survey data (Kapteyn and Ypma, 2007)

by using an extensive matching procedure that links them to comprehensive administrative data

(Dobrescu et al., 2018). Third, the usually limited active stock market participation (Bertaut and

Starr-McCluer, 2002; Cocco, 2005; Lynch and Tan, 2011) implies that any portfolio insights will

be based only on the behavior of a selected group of individuals (i.e., those who engage with

such decisions). We bypass this issue by considering the portfolio allocations that all people hold

for their (DC-component) pension wealth due to automatic plan enrolment and account for non-

choices by carefully modelling plan defaults. Fourth, by modelling pension plan choices jointly

with both (i) liquid financial saving, and (ii) homeownership decisions involving precommitments

that make housing wealth costly to adjust, we can not only better understand savings patterns but

also flesh out the interplay between the savings motives that drive them. Finally, with six endoge-

nous state variables, three discrete choices and frictions, our model is both high-dimensional and

non-convex. To manage the higher computational burden arising from the curse of dimensionality,

solving high-dimensional models generally relies on first order conditions (FOCs) to gain compu-

tational speed via methods such as the endogenous grid method (EGM - see Carroll, 2006). Such

FOCs, however, are not sufficient without convexity (Iskhakov et al., 2017). To address this issue,

we use second order differences between EGM candidate points to identify optimal solutions us-

ing the novel fast upper-envelope scan method by Shanker and Dobrescu (2022). Additionally, to

estimate our parameters using the simulated method of moments (SMM), we use the cross-entropy

method (De Boer, 2005) - a Monte Carlo, gradient free algorithm shown to perform well on op-

timisation problems for irregular objective functions (Botev et al., 2011). By doing so, we also

advance the understanding of practical scaling in distributed dynamic programming algorithms.

Our reduced form analysis yields several interesting results. For instance, while overall pension

wealth is relatively high in our sample, females have lower balances than males but they also invest
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it slightly more aggressively possibly in an attempt to close this gap. Additionally, we see people

becoming homeowners relatively early in their working life and holding higher housing wealth

shares as they get older. Our female and less educated subsamples are both more likely to own a

home, which is consistent with the former deriving higher utility from housing than males and the

latter still using housing as primary vehicle to build up savings. In contrast, those more educated

and on higher wages diversify their portfolios more, while net wealth and the wealth share own-

home invested appear positively related.

The model-simulated and empirical patterns are well-matched and show rising age profiles for

all types of wealth and voluntary contributions. Plan defaults are highly prevalent for both plan

type (i.e., DB) and asset allocations (i.e., balanced risk portfolio), with stable risky assets shares

over the lifecycle and only slight rebalancing at older ages. Finally, females accumulate less than

males in their pension accounts but invest it more aggressively, and they also save slightly more

financial wealth outside their pension plan.

Several counterfactuals allow us to better understand these patterns. First, eliminating con-

sumption smoothing motives (by allowing individuals to maintain a uniform income even after

retirement - Pashchenko and Porapakkarm, 2020) results in 32.94% less savings across all as-

sets, with females registering almost double the drop compared to males as housing is for them

as important a form of consumption smoothing as financial wealth is). We also see an average of

9.47% fewer DC plan opt-ins, an unsurprising finding given their role of offering people a way

to directly manage and diversify their portfolio to smooth consumption. Zooming in on wealth

while holding plan choices fixed, however, we find consumption smoothing to significantly drive

financial wealth accumulation particularly during mature working years (i.e., after the age of 45),

with females (males) saving 23.56% (11.44%) more by the end of their working life (Gourinchas

and Parker, 2002). Strikingly, the same wealth boost occurs for housing but (i) much earlier due to

housing frictions motivating early housing investment (Yang, 2009), and (ii) more prominently for

females (30.05%) than males (20.09%). This early (i.e., from mid-30s onwards) wealth increase

is present also for pensions, although the (roughly 26%) pension balance rise does not seem to

exhibit the gender gap. All in all, while our consumption smoothing findings are consistent with

the previous literature when it comes to overall levels, our analysis of portfolio dynamics sheds
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light on how this motive can drive early housing accumulation and influence DC plan uptake.

Second, cancelling the bequest motive generates a significant 28.67% drop in pension balances,

but also a modest 1.65% increase in non-pension wealth as the drop in financial wealth (no longer

needed for one’s heirs) is offset by the boost in housing (due to bequests no longer displacing con-

sumption, including housing consumption - see Kopczuk and Lupton, 2007). Unsurprisingly, this

housing boost is 63.05% higher for females than for males due to females valuing bequests more

in our sample (see also Seguino and Floro, 2003) and thus, facing stronger (housing) consump-

tion displacement effects. Interestingly, however, the bequest effect on pension balances operates

almost solely via plan choices: Being a luxury good (Ding, 2013), bequests induce 7-8% more

willingness to opt for DC plans in an attempt to build up a larger post-retirement payout (used both

as a source of retirement income and bequest). As females value bequests more, they will also

adopt roughly 12% riskier portfolios. In fact, ceteris paribus plan choices, bequests only drive-

up financial savings during mid-working years, while pension assets are still building up. Since

pension wealth (and to some extent, housing) also serves as bequeathable wealth, the increase in

non-liquid wealth in later life reduces incentives to accumulate liquid assets for bequest reasons

(Dynan et al., 2002). While these findings on the marginal role of the bequest motive are consis-

tent with the previous literature (Dynan et al., 2002), our analysis also highlights how this motive

shapes the risk allocation of portfolios and, in turn, pension plan choices.

Third, and continuing to hold plan type choice fixed, we find precautionary motives related

to wage risks not to directly add any extra financial or pension wealth due to mortgages featuring

costless redraw options (per our institutional context). This result contrasts previous findings on the

significance of the precautionary saving motive for financial wealth accumulation (Gourinchas and

Parker, 2002) and is due to paying off mortgages having a dual role - as a form of ‘saving’ (to avoid

paying interest) that also enables early homeownership and as a form of insurance. On the pensions

side, wage risks have similar effects to bequests, significantly raising DC uptake (by 20.63%) and

thus pension balances (by 23.66%): with DB payouts tightly linked to the full stream of wage

shocks up to retirement, switching to DC means people are able to better diversify the impact of

wage risks on post-retirement income as once a contribution is made, pension accumulation is

driven only by market returns.
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Fourth, we turn to pensions architecture and start with a counterfactual that assumes costless

opting out of plan defaults. Such flexibility leads to significant wealth effects across the board, due

to higher DC plan take-up, higher voluntary contributions prevalence and ultimately higher pension

balances. Unsurprisingly, males benefit the most from such changes and end up saving 21.36%

more than females in their pension account. While this pension boost mildly displaces financial

savings for everybody, we also find an interesting complementarity between pension and housing

wealth - strong enough to generate higher non-pension wealth for males but not for females. This

link appears to be generated by higher post-retirement wealth driving up consumption (including

housing consumption) close to and after retirement. Since housing levels are locked in during

early years due to frictions, the higher housing consumption desired in later years drives up housing

wealth, and in turn overall wealth throughout the lifecycle, due to a consumption smoothing motive

to bring housing consumption forward. To further confirm our pensions-housing complementarity,

we also run a counterfactual that raises risky assets returns, and again rather than displacing non-

pension wealth, higher pension balances spur higher housing investments.

Finally, we abstract from our housing market setup (and how it interacts with the precaution-

ary saving motive to influence plan choice) by running a counterfactual that replaces the costless

mortgage redraw with a constant amortisation repayment. As expected, we see individuals that

can no longer draw down their mortgages accumulate significantly more precautionary financial

wealth (i.e., 34.42% males, 25.29% females). This induces a general 29.52% shift away from

DC plans as their diversification role becomes less relevant, with the added diversification due to

higher financial wealth already reducing the overall exposure of wealth to wage risks. All in all,

these effects highlight again the key impact plan architecture has on lifecycle portfolio and its risk

mitigating role within the standard saving motives framework. Carefully designed pension plans

are thus central to optimal portfolio allocation and overall financial wellbeing in retirement.

1.1 Related literature

These findings bring together the lifecycle saving literature and the literature examining the be-

havioural role of pension plan architecture and defaults in a novel methodological setup. The

lifecycle savings literature can be traced back to Ando and Modigliani (1963), where household
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saving decisions were motivated by the desire to smooth consumption through time. Over the next

decades, several studies significantly advanced the standard lifecycle hypothesis. Kotlikoff and

Summers (1981), for instance, highlighted the importance of bequest motives in driving wealth

accumulation. While bequests initially spurred a debate with Modigliani (see Modigliani, 1988), a

substantial body of work has ultimately solidified their role in shaping saving behavior (Ameriks

et al., 2011). Since people do not necessarily have access to complete insurance, precautionary

saving to insure against income risk (Aiyagari, 1994), and subsequently also other forms of risk

such as medical spending risk (De Nardi et al., 2010; Edwards, 2008; Yogo, 2016) or housing

risk (Yao and Zhang, 2005), emerged as important saving motives. Further work by Gourinchas

and Parker (2002) decomposed how precautionary saving and consumption smoothing motives

operated over one’s lifetime, with the former being more crucial during early working years and

the latter becoming more central in later life. Finally, recent literature has further considered the

impact of (i) transaction costs and frictions on early housing accumulation, at the expense of other

consumption and slow wealth decumulation in older age (Cocco, 2005; Yang, 2009; Chetty et al,

2017; Fagereng et. al., 2021), and (ii) housing preferences shifts on housing wealth dynamics (Ka-

plan et. al., 2019; Ngai and Sheedy, 2020). We advance this literature by additionally considering

the impact of time preferences shifts, as well as the role of pension defaults and returns on wealth

accumulation, both overall and split between the major asset classes.

In doing so we also contribute to the literature documenting the role of private pension accounts

on how people make portfolio choices. Depending on their type, pension accounts can be more

or less exposed to investment risks and often feature (hard or soft) defaults that ‘lock’ people’s

pension saving behaviour. Defaults affect not only contribution rates (Choi et al., 2004; Beshears

et al. 2009) and plan choices (Madrian and Shea, 2001; Caroll et al., 2009; Beshears et al., 2009;

Goda and Manchester, 2013),3 but also the allocation between risky and safe assets and annuities

(Choi et al., 2005; Edwards, 2008; Horneff et al., 2009; Inkmann et al., 2011; Koijen et al., 2016;

Dahlquist et al., 2018), especially in the presence of income risk (Polkovnichenko, 2007).

With retirement income increasingly dependent on portfolio allocations (Gomes et al., 2021),

3See also Blake (2000), Mitchell et al. (2009), Cocco and Lopes (2011), and Gerrans and Clark (2013) in the
context of DC plan choices.
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it is thus key to examine lifecycle savings in a setup that includes plan choices and considers all

main asset classes at once. Doing so also fills the literature gap related to the link between pension

and non-pension wealth, particularly housing.4 We are thus able to not only identify the impact of

the main drivers of saving on overall wealth allocation, but also study their lifetime effects based

on how decisions on the joint portfolio allocation - inside and outside pension plans - are made.

Finally, by separately looking at gender-specific lifecycle saving patterns, we also contribute

to the understanding of gender heterogeneity in the context of plan enrolment (Handel, 2013;

Sunstein, 2013; Chetty et al., 2014). The standard result so far is that females are more risk averse

than males (Croson and Gneezy, 2009), they respond differently than males to financial defaults

(Dobrescu et al., 2018), and more strongly prefer annuities (Agnew et al., 2008). Recent studies

have however reconsidered the presence of a gender gap in risk taking (Filippin and Crosetto,

2016), with Gerrans and Clark-Murphy (2004) and Drupp et al. (2020) showing this gap to fade

away among professional working and more informed females, respectively.

The rest of the paper is as follows: Section 2 describes our institutional context. Section 3

discusses the data and reduced form results. Section 4 presents the model, and Section 5 shows the

calibration and estimation method. Structural results and counterfactuals are presented in Section

6. Section 7 concludes.

2 Institutional context

We study plan participants of UniSuper, an industry-wide retirement (or superannuation) fund cov-

ering all Australians employed in the higher education and research sector. With roughly 460,000

members and $85 billion in assets, UniSuper is one of Australia’s largest retirement funds. At the

time of the data collection (i.e., 2010-2014), it also exhibited several interesting features: First, it

was (and continues to be) one of the few remaining hybrid funds (offering both DB and DC pen-

sion plans), with member arrangements dependent on employment type, earnings, and workplace

agreements. Second, upon becoming a sector employee, fund enrolment is automatic and mem-

bership is compulsory (i.e., one may not elect to have their employer contribute to a fund other

than UniSuper). Third, UniSuper DB and DC plans have a system of highly consequential (Do-

4See Eckardt et al. (2018) for a discussion on the importance of this link in the context of economy-wide effects.
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brescu et al., 2018) reversible and irreversible defaults that specify predetermined outcomes when

no choice is made on plan type, contribution rates and investment allocations. Table A.1 summa-

rizes the main UniSuper plan features in 2010-2014 for permanent staff - i.e., staff on continuing,

tenured contracts or contracts running for two years or more. Upon being employed, permanent

staff were offered a one-off choice of (DB vs. DC) plan; this choice was irreversible and had to

be made within the first 12 months of employment. They also received employer contributions

amounting to 17% of their earnings and are required to contribute a further percentage as standard

contributions. The default standard contribution rate was 7% of (post-tax) earnings but it could

be irreversibly decreased to 0% as follows: (i) DB plan members with standard contributions of

at least 4.45% had 3 percentage points of their employer contribution go into the DC component

of their plan, while the rest went into their DB component, (ii) DB plan members who reduced

their standard contributions below 4.45% had all employer and standard contributions absorbed

into the DB component of their plan, retirement and death entitlements reduced proportionally to

the standard contribution reduction and were ineligible for extra insurance (see Table A.2),5 and

(iii) DC plan members, regardless of their standard contributions, had all employer and standard

contributions go to the DC component of their plan. Besides standard contributions, fund mem-

bers could also make voluntary contributions - regularly or irregularly, from either pre- or post-tax

wages and for low income earners, they could attract an annual government co-contribution of up

to $1,000. The voluntary contribution rate defaulted to 0% of earnings but when positive, the asso-

ciated amounts accumulated into the DC component of one’s plan. Finally, members could choose

to grow their total DC component by selecting from a menu of 15 investment options that vary by

their asset allocation. Movement between investment options was possible, with the default being

a ’balanced’ portfolio featuring a 70:30 split between risky and safe assets.6

Outside of their pension accounts, people can build up wealth by investing in real and financial

(non-pension) assets. The Household, Income & Labour Dynamics in Australia Survey (HILDA)7

5Employees received life and total and permanent disability (TPD) insurance coverage by default, but may vary
their level of coverage and/or add income insurance.

6Since the time of the study, UniSuper has extended the time window in which one is allowed to change plan type
to two years - see here, and added extra investment options - see here. From 2021, it is also no longer compulsory for
tertiary education employees to belong to UniSuper, and the default plan type is DC (rather than DB).

7HILDA is a nationally representative, household-based panel study that collects comprehensive information about
economic and personal well-being, labour dynamics and family life in Australia (Ryan and Stone, 2016).
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reports considerable amounts in these wealth categories. For instance, the average household net

wealth (i.e., overall assets net of debt) was roughly $740,000 in 2014. About 60% of it was

represented by housing, making real assets the largest asset class in one’s portfolio. Notably, during

the period we analyse (2010-2014), almost all of the (rather weak) growth in housing assets came

from price increases rather than quantity changes. Indeed, homeownership rates remained fairly

stable at around 66% between 2010 and 2014, and unsurprisingly tightly linked to income, wealth

and age (until retirement). Non-housing wealth accounted for about 43% of overall assets in 2014,

a 4% increase compared to 2010. In contrast to housing, they increased their average value from

$320,000 in 2010 to almost $400,000 in 2014. Half of this value was held in deposits (14%), direct

equity (15%), business assets (11%), and life insurance and durable goods (e.g., motor vehicles,

collectibles). The other half was held in pension accounts, which made pension wealth the second

largest asset class in one’s portfolio, after housing. Interestingly, most of the 2010-2014 increase

in non-housing wealth was due to pension balances: their prevalence rose from 80% to 84%, and

their value grew by around 4% per annum to $250,000 in 2014 and was largely invested in risky

financial securities.

3 Data and empirical analysis

We use data from UniSuper administrative records and the HILDA survey. Our UniSuper data

contains extensive information on all pension choices made by a random subsample of fund mem-

bers who are permanent employees in the higher education and research sector. Each month, the

fund also collects data on member demographics and job characteristics, and uses it to compute

(DB) pension balances. We use two waves of UniSuper data, corresponding to the end of 2010

and 2014 and labelled Wave 10 and Wave 14, respectively. We restrict our sample to non-retirees

who were active members in Wave 10, as indicated by whether they (or their employers) made

any contributions in the last four months. After merging Waves 10 and 14 of UniSuper data, our

sample consists of 9,728 individuals that provide a total of 13,022 observations across waves.

There are four sources of information about pension wealth in the UniSuper data, namely plan

type (DB or DC), cumulative pension balance (total and specifically in the DC component), vol-
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untary contribution amounts,8and the share of pension wealth invested in risky assets. To capture

attitudes towards risk, we use a variable denoting whether one purchased supplementary insurance.

To account for decisional inertia, we also include an indicator denoting opting out of the default

(balanced) asset allocation. Finally, we use the number of employers contributing, job tenure (in

years) and annual wage to account for job characteristics, and age and gender as demographics.

Since UniSuper collects limited background information, we supplement our administrative

records with individual data from HILDA Wave 10 and 14, collected in the same years as UniSu-

per data. Specifically, we use UniSuper-matched9 HILDA data on (i) non-durable consumption,

financial wealth and housing (prevalence, value, and expenses related to the primary residence),

and (ii) education, marital status, household size, health and net wealth (i.e., net worth excluding

pensions).10 (We only use (ii) variables in the empirical analysis to shed light on specific data

patterns; results are robust to their exclusion.)

3.1 Descriptive statistics

We present relevant sample statistics, both overall and split between those with and without default

asset allocations.11 Opting out of the default allocation might suggest different preferences or a

different understanding of available options, which could translate into different choices in other

dimensions too. For instance, Panel A in Table 1 shows that while, on average, only 25% of

members opt for a non-default (DC) plan, a much lower 6.52% of default allocation members

do so. In contrast, 53% of those with non-default allocations are enrolled in DC plans. Similarly,

although only 20% (10%) of members contribute voluntarily (buy supplementary insurance), about

8We abstract from the decision to make standard contributions and calibrate them directly from the data.
9To match HILDA and UniSuper data, we follow Dobrescu et al. (2018): we first select the relevant subsample

among HILDA respondents (i.e., higher education and research sector employees), and then use an iterative procedure
that first matches UniSuper and HILDA individuals along eight common dimensions: age, gender, quintiles for wage,
pension balance and years of contribution, whether the spouse contributes, type of plan selected, and type of employ-
ment contract. For the unmatched observations, the procedure then drops one dimension (spouse contributions) and
attempts the matching again. Finally, we employ this process two additional times, progressively excluding the plan
type and then the type of employment contract. We thus end up matching 82% of our full UniSuper sample.

10For both consumption and housing expenses, we compute individual spending using household spending and the
imputed individual-to-household spending ratio as predicted by the estimated coefficients of a regression of household
consumption on age, gender, marital status, household size, health insurance premium, annual wage, net wealth and
net wealth interracted with age (Wachter and Yogo, 2010) - see Tables B.1-B.2. Health is captured by a dummy equal
to 1 if self-reported health is excellent or very good. For education, we use two dummies denoting whether individuals
have (i) university education (Bachelor degree or above), and (ii) 12 years of education or less, respectively.

11Recall that all UniSuper members make investment choices as even DB plans have a (small) DC component.
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Panel A. % of Members # of Members % of Members # of Members % of Members # of Members
Plan type:
   DB 74.71 3,287 47.08 837 93.44 2,450
   DC 25.30 1,113 52.93 941 6.56 172
Is voluntarily contributing 19.43 855 23.57 419 16.63 436
Has supplementary insurance 10.39 457 12.21 217 9.15 240
Is homeowner 86.80 3,819 85.43 1,519 87.72 2,300

Panel B. Mean Median Mean Median Mean Median
Pension wealth (in $000) 240.36 146.81 231.15 153.47 246.60 143.73
   Number of employers contributing 0.97 1.00 0.98 1.00 0.97 1.00
   Number of years contributing 12.69 12.00 12.26 11.58 12.98 12.38
   Annual wage (estimated, in $000) 87.89 81.34 90.23 82.85 86.31 79.06
   (DC) share in risky assets 0.63 0.70 0.53 0.52 0.70 0.70
Financial wealth (in $000) 434.31 326.10 420.67 301.52 443.55 345.12
Housing wealth (in $000) 840.32 660.00 808.75 645.00 861.73 670.00
   Housing share in total wealth 0.46 0.49 0.46 0.49 0.46 0.48
   Housing expenses (in $) 8,994.39 1,000.00 8,640.61 939.96 9,234.30 1,000.00
Total net wealth (in $000) 1,001.60 803.07 962.97 776.20 1,027.80 848.93

 

Table 1. Pension and non-pension wealth characteristics
Non-Default Allocation Default Allocation

Notes: Panel A presents information on all sample members ("All"), as well as on members in subsamples defined by participation in the default investment 
allocation ("(Non-) Default Allocation"). Panel B shows mean and median for total amount accummulated in the pension account, number of employers currently 
contributing, years of contribution, estimated age, share of DC balance invested in risky assets, financial and housing wealth, share of housing in total assets, 
housing expenses (i.e., repairs, renovations) and total net wealth (i.e., net worth excl. pension wealth). The sample consists of members from UniSuper Wave 10, 
containing 4,400 permanent employees. Unisuper defaults relate to pension plan type (DB), voluntary contribution rate (0%), asset allocation (70% risky assests) and 
no supplementary insurance.

All
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a third fewer default allocation members do so compared to their non-default peers.

These general differences between default and non-default allocation members are also re-

flected in their pension and financial wealth. Panel B in Table 1 reports mean and median pension

balance (in AU$), contributions and tenure, and selected wealth indicators. As expected, university

employees appear to have substantial pension balances, generally one employer contributing and

rather lengthy tenures, quite generous wages and high financial wealth.12 Interestingly, however,

default allocation members have slightly lower wages and so, lower pension balances despite con-

tributing for longer (12.38 vs. 11.58 years at the median) and investing more aggressively (70%

vs. 53% in risky assets) than non-default members. Finally, in line with the national statistics for

this sector, we find a ratio of roughly 2-to-1 in terms of real to financial assets, with the average

net wealth around the million dollar mark and median housing expenses of about $1,000 yearly.

Table 2 reports our sample demographics. We note no significant differences between our

default and non-default allocation subsamples, with an average UniSuper member being around

46 years old, married, in a 3-person household, and with a Bachelor degree or above.

All Non-Default Allocation Default Allocation

Age 45.89 45.12 46.42
Male (%) 37.11 39.93 35.20
Couple (%) 86.96 86.39 87.34
Household size 3.04 3.04 3.04
Low education (%) 5.91 5.01 6.52
Medium education (%) 11.32 10.35 11.98
High education (%) 82.77 84.65 81.50
Good health (%) 53.75 54.27 53.39
Notes: The table presents averages for all sample members ("All"), as well as for the subsamples defined by 
participation in the default investment allocation ("(Non-) Default Allocation"). The sample consists of members 
from the first (2010) UniSuper wave, containing 4,400 permanent employees.

Table 2. Demographic characteristics

3.2 Empirical analysis

To study the relation between member choices and demographics, risk and job characteristics

and wealth, we estimate linear models that correlate one’s pension and non-pension wealth with

such factors. Specifically, our outcome variables are indicators related to plan type, voluntary

12The 2010 (2014) mean salary for full time jobs was about $69,000 ($80,000) - see ABS (2019).
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contributions, pension wealth, share of risky assets owned, and homeownership prevalence and

value. All our ordinary least squares (OLS) and logit models include controls for age, gender,

education, marital status, household size, health and net wealth. To tease out the attitude towards

risk and defaults, we use two variables denoting whether one bought supplementary insurance and

opted for non-default asset allocations. To capture job characteristics, we use tenure, number of

employers contributing and estimated annual wage. Finally, we include a wave indicator as pension

decisions tend to be persistent and present robust standard errors clustered at individual level.

The marginal effects (m.e.) from the OLS and logit specifications are presented in Table 3A-

B. The first three columns in Table 3A presents results from a logit model of one’s decision to

opt for a DC plan, and two OLS models on log of voluntary contribution amount and log of

pension balance. Since the data revealed systematic differences between default and non-default

investment allocation members, we also present separate results for each such group next to the

overall estimates. We do this for a baseline observation defined as a 46-year-old, married female,

living in a 3-person household, with a Bachelor degree or higher, 12 years of contributions, average

wage and default asset allocation, and uninsured supplementary.

Opting for DC plans appears related to all our job characteristics indicators (i.e., tenure, number

of employers contributing, wage). A unit increase in log wage, which roughly corresponds to 100%

increase in salary relative to the baseline, significantly increases one’s chances of choosing a DC

plan by 4.80%. This effect is almost double in the non-default investor subsample (9.60%) than

in the default one (2.30%). Earlier enrolees,13 as well as wealthier and (extra) insured members

also seem more likely to opt for a DC plan, with the effects mostly coming however from the non-

default subsample. Indeed, changing the baseline from a default to a non-default asset allocation

increases DC participation by 38.80%, which is unsurprising given that allocation decisions are

particularly relevant for DC plan members. These results are consistent with the findings related to

those that actively plan for retirement - by opting for a DC plan for instance, which involves more

control of one’s retirement savings - being older, richer and with higher income (Mitchell et al.,

2006; Gerrans, 2012). In contrast, those who rely on defaults seem to do so across decisions, with

13The DB vs. DC decision is made upon becoming a plan member, thus the relevant age in DC opt-in specifications
is the enrolment age.
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Variable DC opt-in Ln vol. cont. Ln balance DC opt-in Ln vol. cont. Ln balance DC opt-in Ln vol. cont. Ln balance
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Age 0.024*** 0.185** 0.063*** 0.056*** 0.187*  0.064*** 0.005   0.189*  0.059***
(0.005)   (0.057)   (0.009)   (0.010)   (0.082)   (0.015)   (0.004)   (0.081)   (0.010)   

Male 0.011   0.037   0.159*** 0.014   -0.031   0.210*** 0.017*  0.108   0.120***
(0.009)   (0.087)   (0.013)   (0.020)   (0.121)   (0.021)   (0.008)   (0.124)   (0.015)   

Low education 0.015   -0.103   -0.037   0.028   -0.250   -0.045   0.002   -0.000   -0.035   
(0.023)   (0.172)   (0.030)   (0.051)   (0.253)   (0.054)   (0.017)   (0.237)   (0.035)   

High education 0.018   0.085   0.110*** 0.034   0.072   0.145*** 0.003   0.097   0.083***
(0.011)   (0.108)   (0.019)   (0.028)   (0.151)   (0.035)   (0.010)   (0.156)   (0.021)   

Couple -0.011   -0.016   0.129*** -0.013   -0.037   0.198*** -0.006   0.037   0.072***
(0.011)   (0.105)   (0.020)   (0.025)   (0.139)   (0.035)   (0.010)   (0.163)   (0.022)   

Household size 0.006*  -0.049   -0.009*  0.013*  -0.049   -0.013   0.001   -0.054   -0.006   
(0.003)   (0.027)   (0.004)   (0.007)   (0.040)   (0.007)   (0.002)   (0.038)   (0.005)   

Good health 0.000   -0.037   -0.028*  0.017   0.033   -0.006   -0.010   -0.111   -0.042** 
(0.007)   (0.069)   (0.011)   (0.017)   (0.099)   (0.019)   (0.006)   (0.098)   (0.013)   

Suppl. insurance 0.050*** -0.153   0.048** 0.101*** -0.303*  0.027   0.024   0.004   0.066***
(0.013)   (0.104)   (0.017)   (0.027)   (0.136)   (0.029)   (0.013)   (0.158)   (0.019)   

Years of contribution 0.031*** 0.000   0.064*** 0.082*** -0.002   0.057*** 0.001   0.001   0.069***
(0.005)   (0.006)   (0.001)   (0.011)   (0.009)   (0.002)   (0.004)   (0.009)   (0.001)   

Employers 0.050** -0.025   -0.021   0.102** 0.036   0.001   0.023   -0.088   -0.032   
(0.015)   (0.152)   (0.023)   (0.035)   (0.202)   (0.041)   (0.014)   (0.238)   (0.026)   

Ln annual wage 0.048*** 1.031*** 1.146*** 0.096** 1.090*** 1.061*** 0.023*  1.020*** 1.136***
(0.013)   (0.159)   (0.021)   (0.031)   (0.154)   (0.036)   (0.011)   (0.178)   (0.023)   

Ln net wealth 0.091*** 0.483*  0.171*** 0.201*** 0.462   0.158** 0.026   0.521   0.167***
(0.018)   (0.238)   (0.030)   (0.040)   (0.346)   (0.051)   (0.014)   (0.336)   (0.035)   

Ln net wealth X Age -0.002*** -0.009   -0.003*** -0.004*** -0.009   -0.003*  -0.000   -0.009   -0.003***
(0.000)   (0.004)   (0.001)   (0.001)   (0.006)   (0.001)   (0.000)   (0.006)   (0.001)   

Non-default allocation 0.388*** -0.457   1.065** 
(0.009)   (2.183)   (0.371)   

Non-default alloc X Ln wage     0.057   -0.101**                         
    (0.191)   (0.032)                           

Observations 10548   1648   10548   4304   819   4304   6244   829   6244   
Model Fit 0.227   0.251   0.734   0.116   0.254   0.661   0.029   0.241   0.788   

Table 3A. Estimation results for pension-related decisions and outcomes
All Non-Default Allocation Default Allocation

Notes: All specifications include a wave indicator and are OLS models, except for (1), (4) and (7), which are logit (marginal effects reported). The Default (Non-Default) 
Allocation columns present results for the subsamples who opted for (out of) the default investment allocation. Age in specifications (1), (4) and (7) denotes plan enrolment 

age. Standard errors (robust, clustered by individual id) are in parentheses below estimated parameters. ***p-value<0.01, ** p-value<0.05, * p-value<0.1. Including Age2 in (3), 
(6) and (9) leaves results unchanged.
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very little to induce them to take control of their retirement ‘pot’.

As expected, making voluntary contributions increases with age both overall and in the two

(non-)default investor subsamples, with the m.e. being about 0.2. This is unsurprising given the

tendency to more actively build up savings as one nears retirement. Those with more generous

wages generally contribute more, with the non-default subsample also exhibiting slightly higher

contribution elasticity of wage (m.e. of 1.09) compared to their default peers (m.e. of 1.02). These

findings are consistent with Hira et al. (2009) which shows that those who do their own research,

review plan information, believe it important to set aside funds regularly and are able to adequately

do so (due to higher earnings), are also more likely to maximise their retirement contributions.

Most of the factors that matter for voluntary contributions also appear to matter for pension

wealth. Specifically, we find a positive relation between pension wealth and both age and job

tenure, with higher education also having a considerable beneficial effect. Compared to females,

males appear to have significantly higher balances (the associated m.e. is 0.16), which can be

attributed to both higher wages and longer tenures due to fewer career interruptions (see APH,

2016). Being married definitely makes a positive difference for retirement savings, while the over-

all beneficial effect of having supplementary insurance comes mostly from the default allocation

members subsample. Pension balance elasticity of wages is roughly 1.15 for the full sample, and

1.14 (1.06) for default (non-default) members. These high figures are due to both employers and

employees contributing, with an increase in wages affecting pension balance via both these chan-

nels. Net wealth matters considerably regardless of the subsample we analyze, with the associated

elasticities around 0.17. This is consistent with net wealth levels being quite high in Australia and

rich individuals increasingly holding the bulk of their wealth in shareholdings or property (ASFA,

2015). Finally, opting out of a default allocation appears positively and strongly related to pen-

sion wealth (m.e.=0.96), via the cumulative effect of being in non-default and being in non-default

interacted with log wage.

We now turn to Table 3B to shed further light on asset allocations and homeownership deci-

sions. A quick glance at specification (9) reveals that those with less advanced careers, higher

wages and supplementary insurance are also more likely to choose non-default allocations: A one

unit increase in log wage is associated with a 47.30% higher chances of choosing non-default port-
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Table 3B. Estimation results for investment allocation and home-related decisions  
All

Variable
Risky assets    

share Homeowner   Housing assets 
share   

Risky assets    
share Homeowner   Housing assets 

share   Homeowner   Housing assets 
share   Non-default alloc

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Age 0.006   -0.512*** 0.018*** 0.013   -0.473*** 0.024*** -0.533*** 0.014** 0.012   

(0.003)   (0.083)   (0.003)   (0.007)   (0.143)   (0.005)   (0.099)   (0.005)   (0.024)   
Male -0.019** -0.166   -0.003   -0.040** -0.008   0.012   -0.285*  -0.015*  0.128*  

(0.007)   (0.101)   (0.005)   (0.015)   (0.149)   (0.008)   (0.138)   (0.007)   (0.050)   
Low education 0.018   2.244*** 0.066*** 0.054   2.469*** 0.102*** 2.143*** 0.048** -0.234*  

(0.013)   (0.239)   (0.012)   (0.036)   (0.379)   (0.021)   (0.305)   (0.015)   (0.116)   
High education 0.011   0.111   -0.022** 0.025   0.047   -0.024   0.154   -0.020*  -0.106   

(0.008)   (0.151)   (0.007)   (0.020)   (0.243)   (0.012)   (0.194)   (0.009)   (0.066)   
Couple -0.004   0.637*** -0.035*** -0.010   0.439*  -0.050*** 0.771*** -0.023*  -0.069   

(0.008)   (0.115)   (0.008)   (0.019)   (0.182)   (0.012)   (0.151)   (0.011)   (0.063)   
Household size 0.001   0.492*** 0.029*** 0.003   0.525*** 0.029*** 0.477*** 0.028*** -0.010   

(0.002)   (0.044)   (0.002)   (0.005)   (0.068)   (0.003)   (0.058)   (0.002)   (0.016)   
Good health 0.001   -0.076   -0.021*** 0.001   -0.153   -0.022** -0.025   -0.021*** 0.006   

(0.005)   (0.088)   (0.005)   (0.013)   (0.138)   (0.008)   (0.116)   (0.006)   (0.042)   
Suppl. insurance 0.000   -0.124   -0.015*  -0.002   -0.167   -0.015   -0.091   -0.015   0.332***

(0.009)   (0.149)   (0.007)   (0.020)   (0.206)   (0.010)   (0.217)   (0.009)   (0.070)   
Years of contribution 0.001   0.031** -0.002*** 0.002   0.021   -0.003*** 0.038** -0.002*** -0.034***

(0.001)   (0.010)   (0.000)   (0.001)   (0.016)   (0.001)   (0.013)   (0.001)   (0.004)   
Employers 0.017   -0.008   -0.001   0.044   0.159   0.004   -0.158   -0.007   0.165   

(0.011)   (0.193)   (0.010)   (0.026)   (0.332)   (0.015)   (0.233)   (0.013)   (0.085)   
Ln annual wage 0.005   0.622** -0.053*** -0.011   0.334   -0.054*** 0.826** -0.046*** 0.473***

(0.006)   (0.195)   (0.008)   (0.023)   (0.295)   (0.011)   (0.261)   (0.009)   (0.077)   
Ln net wealth 0.018   -0.433   0.131*** 0.046   -0.199   0.163*** -0.573   0.110*** 0.054   

(0.011)   (0.276)   (0.013)   (0.027)   (0.469)   (0.019)   (0.333)   (0.018)   (0.090)   
Ln net wealth X Age -0.000   0.044*** -0.002*** -0.001   0.041*** -0.002*** 0.045*** -0.001*** -0.001   

(0.000)   (0.007)   (0.000)   (0.001)   (0.012)   (0.000)   (0.008)   (0.000)   (0.002)   
Non-default allocation 0.011   -0.038   -0.087                           

(0.198)   (0.086)   (0.134)                           
Non-default alloc X Ln wage -0.017       0.008                           

(0.017)       (0.012)                           
Observations 10548   10548   10548   4304   4304   4304   6244   6244   10548   
Model Fit 0.105   0.431   0.122   0.003   0.442   0.138   0.425   0.112   0.015   

Default AllocationAll Non-Default Allocation

Notes: All specifications include a wave indicator and are OLS models, except for (2), (5), (7) and (9), which are logit (marginal effects reported). The Default (Non-Default) 
Allocation columns present results for the subsamples who opted for (out of) the default investment allocation. Standard errors (robust, clustered by individual id) are in 
parentheses below estimated parameters. ***p-value<0.01, ** p-value<0.05, * p-value<0.1.
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folios, and compared to those uninsured, those insured are 33.20% more likely to do so. Notably,

males are 12.8% more likely than females to opt for non-default allocations, but within this cat-

egory it is interestingly females who invest more aggressively (see specification (4)), possibly in

an attempt to close the pension gap with their male peers. This reversed ’gender investing gap’ is

likely linked to our sample’s high financial literacy (Lusardi and Mitchell, 2007), and to women’s

higher loss aversion (Schubert et al., 1999) and risk aversion profiles (Dohmen et al., 2010).

As for homeownership, we see people becoming owners relatively early and accumulating a

higher share of their assets in housing as they get older (Iacoviello, 2011). Education plays an

interesting role, with those highly educated diversifying their portfolios more and committing less

to homeownership, and those (very few in our sample) with lower education still using housing as

primary vehicle to build up savings (Graham et al., 2009; ASFA, 2015).14 Being in a couple and

part of a large household is unsurprisingly positively associated with homeownership, although the

former can also bring down the share of wealth invested in real assets. This is likely due to intra-

household risk sharing opportunities or an added need for (possibly job-related) mobility, which

makes couples opt for less housing-heavy portfolios, while being part of large families would

slant things in the opposite direction. Coming to resources, we see higher wages being associated

with higher chances of becoming a homeowner, an effect coming predominantly from the default

subsample (m.e.=0.83). Looking at the actual housing assets share, however, we also see those on

higher wages holding a lower proportion of wealth ‘locked’ in housing, which suggest high earners

using multiple savings vehicles to plan for retirement (Clark et al., 2012). For net wealth, we find

almost the opposite pattern: Generally wealthier members have higher wealth shares invested in

housing, an effect considerably more prominent for non-default members (m.e.=0.16) than for

default ones (m.e.=0.11) who seem to turn more to other ways to save as they get rich.

4 The model

Having identified the factors associated with the level and prevalence of the main asset classes

in one’s wealth portfolio, we construct a rich structural model to assess how these empirically

14This result is also evident in the cross-sectional wealth distribution, where the wealthiest households can afford to
diversify away from real-estate but the middle quintiles cannot and thus end up overweighting housing.

19

https://www.superannuation.asn.au/ArticleDocuments/359/ASFA_Super-and-high-account-balances_Apr2015.pdf.aspx?Embed=Y


motivated elements can explain the data profiles and run counterfactuals to quantify the extent to

which they do so. To this effect, consider an individual who plans to retire at age TR = 65, faces

a stochastic time of death and lives up to age T = 100. For simplicity, assume TR is exogenous

and deterministic, and let t denote adult age and pt the probability of being alive at time t + 1

conditional on being alive at time t.

A. Preferences. While alive, the individual derives utility each period from non-durable con-

sumption ct and housing services St , according to

u(ct ,St) =

[
(1−αt)c

ρ

t +αtS
ρ

t
] 1−γ

ρ −1
1− γ

, (1)

where 1/γ is the intertemporal elasticity of substitution, and 1/(1−ρ) is the elasticity of substitu-

tion between consumption and housing services. People can ‘consume’ housing services by either

renting or owning a house (Sommer and Sullivan, 2018), with Ht denoting the stock of housing

capital owned at time t. If an individual is not a homeowner (i.e., Ht = 0), then housing services

must be rented at a rate PS
t that we assume to be a constant proportion ϕS of the house price Pt .

If an individual is a homeowner (i.e., Ht > 0), then they can only benefit from housing services

brought by their own housing stock, thus St = Ht . Finally, the term αt ∈ (0,1) is the idiosyncratic

utility weight on housing services that follows an autoregressive process similar to the one speci-

fied by Kaplan et al. (2019). We introduce stochastic housing preferences to allow our estimation

to account for the observed patterns in housing stock adjustment, which are driven in part by time-

varying but persistent housing preferences (Ngai and Sheedy, 2020). As such, αt fluctuates around

a long-run stationary value α ,

lnαt = (1−ρα) lnα +ρα lnαt−1 + εαt , εαt ∼ N(0,σ2
αεt

), (2)

with ρα driving α ′s convergence, on average, to its long-run value. An initial α value significantly

above α coupled with a fast convergence (i.e., small ρα ) is indicative of individuals placing less

weight over time on housing services when making present consumption and housing choices.
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Upon dying, any remaining wealth is bequeated to one’s heirs, with the associated utility being

B(aDB
t ,aDC

t ,At) = θ

(
aDB

t +aDC
t +At + k

)1−γ

1− γ
, (3)

where θ is the bequest weight, k determines the curvature of the bequest function (De Nardi et al.,

2010), and total bequeathable wealth Bt includes both pension wealth (DB accumulated aDB
t , and

DC accumulated aDC
t ) and non-pension wealth At (whether accumulated via housing or not).

B. Employment. We assume individuals start working at age t0 and while working they earn

income yt . Following the standard approach in the lifecycle literature on portfolio allocation,15 we

consider yt as the sum of a deterministic and a stochastic component,

lnyt = y(t,τ)+ξt , (4)

ξt = φξt−1 +ut , ut ∼ N
(
0,σ2

u
)

where y(t,τ) depends on age t and experience (job tenure) τ . ξt is an autoregressive term (with

innovation ut) that allows us to consider some level of wage persistence among individuals and is

approximated by a discrete Markov process with Nξ discrete state points.16

C. Pension structure. Following the UniSuper plan architecture, we assume that individuals

choose plan type p, voluntary contribution rates vt and asset allocations πt (i.e., the share π in-

vested in risky assets at time t) as follows: At t0, one is automatically enrolled into the default

DB plan. There is a one-off option to switch to DC that must be exercised within the first period,

otherwise DB membership becomes permanent. After choosing the plan, both employer and the

employee start making their contributions.17 The employer mandatory contribution vE and the

standard employee one vS are set to specific (fixed) shares of yt . Voluntary contribution rates vt

can be changed every period, with the default being vt = 0%. Finally, each period, individuals

15See Campbell et al. (2001), Gourinchas and Parker (2002), Cocco et al. (2005), Brown et al. (2012).
16We abstract from health costs due to the extensive national, government-funded scheme that subsidises the cost

of personal medical services (i.e., Medicare Benefits Scheme) and drugs (i.e., Pharmaceutical Benefits Scheme), with
out-of-pocket medical spending accounting for less than 2.5% of income in Australia (AIHW, 2021).

17We differentiate between employer and employee contributions as the benefits from these two sources accumulate
differently within each type of plan. We assume all contributions are pre-tax and subject to 15% concessional tax rate
for the first $25,000 (concessional contribution cap); any exceeding amount is subject to 46.5% tax rate.
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can choose to invest their DC component balance via 15 investment options that differ in risk and

expected returns. Absent a direct choice, all corresponding assets are defaulted into a balanced

investment allocation with a risky assets share πd = 0.7. Finally, switching away from any default

options is costly, with switching costs ui, i ∈ {p,v,π} modelled in terms of utility lost as18

up =ψ + exp
(
ν

p
0 +ν

p
1 t̂ +ν

p
2 t̂2)

uvt =ψ + exp
(

ν
v
0 +ν

v
2 (t −ν

v
1)

2 +ν
v
3 max{0, ln(at)}

)
(5)

uπt =ψ + exp
(

ν
r
0 +ν

r
1t +ν

r
2t2 +ν

r
3 max

{
0, ln

(
aDC

t

)}
+ν

r
4up

)

where ψ is a ‘default preference’ parameter, while ν terms capture (i) the effort of researching,

comparing options and filing forms that varies with age t or with the age t̂ at which one is observed

in Wave 10 to capture cohort specific factors that may have influenced plan choices, (ii) the liquidity

value of savings outside pension plans at associated with making voluntary contributions, and (iii)

the (DC) pension amount at stake aDC
t in the risky assets share decision.

DB plans pay members a nominal benefit based on a formula related to the individual’s age, job

tenure (in years), contribution rates and average wage over the last three years of continuous em-

ployment. These plans include both a genuine DB component (where standard contributions vS are

accumulated) and a separate DC component (where voluntary contributions vt will be made). As

for employer’s contributions, a share αvE will be made to the DB component, with the remaining

amount transferred to the DC one. Hence, DB plan benefits are calculated as19

aDB
t = f ACF

t (vS) · f LSF(t) · f ASF · τ · yt , with (6)

f LSF(t)=max{18, min{23, 23−0.2(65− t)}}/100 and

yt =
1
3
[yt +g(yt−1)+g(yt−2)]

where f ACF
t is the Average Contribution Factor over the entire tenure span, f LSF(t) is the Lump

18Steel (2007), Ebersbach & Wilkening (2007), Agarwal et al. (2009), Besedes et al. (2012), Dobrescu et. al (2018).
19See 2012 UniSuper Defined Benefit Division & Accumulation 2 Product Disclosure Statement.
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Sum Factor (with f LSF(t ≤ 40) = 18% and f LSF(t ≥ 65) = 23%), and yt is the average wage over

the last three years of continuous employment. We assume permanent staff work full-time (i.e.,

f ASF=100%), and compute yt−1 and yt−2 as in Appendix C.

In contrast with DB benefits, DC benefits - associated with either the DC component of a DB

plan or with a DC plan - are accumulated according to the asset allocation that each individual

chooses. As mentioned, allocation options differ in terms of the share of time-t DC component

balance invested in risky assets πt and thus DC benefits are

aDC
t+1 =


[πtRr

t +(1−πt)Rs
t ] ·

[
aDC

t +(vt +(1−α)vE)yt
]
, if in a DB plan

[πtRr
t +(1−πt)Rs

t ] ·
[
aDC

t +(vt + vS + vE)yt
]
, if in a DC plan

(7)

with Rr
t (Rs

t ) being the return on risky (safe) assets, computed as

ri
t = lnRi

t = ri + iεd
t , (8)

where i ∈ {r,s} is a scaling factor that can amplify (r > 1) or dampen (s < 1) asset market shocks,

and εd
t ∼ N(0,σ2

εd
t
) is the returns shock of the default allocation with constant mean return rd and

rs < rd < rr. This specification allows us to account for the intertemporal effects of time-varying

financial market returns on asset allocation (Campbell and Viceira, 1999, 2002).

D. Housing. In our model, housing plays a dual role. First, it is a durable consumption good

and yields instantaneous utility. For simplicity, we assume individuals receive one unit of housing

services for each unit of housing (stock) owned.20 Additionally, housing is a severely illiquid form

of wealth that can only be traded by incurring a transaction cost of τHPtHt , where τH ∈ [0,1), Pt

is the house price, and PtHt is time-t housing value (Yogo, 2016).21 Once the transaction cost has

been paid, housing accumulates as:

Ht = (1−δ )Ht−1 +ht , (9)

20In our setup, housing stock Ht captures both the size and quality of the dwelling; housing depreciation and
investments appear simply as reductions and enlargements of Ht , respectively.

21After transaction costs have been paid, housing can be adjusted continuously. However, such costs are non-convex
and will impose a friction that results in lumpy investment .
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i.e., individuals enter time t with an initial housing stock Ht−1, which depreciates at constant rate

δ ∈ [0,1) and is replenished via housing expenses ht (with ht < 0 in case of downsizing). Second,

housing is an investment good with capital value Pt , which brings a gross return Rh
t (Yogo, 2016)

Rh
t = (1−δ )Pt/Pt−1. (10)

Individuals can take out collateral debt mt (mortgage or equity loan), which they must pay back

at interest rate rm
t . We assume rm

t is linked to the safe assets returns through

rm
t = β

mrs
t +κε

d
t , (11)

where β m is the markup of the mean mortgage over the mean safe assets returns, and κ scales the

mortgage volatility over that of safe assets returns.22 Borrowers may choose their next period debt

position mt+1 at time t, but must satisfy the collateral constraint

mt+1 ≤ (1−ϕ
C)PtHt , (12)

where ϕC ∈ (0,1) is the homeowner deposit proportion. This condition ensures borrowers have a

minimum equity of ϕCPtHt if they hold a mortgage. We assume mortgages can be costlessly refi-

nanced by those who are adjusting their housing stock. Thus for housing adjusters, only constraint

(12) holds. However, for those who are not adjusting their housing stock, we assume costless

adjustment of the mortgage position up to a limit ι in each period, thus mt+1 − (1+ rm
t )mt ≥ ι .23

22Unlike Sommer and Sullivan (2018) that assumes a fixed markup over the constant safe assets return, we capture
Australian mortgages by instead linking rm

t to the stochastic safe assets returns to allow it to vary while keeping the
model state-space computationally feasible.

23The assumption of a limit on redraws from mortage accounts means that some individuals will hold liquid assets
and mortgages at the same time. The literature often assumes unlimited redraws in order to reduce the state-space as
mortgages and liquid assets can be combined into a single net asset state - see Yang (2009), for example. In contrast,
our motivation for costless but limited redraws here is both to match our institutional setting and also to enable us to
identify the gross mortgage position in the asset portfolio. The Australian mortgage market is quite unique in that most
mortgage accounts are accompanied by offset accounts or redraw facilities. In this setup, individuals can make extra
payments into their mortgage account which they can later withdraw costlessly and this makes the mortgage balance
relatively liquid (Price et al., 2019). To avoid adding the mortgage repayment schedule as an additional state-space,
we capture the mortgage balance liquidity by assuming the redraw limit is constant each period at ι .

24



E. Budget constraint. Let 1{ht ̸=0} be an indicator function equal to one if time-t housing ex-

penses deviate from zero. Assuming (i) individuals enter period t with some amount of financial

wealth at , and (ii) there is only one risk-free asset in which to invest at that yields constant gross

returns R,24 per-period financial wealth after consumption, renting and housing expenses is

at+1 = Rat +(1− vt − vS)yt − ct −PS
t St −Ptht −η1{ht ̸=0}PtHt +mt+1 −Rm

t mt , (13)

with lnRm
t = rm

t and total non-pension wealth (i.e., financial and housing, net of mortgages)

At+1 = at+1 +(1−δ )Pt+1Ht −mt+1. (14)

If we further assume that all individuals cash out their pension benefits as a lump-sum upon

retiring at age TR = 65, the intertemporal budget constraint becomes

At+1 −mt+1 =

=


Rat −Rmmt +(1− vt − vS)yt − ct −PS

t St −Ptht +(Rh
t+1 − τH1{ht ̸=0})PtHt , if t < TR

Rat −Rmmt +aDB
t +aDC

t − ct −PS
t St −Ptht +(Rh

t+1 − τH1{ht ̸=0})PtHt , if t = TR

Rat −Rmmt − ct −PS
t St −Ptht +(Rh

t+1 − τH1{ht ̸=0})PtHt , if t > TR

(15)

where Rh
t is computed as Rh

t = (1+ rh
t ) and

rh
t = rh + ε

h
t , with ε

h
t ∼ N(0,σ2

εh
t
), (16)

As a result, Eq. 10 then determines the housing price Pt dynamics, where the initial (2010)

house price level is normalized to P0 = 1. Finally, we assume that there is no borrowing associated

with financial wealth and so, at+1 ≥ 0 in each period t.

24While helping keep computation feasible, this assumption is also in line with the equity market participation
outside DC accounts being less than 2.5% in Australia (ABS, 2019). Such low participation is not unlike that reported
in many other advanced developed economies - see Gomes et al. (2021) for a review.
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F. Timing of events and Bellman equation. The dynamic problem can be viewed as a two stage

optimization. At the start of the first period, each individual with financial wealth at0 and labor

income shock ξt0 irrevocably chooses their plan. Thus, time-t0 Bellman equation is

Vt0 (Xt0) = max
{DB,DC}

{
Vt0 (Xt0|DB)+ζDB,Vt0 (Xt0|DC)−up +ζDC

}
, (17)

where Xt =
(
at ,(1−δ )Ht−1,mt ,Pt ,aDC

t ,ξt ,τ,{DB,DC},αt ,βt
)

is the vector of state variables and

{DB,DC} captures the set of plan types.25 We further include an unobservable utility component

in each option ζ{DB,DC}, which follows a type I extreme value distribution with scale parameter

σp,26 to allow for unobservable elements that might affect each individual’s decision. Thus, the

probability of choosing DC is (McFadden, 1974; Rust, 1987)

Pr (DC) =
exp [(Vt0 (Xt0 |DC)−up)/σp]

exp [Vt0 (Xt0|DB)/σp]+ exp [(Vt0 (Xt0|DC)−up)/σp]
. (18)

In each subsequent period, individuals then choose (i) the voluntary contribution vt (from the

set {vi, i = 1,2...Nv}), (ii) the asset allocation πt (from the set {πi, i = 1,2...Nπ}), and (iii) optimal

consumption ct , housing expenses ht and housing services St , to maximize the discounted present

value of life-time utility,

V̂t(Xt ,vt) =Vt (Xt ,vt)+ζvt . (19)

Here, ζvt is the unobservable utility of the vt choice, and the deterministic value V̄t (Xt ,vt) is

Vt (Xt ,vt) = E
{

max
πt

V̂t (Xt ,vt ,πt)

}
−uv ·1{vt ̸= 0}, (20)

where V̂t (Xt ,vt ,πt) is the value of a portfolio with πt invested in risky assets, defined as

V̂t (Xt ,vt ,πt) =Vt (Xt ,vt ,πt)+ζπt . (21)

25Note that the state space includes Pt as it defines the relative price of housing in terms of consumption, which is
time dependent. We also retain mortgages mt as an explicit state variable to allow us to run the counterfactual that
removes mortgage frictions (i.e., no costless redraws).

26The variance of the distribution of ζ{DB,DC} is therefore π2

6 σ2
p , and note that in our framework, is it more conve-

nient to select the scale of the shock than to multiply the value functions by scaling parameters.
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Similarly to ζvt , ζπt is the unobservable utility component for the πt choice, with observable part

Vt (Xt ,vt ,πt) = max
ct ,ht ,St

u(ct ,St)−uπ ·1{πt ̸= π
d}+βtEt [ptVt+1 (Xt+1)+(1− pt)b(Bt+1)] , (22)

subject to budget constraint (15), collateral constraint (12), St = Ht if Ht > 0, and

Vt+1 (Xt+1) = E

{
max

vt+1∈{vi}Nv
i=1

Ṽt+1 (Xt+1,vt+1)

}
. (23)

The term βt is the time-t discount factor that follows a similarly structured AR(1) process as

αt , fluctuating around a long-run stationary value β with convergence rate ρβ (Dobrescu et al.,

2012).27 Similar to αt , an initial value for β that lies significantly above β coupled with a fast

convergence (a small value of ρβ ) is indicative of an individual placing less weight over time

on future consumption and housing when deciding present consumption and housing. Note that

individuals know βt , but they are uncertain about future values of βs, for s > t. Because today’s

individual controls all future allocations, the issue here is one of uncertain future desires (i.e., the

problem involves preference uncertainty, not time inconsistency).

We assume both ζvt and ζπt follow type I extreme value distributions independently, with scale

parameters allowed to differ across plan types, so σDB
v ̸= σDC

v and σDB
π ̸= σDC

π , and simplify as

follows28

Vt (Xt) = σ
j

v log

 ∑
vh∈{vi}Nv

i=1

exp
[

Vt (Xt ,vh)

σ
j

v

] (24)

Vt (Xt ,vt) = σ
j

π log

 ∑
πh∈{πi}Nπ

i=1

exp
[

Vt (Xt ,vt ,πh)

σ
j

π

]−uv ·1{vt ̸= 0} (25)

27Krusell and Smith (1998) also show that time preference heterogeneity is key for generating higher order moments
of the wealth distribution. In our case, it allows us to appropriately capture the joint dynamics of the asset distributions
we observe in the data.

28The position parameters of ζvt and ζπt are assumed to be −σvγE and −σπ γE , where γE = 0.57721 is the Euler
constant. Since voluntary contribution and investment choices are not relevant at ages beyond 65, we estimate the scale
parameters directly (instead of normalizing them to 1 and multiplying the corresponding deterministic value functions
by 1/σv or 1/σπ , respectively, for ages below 65). This is essentially a nested logit model (Berkovec and Rust, 1985).
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The discrete choice probabilities are thus

Pr (vt = vi)=
exp

[
Vt (Xt ,vi)/σ

j
v

]
∑vh∈{vi}Nv

i=1
exp

[
Vt (Xt ,vh)/σ

j
v

] (26)

Pr (πt = πi)=
exp

[
Vt (Xt ,vt ,πi)/σ

j
π

]
∑

πh∈{πi}Nπ
i=1

exp
[
Vt (Xt ,vt ,πh)/σ

j
π

] (27)

where j ∈ {DB, DC}.29

H. Solving the model numerically. Because there is no analytic solution, we solve the prob-

lem numerically using backward induction. Note the model features not only non-smooth housing

adjustment costs, but also non-convexities arising from (i) the fixed or lumpy component of the

housing adjustment cost, (ii) the jump discontinuity in the individual renting decision, and (iii) the

discrete pension and risky assets share choices. To solve it, we employ the non-convex EGM in

Shanker and Dobrescu (2022) that uses second order differences and a novel fast scan method to re-

cover the optimal solution points, thereby avoiding costly numerical root-finding at each iteration.

Specifically, the method in Shanker and Dobrescu (2022) sequentially checks EGM candidate so-

lution points and eliminates points not on the upper-envelope of the value correspondence by only

allowing discontinuities in the policy function at non-concave sections of the value correspondence.

Despite using EGM, the high number of states in our model still imply a significant compu-

tational cost. To solve for the full non-linear solution, we proceed by distributing the solution

algorithm on high performance compute clusters. For a given vector of parameters, we parallelize

across CPU nodes the evaluation of the FOCs across the state-spaces for each age. However, for

each iteration of age in the backward induction algorithm, the full policy function must be interpo-

lated and distributed to each node. This generates a significant ‘serial’ component in the algorithm,

which implies that the backward induction algorithm cannot be scaled linearly.30 Thus, to paral-

lelize the solution method, we first note that the model can be solved for males and females, and DB

and DC members separately (since after making a plan choice, the alternative plan’s policy func-

29Since the state space Xt includes the plan type {DB,DC}, Vt (Xt) in Eq. (24) differs across plan types.
30Strong linear scaling refers to the property of an algorithm where an increase in the number of CPU cores results

in a proportional decrease in computation time.
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tion does not feature in an individual’s optimisation problem). Examining the scaling performance

of the algorithm, we found that indeed solving the model separately for each of the four groups

on 24 CPU cores yields acceptable performance in terms of balancing memory requirements and

marginal speed gained via each extra CPU node with the compute time costs. For details on the

numerical method and the mathematical proofs deriving the Euler equations, see Appendix C.

Finally, note that our specification of mortgage redraws is designed to reduce dimensionality

and make our estimation feasible, while preserving the features of the institutional context reflected

in our data. The discussion below Equation (12) captures the Australian mortgage market setup,

where individuals can costlessly withdraw from their mortgage accounts if they are ahead of their

repayment schedule (up to the amount of extra payments made). Our model thus assumes that

redraws are available up to a fixed limit ι , and we calibrate ι accordingly based on the amounts

by which individuals are, on average, ahead of their mortgage repayments (RBA, 2018) - see also

Kaplan et al. (2019). This assumption, however, means we do not capture how the marginal

benefit of access to redraw options in the future affects the mortgage repayments individuals make.

Nonetheless, we calibrate the redraw limit ι such that each period, individuals in our model face

the same redraw constraints as the average individual in our data.

5 Calibrations and estimation approach

To ease the computational load of estimating all parameters together, we first estimate or calibrate

the parameters related to the state variables, as well as the rates of return and the DB pension

parameters. Next, we run our models and use these estimated data generating processes to simulate

lifecycle profiles for a large number of hypothetical individuals. Finally, we implement an iterative

process to find the set of parameters that matches the simulated profiles with the (real) data ones.

We calibrate the survival probability pt using the Human Mortality Database corresponding

figures averaged across 2010 and 2014, and set enrolment age t0 = 17 to match UniSuper data.31

Next, we rely on an OLS model that associates lnyt to a quartic in age and a quadratic in tenure

years, and discretize ξt via a discrete Markov process with Nξ = 3 gridpoints. For pension wealth,

31Setting a common enrolment age reduces the state of the model during estimation; experimenting with varying
the enrolment age in the simulations did not significantly alter our key results.
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we set (i) vS to 2.35% (and f ACF
t to 86.0% as its data mean), (ii) vE to 17% for both DC and DB

members (hence α = 100% as vs = 2.35%), and (iii) the interest rate parameters for the risky and

safe assets, as well as for the default asset allocation to match the risk and return targets from

the UniSuper product disclosure statements (i.e., rd =2.88%, rs=1.93%, rr=4.76%, σ
εd

t
=0.064,

s=0.54, r=1.68). Financial wealth has a constant gross return of R = 1.0223, which captures the

average real return for long-term (indexed) Treasury bonds for the period 1982-2014. Based on

Eq. 10, the housing return is estimated using the Bank for International Settlements series on

real residential property prices at a depreciation rate δ of 1.10% (Fox and Tulip, 2014). The real

housing return rate, deflated by CPI for all items, has a mean of 3.2% and a standard deviation

of 4.2% from 1982 to 2014; housing returns are thus calibrated with rh = 1.032 and σ
εh

t
= 0.042

annually. We set τH = 0.08 (Yogo, 2016) and ϕS = 0.06 to capture the average rental yield in

Gitelman and Otto (2012).32 Following Guest (2005), we also set the mortgage deposit rate ϕC

to 20%. Based on the Reserve Bank of Australia lending rates for 1982-2014, we find an average

real mortgage rate (using median inflation) of 0.0649, with a 0.021 standard deviation.33 Thus,

we set β m = 3.36, κ = 0.33 and limit the costless redraw ι to $120,000 to reflect the estimated

offset accounts average balance for our sample, calculated using (i) the national statistics on the

average extra payments made into mortgage acccounts as a proportion of total mortgage debt and

the ratio of debt to average income (RBA, 2018), and (ii) the average income in our data. The

bequest shifter parameter k is set to the weighted average of its marital status-specific parameters

(Ding, 2013). Finally, initial financial wealth is taken from the data,34 initial pension and housing

wealth are both 0, initial housing capital value is set to a negligible $1, and the initial real house

price is set so that the house price an individual of a given age faces in 2010 is normalised to 1.

Using the SMM (see McFadden, 1989; Pakes and Pollard, 1989), we estimate

32This is consistent with Australian estimates of rental yields (Fox and Tulip, 2014; Saunders and Tulip, 2019).
33See RBA Statistics Table F5. Indicator Lending Rates.
34Initial financial wealth was predicted in gender-specific subsamples using the 2nd order age polynomial coeffi-

cients of an OLS regression on the available financial (non-pension) wealth data. None of the other HILDA-UniSuper
matching dimensions were relevant at the initial (plan enrolment) age.
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}

j∈{DB,DC}
}
∈ R27, (28)

by matching the real moments related to wealth and plan choices to the corresponding moments of

the same variables in the simulated sample. The objective is to find the vector of preferences φ̃ that

simulates the distributions such that they fit the data best. To this end, we match (i) first order mo-

ments related to consumption, pension, financial and housing wealth, voluntary contributions, and

risky assets share - overall and above default levels; (ii) second order moments of consumption, fi-

nancial and housing wealth; (iii) lagged correlations of consumption, financial and housing wealth;

(iv) correlations between consumption and housing wealth, voluntarily contributing and opting for

DC, and switching to DC and opting for non-default allocations; (v) plan-specific second order

moments of pension wealth, risky assets share and voluntary contributions; (vi) plan-specific cor-

relations between pension wealth and voluntary contributions (amount and prevalence), as well

as between pension wealth and risky assets share (level and prevalence of opting for riskier-than-

default allocations), and between voluntarily contributing and having non-default allocations, and

(vii) proportions of individuals opting for a DC plan, voluntarily contributing and opting for non-

default allocations. We discuss the identification below.

For efficiency reasons, we estimate our models for males and females separately, using our

two waves of UniSuper data.35 For each model, we calculate the age-specific empirical (real)

moments by first selecting the appropriate subsample (i.e., males or females). Next, we assign

individuals into 5-year age cohorts, with the 1st cohort consisting of individuals with ages below

25 in 2010, the 2nd containing those aged 25-29 in 2010, and so on.36 We then take cell means

by cohort 37 for the balanced panel in each wave to generate the data moments. For the simulated

35Note that the UniSuper-HILDA link involves matching UniSuper individual pension information with similar
(individual) level HILDA data. While asset decisions might be, at least to some extent, taken at the household level,
our data profiles consistently represent individual behavioural patterns.

36The last cohort, labelled ”60-64”, also contains a few observations on individuals 65+. Their data (on wealth,
consumption, contributions, allocations) is not very different from the ”60-64” cohort data and so, including the 65+
in the last cohort does not significantly alter the empirical moments.

37We deal with housing, financial wealth, and voluntary contributions outliers by excluding the 99th percentile of
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moments, we simulate N = 10,000 paths of individual choices,38 collect the simulated values for

each path and then compute N sets of simulated moments, conditional on the initial values of

the state variables Xt0 and on the parameters φ̃ . Finally, the SMM estimator φ̂SMM minimizes the

distance between the set of empirical moments mT and the average of the N sets of simulated

moments 1
N ∑

N
n=1 mn(Xt0, φ̃),

φ̂SMM = argmin
φ̃

[mT − 1
N

N

∑
n=1

mn(Xt0, φ̃)]
′WT [mT − 1

N

N

∑
n=1

mn(Xt0, φ̃)], (29)

where WT is the weighting or distance matrix that almost surely converges to WT = S−1, where S

is the limit, as NT → ∞, constant full-rank matrix of the covariance of the estimation errors. For a

given N, as T → ∞, if the weighting matrix is chosen optimally,

T (1+1/µ)[mT − 1
N

N

∑
n=1

mn(Xt0, φ̃)]
′W [mT − 1

N

N

∑
n=1

mn(Xt0 , φ̃)]→ χ
2( j− k),

where µ is the ratio of the simulated sample size to the empirical one, j is the number of moments

and k is the number of estimated parameters. To minimize the objective function (29), we use the

cross-entropy method (Botev el al., 2011). We start with a uniform draw of T̄ = 300 parameter

vectors and evaluate the objective function (29) across each of them. To do so, we create 300

groups of CPU nodes, each with 48 CPU nodes. Each of these groups is further clustered into

sets of 24 nodes, each solving the lifecycle model conditional on DB and DC pension choice for

one parameter draw. From this initial draw, we select the top 10% performing parameters that

achieve the lowest value of the objective function (29). Next, we use this ‘top’ parameter set to

fit a multi-variate distribution over the parameter space, from which we sample the next iteration

of T̄ parameter vectors and evaluate the objective function (29) across the new parameter samples.

Again selecting the top set of performers from this stage, we repeat the process until the covariance

matrix of the parameter sample distribution satisfies a predetermined tolerance.

each series.
38Using more than 10,000 paths to compute moments did not change results materially.
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5.1 Identification

To pin down which moments identify our parameters of interest, we start by presenting the intuition

behind why each parameter might significantly affect only a subset of moments. Since an analytical

proof is not possible, we next validate these intuitions by establishing identification in a local

neighborhood of a selected subset of parameters via simulation.39 Changing one parameter can

affect, however, multiple data moments. For instance, risk aversion, bequest weight and discount

factor parameters are jointly identified by cohort-specific first order financial wealth moments:

A high γ makes individuals save more, higher β ’s means people are more future oriented and

decumulate more slowly, and high θ ’s (i.e., strong bequest motives) also lead to higher savings.

We better identify these parameters by requiring the model to also match the first order moments

of pension wealth and housing wealth, by cohort. The rationale is provided by our Euler equation.

Ignoring bequests, the Euler equation shapes the savings profiles (i.e., the financial wealth profiles,

at least before retiring and cashing out the pension benefits). So, these wealth profiles are largely

dictated by a combination of time discounting (β ’s) and taste for smoothing (γ’s). In the case of

β ’s, this equation however identifies the product βt pt(1+r), not its individual elements. Therefore,

lower values of r and/or pt can lead to higher βt estimates. To check whether the interest rate can be

separately identified, we set its value to the maximum rate observed for the riskiest asset allocation

(among the 15) and re-estimate the models. We find that the realized returns are on average higher

than our benchmark assumption of 2.23% and our β ’s are accordingly lower. We thus conclude

that we can only identify βt(1+r), but not each term separately. Given the autoregressive nature of

the underlying β process, however, we acquire additional identification by also requiring the model

to match the variance and first order autocorrelation of financial wealth. To further pin down γ’s,

we also use the correlation involving non-default choices on voluntarily contributing and plan type.

Intuitively, this might bias downwards our estimates of risk as we identify them based only on the

’active’ sample when presumably default members have certain attitudes towards risk too. Hence,

to acquire extra identification we use the proportion of DC wealth invested in riskier (than default)

39To do so, we compute the moments and fit the value function at and around estimated parameter values. Next, we
check whether the resulting simulated profiles fit the empirical ones as we vary the value of each parameter and verify
the fitted function shape in a neighbourhood of the selected parameter value.
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assets across both the DB and DC subsamples. Going back to the Euler equation, we note that

bequest motives are related to the total amount of resources that could be passed on as bequeathable

wealth. Thus, the bequest weight θ will apply to all of pension, financial and housing wealth, and

we additionally identify this parameter via the age-profile of the mean pension and housing wealth.

Finally, the parameters α and ρ are identified by noting that the within-period utility function is

CES between consumption and housing wealth: α gives the share of resources corresponding to

consumption rather than housing, while ρ indicates the within-period substitution between the

two. We thus identify the α AR(1) parameters via the mean, variance and lagged correlation of

consumption and housing wealth, and use the correlation between these two series to pin down ρ .

Turning to the switching costs, we note that their identification comes from the observations

where individuals actually switched away from defaults. Hence, the latent factor ψ is identified

via plan-specific correlations involving non-default choices on voluntary contributions and asset

allocations. To identify the parameters of up, we match the age-specific proportion of people that

switched to DC. For uv, we match the age-specific proportion of people contributing (to identify

the age coefficients) and the mean level of voluntary contributions by age (to identify νv
3). As

for the investment switching costs, the parameter νr
3 of ln

(
aDC

t
)

is identified by the mean risky

assets share, νr
4 by the correlation between opting for non-default allocations and opting for DC,

while the age coefficients are once again identified by the proportion of people with non-default

investment allocations by age. Finally, to identify the unobservable utility components associated

with our three pension choices we proceed as follows: first, we identify the scale parameter σp

that determines the variance of ζDB and ζDC using the variability in pension wealth by plan type.

Second, since people choosing DB or DC might value liquidity differently or have different atti-

tudes toward risk, we allowed the relative weight of ζvt and ζrt to differ across plan types. As a

result, to identify the parameter σv we use the plan-specific variance of voluntary contributions and

the correlation between pension wealth and voluntary contributions (both amount and prevalence).

And similarly, we can identify σr by some plan-specific measures of risky assets share variability

and by the correlation between pension wealth and risky assets share (both level and prevalence of

opting for riskier-than-default allocations).

Finally, we also use the correspondence between the empirical and simulated profiles for home-
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ownership prevalence as an informal over-identification test. While we did not directly fit this

variable, our results show that the model manages to endogenously replicate the high rates of

homeownership observed in the data very well. We discuss this in more detail in the next section.

6 Results from the structural model

6.1 Parameter estimates

A quick glance at the top panel in Table 4 reveals economically reasonable SMM parameter esti-

mates for both males and females. For instance, the lifecycle literature generally finds relative risk

aversion parameters between 1 and 6 (Chetty, 2006). Our estimated γ is roughly 3.62 for males

and 3.26 for females. This overall level is in line with Cagetti’s (2003) estimates for U.S. college

graduates, while the slight gender gradient confirms previous findings on the risk-taking gap fad-

ing away for highly educated females (Gerrans and Clark-Murphy, 2004; Drupp et al., 2020). This

gender differential does not, however, carry over to our time preference estimates. Indeed, the dis-

count factor β is roughly 0.91 on average for both males and females, a value well within the range

reported in the literature (Cocco et al., 2005; Dobrescu et al., 2012). Similarly, we find a utility

weight of housing versus consumption of 0.51 (0.49) for males (females), slightly higher than in

Kaplan et al. (2019) but lower than Yogo’s (2016). As for the intra-period substitution between

the two, we estimate ρ to be 0.24 for males and 0.32 for females, in line with Ogaki and Reinhart

(1998) and Piazzesi et al. (2007), suggesting that females are more willing to substitute housing

for consumption. This is also consistent with Andersson’s (2001) finding that females in fact invest

less in real estate than males, a result we also find in our reduced-form analysis (see Section 3).

Combined with risk aversion being lower for females, this suggests that not only different attitudes

towards risk but also different willingness to substitute housing and non-housing consumption can

explain the heterogeneous savings behaviours across various groups. Turning to the intensity of

the bequest motive, we find θ parameters of roughly $4,316 for men and $15,522 for females. This

gender differential might be due to the stronger intergenerational altruism of females and thus their

greater propensity to save for heirs (Seguino and Floro, 2003).

The bottom panel in Table 4 presents the default switching cost estimates. To help with inter-

35



Table 4: Parameter estimates

Males Females
Estimates S.E. Estimates S.E.

CRRA γ 3.617 0.098 3.261 0.016
Housing share α 0.512 0.013 0.494 .0144

ρα 0.817 0.029 0.797 0.041
σαεt 0.023 0.002 0.023 .001

CES parameter ρ 0.244 0.023 0.326 0.024
Bequest ln(θ) 8.367 0.075 9.652 0.093

Time discount β 0.918 0.012 0.901 0.019
ρβ 0.843 0.021 0.801 0.045

σβεt 0.025 0.001 0.034 0.012
Switching costs:

Voluntary νv
0 -0.689 0.011 0.655 0.022

contribution νv
1 59.721 0.015 59.249 0.034

νv
2 0.096 0.001 0.093 0.002

νv
3 -0.360 0.032 -0.564 0.020

σDB
v ×103 1.530 0.001 1.202 .001

σDC
v ×105 0.503 0.001 1.041 0.001

Asset νr
0 4.710 0.081 3.271 0.013

allocation νr
1 0.244 0.013 -0.101 0.029

νr
2 -0.410 0.011 -0.330 0.071

νr
3 0.162 0.002 0.360 0.016

νr
4 0.081 0.002 0.051 0.021

σDB
r ×103 3.022 0.001 0.621 0.002

σDC
r ×103 1.351 0.001 0.564 0.001

Plan ν
p
0 -0.321 0.089 -0.651 0.075

ν
p
1 -1.893 0.052 -0.124 0.042

ν
p
2 -1.017 0.018 -0.672 0.016

σp 0.557 0.043 0.424 0.055
Default preference ln(ψ) -7.234 0.067 1.481 0.057

pretation, we express these costs as the net present value of the additional DC pension balance (at

retirement) required to compensate for the associated utility loss. Figure 1 plots these monetary

equivalents. First, we note the marked downward sloping profile of all three cost types, suggest-

ing switching away from defaults becomes cheaper over time. More years of service can help

individuals realize the importance of retirement savings, and we would thus expect them to take

increasingly more control of their wealth accumulation, particularly near the end of their career. As

expected, the highest switching costs are related to opting out of the default plan, this irreversible

choice costing on average about $16,732 for males and $15,961 for females. These amounts repre-
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sent roughly 18.60% of annual wage, only slightly lower than the those estimated by Luco (2019).

Unlike Luco (2019), however, our switching cost structure includes two additional dimensions.

In this respect, we see the next highest switching cost being the one related to voluntary contri-

butions. Indeed, switching away from the 0% contribution rate costs females about $12,319 and

males $11,909. While the gender gradient is inverted compared to default plan switching, this very

subtle difference confirms our estimates in Section 3 on males and females being quite similar in

their voluntary contributions. In contrast to these patterns, the gender gradient is significantly more

marked for the decision to opt out of the default asset allocation. Indeed, it appears to be 35.51%

cheaper for males to do so compared to females. Given the high risky assets share of the default

allocation and the lower pension wealth of females, it is not surprising that switching away from

this default option means considerably more missed high return opportunities for females that can

significantly affect their retirement savings.

Figure 1: Mean switching costs by cohort (thousands of $)

Overall, while all these costs might seem high, recall that they do not mean that an average

individual would not switch for this amount in cash, but that they would not switch for this amount

in their DC component upon retirement. An alternative way to understand their impact is to see

37



how wealth would have changed over time had switching been costless. We do so in Section 6.3.

6.2 Data patterns and model fit

We now turn to our model’s ability to recreate the data patterns. Figures 2 - 10 below plot selected

moments by cohort. In all figures, the lines labelled wave10 data and wave14 data correspond to

Waves 10 and 14 data, while wave10 sim and wave14 sim denote their simulated counterparts.

Figure 2: Mean pension wealth (DB+DC) by cohort (thousands of $)

A quick glance at Figures 2 - 6 reveals that the models fit well overall, for both male and fe-

males. In particular, we have successfully replicated (i) the increasing age profiles of wealth for

all three types of assets accumulated (Figures 2 - 4), (ii) the gender-specific plan opt-in overall

levels (Figure 5), (iii) the relatively stable risky assets share over one’s lifecycle with some mod-

erate rebalancing in old age (Figure 6), and (iv) the increasing patterns of voluntary contributions

(Figures 7 - 8), that we observe in the data. The goodness of fit between the simulated and the

empirical (data) moments is assessed via a χ2-test (or corresponding p−value). In both cases, the

model easily passes the χ2-test of goodness of fit, with χ2-values well below the 5% critical value.

Thus, we cannot reject the null that the simulated and empirical moments are the same at standard
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Figure 3: Mean financial wealth by cohort (thousands of $)

significance levels.

We start by taking a closer look at wealth, with Figures 2 - 4 showing the pension, financial

and housing wealth profiles, respectively. As expected, all types of wealth increase with age, but

females appear to accumulate 25.74% less in their pension account than males. This might be due

to females working fewer hours and being more likely to face career interruptions (i.e., maternity

leave, carer responsibilities).40 With shorter tenures and potentially slower wage growth, they will

also have lower pension balances.

Additionally, females are less likely to opt for DC plans, with only 32.62% of females across

all cohorts switching out of the default (DB) plan, compared to 35.39% of males (see Figure 5).

These differences further deepen the wealth gradient between sexes due to missed opportunities

for high return investments. Confirming this conjecture, note that only one in five members in

our sample pursue riskier-than-default investment options, with females holding on average 2.13%

riskier portfolios. While both males and females show relatively flat age profiles of their risky

assets share, for some cohorts there also seems to be a moderate portfolio rebalancing away from

40See 2013 COAG Reform Council Tracking equity: Comparing outcomes for women and girls across Australia.
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Figure 4: Mean housing wealth by cohort (thousands of $)

risky assets as people age - see Figure 6. In higher education, the decrease in the stock of human

capital occurring with age is arguably milder and with a more stable income level and less risk, it

is not surprising we see such risky assets profiles (Haliassos et al., 2001; Cocco et al., 2005).

One way to supplement pension wealth is via voluntary contributions. Similar to Beshears et al.

(2009), we find rather low overall non-default prevalence when the default voluntary contribution

rate is 0%: while towards the end of their career about 40-50% of members contribute, for most of

their active life less than 15% make voluntary contributions (see Figure 7). Surprisingly, females

rely only slightly more than males on this option to insure their retirement savings against negative

labor events and close the pension balance gap with males. Indeed, Figure 8 shows that, across

cohorts, females contribute only about 6.14% more than males across all cohorts, which confirms

our empirical results in Section 3.

Outside pension wealth, we also find an 7.98% positive difference in financial assets between

females and males. This could be due to the higher marginal propensity to accumulate precau-

tionary savings amongst females (Seguino and Floro, 2003), which counteracts their lower wages.

As for housing wealth, we find that females accumulate about as much housing wealth as males.
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Figure 5: Share of members choosing DC plans by cohort

This rather high real assets path for females, particularly given also their higher financial wealth, is

consistent with females deriving higher utility from housing than males, as discussed in Goldsmith-

Pinkham and Shue (2020).

Unsurprisingly, all these wealth patterns generate very reasonable consumption profiles that fit

those observed in the data - see Figure 9. As expected, the profiles display the usual slightly in-

creasing, mild hump-shape, with males registering slightly lower profiles than females. The higher

gap between the simulated and empirical profiles for males might be due to us under-estimating

their real consumption by limiting it to non-durables. In fact, the gap is smaller for females, for

whom non-durables (e.g., fuel, power, clothing, toys, personal care, household items) are more

prominently budget-featured than for males (Bradbury, 2004; Blow et al., 2004).

6.3 Counterfactual simulations

Several counterfactual experiments evaluate the role of different factors in shaping these data pro-

files. Specifically, we consider how pension and non-pension wealth changes over a lifetime if

individuals (i) maintain a uniform income even after retirement, equal to the total (working-life)
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Figure 6: Mean risky assets share by cohort

expected wages divided by their lifespan, referred to as the “No consumption smoothing” sce-

nario,41 (ii) do not value leaving a bequest, referred to as the “No bequests” scenario, (iii) do not

experience earnings uncertainty, referred to as the “No precautionary savings” scenario, (iv) switch

away from plan defaults (DB plan, 0% voluntary contributions, 70% risky asset allocations) at no

cost, captured via the “No switching costs” scenario, (v) earn 4% higher returns for their risky as-

sets (Bansal et al., 2002; Brailsford et al., 2012; Damodaran, 2020), captured by the “Higher risky

returns” scenario, and (vi) are unable to make a costless redraws from their mortgage, referred to as

the “No redraw” scenario.42 Every simulation modifies certain parameters associated with a par-

ticular scenario, solves the model numerically and generates the corresponding wealth patterns. In

Table 5 below, we compare how our counterfactual wealth allocations across all cohorts compares

with our baseline levels (“Baseline” scenario).
41As in Pashchenko and Porapakkarm (2020), note that individuals are still exposed to wage risk. In calculat-

ing mean yearly wage, we assume for simplicity a total lifespan equal to the total number of expected years lived.
Experiments with methods that adjust for mortality risk do not alter our results.

42Here we assume individuals repay their mortgage at a constant amortisation rate and can make extra repayments,
but not withdrawals from their mortgage. We follow the amortisation formula in Kaplan et al. (2019) and, for tractabil-
ity, we also assume individuals may refinance their mortgage only by adjusting their housing stock.
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Figure 7: Share of members voluntarily contributing by cohort

Table 5: Counterfactual scenarios (saving motives)

Opting
into DC
plans

Opting
to con-
tribute

Risky
assets
share

Pension
wealth

Non-
pension
wealth:

Financial
wealth

Housing
wealth

% of members % % change from baseline
Panel A. Males

Baseline 35.392 21.216 59.514 - - - -
No cons. smoothing 32.169 20.009 61.241 -34.764 -19.325 -43.457 -6.339
No bequests 32.798 17.497 65.824 -33.139 0.095 -19.423 16.232
No prec. savings 28.940 21.232 63.671 -33.723 18.730 39.796 7.394
No switching costs 41.185 73.098 48.711 67.946 14.850 -0.046 22.866
Higher Rr 42.644 23.026 61.851 24.477 9.686 9.962 9.537
No redraw 23.967 20.887 60.434 -10.597 35.382 34.423 -1.592

Panel B. Females
Baseline 32.619 21.968 61.731 - - - -
No cons. smoothing 29.402 21.871 64.918 -24.542 -44.947 -49.072 -40.873
No bequests 30.040 20.996 54.329 -23.242 2.355 -20.567 26.459
No prec. savings 25.042 25.450 63.690 -13.588 5.017 0.033 9.941
No switching costs 35.447 55.007 52.522 55.989 -0.667 -6.035 4.637
Higher Rr 35.022 23.680 62.538 25.295 1.036 3.082 0.986
No redraw 23.967 19.661 62.233 -15.677 15.276 27.346 -10.789

Notes: Non-pension wealth sums housing and financial wealth. Housing wealth is net of mortgage
liabilities.

43



Figure 8: Mean voluntary contributions by cohort (thousands of $)

These exercises reveal several ways in which individuals employ various types of assets to

build their savings. Let us start with the scenario that cancels consumption smoothing motives.

As predicted by standard lifecycle theory, this scenario leads to a drop in wealth accumulation

across all types of assets. Since DC accounts offer people a way to optimally choose their asset

portfolio to smooth consumption according to their idiosyncratic preferences, without this motive,

DC enrolments fall for both genders. While females maintain their contributions to build up their

pension savings, males do so slightly less and they also opt for a smaller increase in risky assets

share compared to females. Taken together, these changes lead to about 35% less pension wealth

for males and 25% less for females. Turning to non-pension wealth, we see the financial wealth

of males falling by over 40% without the consumption smoothing motive, although their housing

wealth falls only modestly by 6.3%. In contrast, both financial and housing wealth of females

fall by over 40%. Housing is thus as important a form of consumption smoothing for females as

financial wealth is, while this holds significantly less for males. We return to the role of housing as

a mechanism for consumption smoothing when we decompose the saving motives in Section 6.4.

Second, turning off bequest motives seems to have largely the same pension effects as can-
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Figure 9: Mean consumption by cohort (thousands of $)

celling consumption smoothing motives, namely (i) lower pension wealth and DC plan enrolment

across the board, (ii) relatively stable contribution profiles for females and lower ones for males,

and (iii) higher risky asset share for males but considerably lower ones for females. This (iii) ef-

fect arises due to bequests being luxury goods: since the curvature of the bequest function is less

prominent than that of the consumption function, a higher value placed on bequests makes females

less risk averse (Ding, 2013). Without an active bequest motive, the risky assets share falls by 12%

for females. Males become more risk averse once they lack bequest motives too, but this effect

is dominated by the effect of plan choice on risky assets share: without bequests, males are more

likely (by roughly 7%) to stay in DB, and DB members have on average riskier assets than DC

ones, which ultimately dominates the bequest effect on risk taking since males value bequests less

than females.43 While removing bequest motives unsurprisingly also reduces by about one fifth fi-

nancial wealth as it is no longer needed for one’s heirs, housing wealth increases because bequests

43Recall DB members are less likely to opt away from the default (70% risky assets) allocation into safer ones,
although switching costs for both DB and DC members are similar. This is due to DB members having ‘less at stake’
by not switching out of the default allocation (as their DC component is less relevant to their post-retirement income
than for DC members), and thus being less likely to overcome their switching costs and change to a safer portfolio.
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Figure 10: Share of homeowners by cohort

displace consumption, including housing services consumption (Kopczuk and Lupton, 2007). This

rise in housing wealth happens unsurprisingly more for females (26%) than for males (16%) as fe-

males value bequests more than males and thus this housing consumption displacement effect of

bequests appears stronger for them. Additionally, the transaction cost associated with buying a

house means individuals might not view housing as an efficient means to save purely for bequest

motives. Thus the marginal effect of no bequest motives does not lead to a high enough drop in

housing as a form of bequeathable wealth to offset the housing gain from the non-displacement

effect of bequests. From this perspective, financial wealth - and to a considerable extent pension

balances - seems to be in our case a more effective means of bequeathing wealth than housing as

they do not incur transaction costs.44 We further examine how bequests affect pension balances

when we decompose saving motives in Section 6.4.

Third, we switch off wage uncertainty, which means that individuals are left with no precau-

tionary saving motives related to self-insuring against labour income risks. Without such a motive

to save, the reliance on (earnings-based) DB plans increases slightly for both females and males,

44Note that our model does not account for taxes, which could affect this result in practice.
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with (i) everybody investing more aggressively, and (ii) females contributing more to compensate

for the earnings differential. As a result, we see an overall drop in pension wealth - once more,

more prominent for males (34%) than for females (14%) - but this time also accompanied by the

reverse pattern in net non-pension wealth. This means that additional non-pension wealth, and in

particular financial wealth is not being accumulated as a form of precautionary saving, a result

we can understand in terms of our baseline individuals having access to borrowing via mortgage

redraws that can be used as insurance. Indeed, paying off mortgages has a dual role - as a form of

‘saving’ (to avoid paying interest) that also enables early homeownership and as a form of insur-

ance. Hence, even without wage risks, individuals continue to invest in housing and re-pay their

mortgages, making the borrowing constraint imposed by the collateral sufficiently generous to not

prompt precautionary savings. As Carroll et. al. (2021) points out, it is the possibility of hitting

a borrowing constraint due to risk that induces individuals to accumulate precautionary saving. In

our case, the borrowing constraint is quite high due to high housing accumulation and somewhat

‘fixed’ due to housing stock being costly to adjust, and so the addition of wage risks do not lead

to a large enough mass of individuals ever facing the prospect of hitting the borrowing constraint.

Under a very low probability of hitting the collateral constraint, the extra concavity of the con-

sumption function that would have otherwise led to precautionary saving in the presence of wage

risks never arises (see discussion below Proposition 3 by Carroll et. al., 2021), rendering such

risks irrelevant to the precautionary saving motive. That being said, also note however the extent

to which non-pension wealth increases, especially for males (19%). Without earnings risks, indi-

viduals are more likely to invest in housing and take on the risk that holding housing assets brings

(which also explains this counterfactual’s higher risky assets share, as wage risks drive down risky

investment - see Fagereng et al., 2017). However, the key to understanding the non-pension wealth

pattern lies in the effect of no earnings risks on plan choice - more individuals remain DB mem-

bers, thereby accumulating less pension and more non-pension wealth (especially via risky housing

assets) as they do not face the risky returns to the same extent as DC members. The general lower

DC prevalence in this scenario highlights how DC plans offer an important way to manage wage

risk via diversifying the effect of wage risk on post-retirement income: Recall from equation (6)

that as a DB member, the post-retirement payout is subject to all the wage shocks up to retire-
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ment age (Lindbeck and Persson, 2003; Yang, 2005). DC plans thus offer a way to diversify away

from this wage risk exposure since after contributions are made, the accumulated amounts face

pension returns risks that are uncorrelated with wage risk. Once earnings uncertainty is removed,

the diversification offered by the DC plans becomes less relevant and there is less incentive to

switch into them. Rather, people are more likely to stay in DB but ex-post, since they no longer

face wage or returns risks, they choose to take on risk by accumulating more housing assets.45

This counterfactual thus shows how in addition to the standard direct effects of saving motives on

wealth accumulation, a quantitatively significant mechanism shaping savings across different asset

classes is the indirect effect of saving motives on plan choices. After a saving motive drives people

towards certain plan choices, such plans impose a unique set of constraints that, in turn, also shape

asset allocation decisions.

Fourth, we directly test the effect of plan defaults by constructing a counterfactual that elim-

inates switching costs. On the pension wealth side, the results of this scenario confirm lifecycle

theory on higher flexibility and opportunities for diversification in default provisions generating a

considerable boost (averaging roughly 60%) in pension balances - due to higher DC take-up and

likelihood to contribute. As expected, this pension boost directly offsets other financial savings

for both males and females. For housing, however, we uncover a complementarity relation, with

all individuals accumulating more housing in response to their higher lifetime wealth: As people

expect to be wealthier post-retirement, they will wish to smooth future housing consumption and

bring some of this consumption forward into their working years.

To further examine this pension-housing complementarity, we conduct a fifth counterfactual

that increases risky (pension) returns. Higher risky assets returns unsurprisingly boost pension

wealth for both males and females by about one fourth - via higher prevalence of DC plans, volun-

tarily contributing and holding risky assets, which are all now more rewarding options. However,

we also find that overall non-pension wealth, and in particular housing also increases, and more

prominently so for males than for females. To understand this, recall that housing adjustment oc-

curs with a fixed cost and individuals accumulate housing early in their working life (see Section

45This case is the inverse of the point made by Fagereng et al. (2017) in which wage risks drive down risky
investments; without earnings and returns uncertainty, risky housing wealth increases.
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3.2 and Yang, 2009). They thus know when they purchase a house early in their working life

that they will prefer not to adjust their stock later in life (due to frictions), meaning housing con-

sumption becomes effectively locked in by decisions taken during early working years. As a result,

when individuals purchase a house in their younger years, they will take into consideration not only

what they wish to consume immediately, but also what they anticipate consuming in their later life

(and even after retirement.) With higher pension returns, younger individuals anticipate a lower

marginal utility of consumption after (and close to) retirement and thus increase their housing ac-

cumulation in earlier years, as they wish to lock in higher levels of such wealth. Thus, pension

and housing wealth, due to the presence of housing frictions and the role of housing as a durable

consumption good, behave as complements rather than substitutes.

Finally, we also generalize our results to abstract from our housing setup (and how it interacts

with the precautionary saving motive to influence plan choice) by removing the costless redraw

option of Australian mortgages. While costless redraws are a standard assumption in the literature

(Yang, 2009; Fischer and Stamos, 2013) and fit well our institutional context, we have designed

our model to be general enough to accommodate relaxing this assumption. When doing so, we find

a substantial drop in the DC uptake and, as a result, a fall in the associated pension wealth - by 11%

and 16% for males and females, respectively. The drop in DC opt-ins is due to individuals now

being unable to benefit from the risk diversification offered by their DC components and thus pre-

ferring to accumulate (safe) financial wealth that fulfils both an insurance and a retirement saving

(consumption smoothing) function. Indeed, the third (“No precautionary savings”) counterfactual

showed that the added diversification offered by the DC plans - that helps smooth consumption

and diversify retirement saving when earnings are uncertain - was salient enough to encourage

switching into DC. However, saving in safe financial assets also serve as a way to diversify away

from wage risks (Fagereng et al., 2017). Cancelling the redraw option will therefore prompt more

financial wealth savings, which (i) insure against wage risks in the presence of a salient borrow-

ing constraint, and (ii) represent (safe) pension savings after wage risks dissipate. With the added

diversification from higher levels of financial wealth, opting into DC plans to achieve retirement

saving diversification becomes less attractive since after plan choice decisions are made, individu-

als’ retirement savings are already less exposed to wage risks. In addition, DC choices do not help
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with being able to ‘commit’ to buying a house, do not provide collateral and do not help manage

mortgage risks during early working years when liquidity constraints matter. As a result, while

financial wealth might increase (by 34% for males and 27% for females), we also find people will

hold less housing wealth. To sum up, a reason to opt for DC is to diversify the risk portfolio

associated with pension savings in order to mitigate the wage risk effects. Without costless mort-

gages redraws, precautionary saving motives now drive people to accumulate more (safe) financial

wealth and less housing. This higher financial wealth lessens the exposure to wage risks during

working years, and also reduces their impact on total post-retirement wealth as the share of such

wealth dependent on the DB payout reduces. With this added security offered by financial assets,

DC plans become less relevant.

6.4 Decomposing the saving motives

So far we have focused on studying how various saving motives drive savings decisions, including

those related to building up pension balances. However, plan choices have significant second order

effects in and of themselves that re-balance people’s portfolios. To directly isolate the impact of

saving motives on wealth allocation, we now move to examine the saving motives profiles across

cohorts and genders, with plan prevalence fixed at their baseline levels. In particular, Figures 11 -

13 show the effect of adding a (consumption smoothing, bequest or precautionary) saving motive

for financial, gross housing and pension wealth, respectively. For example, the extra precautionary

financial savings in Figure 11 is the difference between the baseline financial wealth profile (where

all motives are at play) and the counterfactual that eliminates wage risk. This type of calculation

allows us to interpret Figure 11 profiles as the marginal effect of each saving motive on each major

asset class (see Gourinchas and Parker, 2002; Cagetti, 2003; Pashchenko and Porapakkarm, 2020).

Let us start our discussion of the saving motives decomposition from the financial wealth in

Figure 11. A quick glance shows that the consumption smoothing motive induces significantly

more financial saving after the age of 40. These patterns are consistent with lifecycle theory on

people starting to save for consumption smoothing reasons once middle aged, and increasingly so

later in life (Gourinchas and Parker, 2002). Moreover, since males appear more risk averse than

females, they prefer investing in safer but also less rewarding (pension) assets and thus end up
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accumulating more liquid wealth due to this motive than females. What is notable here is that

despite access to private pension accounts, males accumulate high financial savings predominantly

for consumption smoothing reasons. For females, however, bequest motives also come into play to

generate some savings in their middle years, although not as much as for consumption smoothing

purposes. This is not surprising given females’ higher bequest weight (see also Seguino and Floro,

2003; Dobrescu et al., 2018). Finally, we find precautionary saving motives not to induce any

widespread extra liquidity. Note that this results does not imply that financial savings lose their

insurance role, but only that when savings due to other motives are present, the added insurance

associated with the precautionary motive is negligible.

Figure 11: Additional financial wealth by cohort (thousands of $)

Now, let us turn to gross housing wealth in Figure 12. Unsurprisingly, on the margin, housing

is neither a form of insurance (although housing equity serves as a form of insurance as discussed

above) nor a form of bequest. Indeed, housing serves primarily as a consumption smoothing av-

enue, with all individuals accumulating substantial additional housing assets for this reason by the

end of their working life. Females in particular, due to their willingness to take on more risk, ac-

cumulate housing wealth to an even larger extent than males for consumption smoothing - roughly
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twice as much as males from their late 50s onwards. Unlike for financial wealth, however, the con-

sumption smoothing motive facilitates housing accumulation much earlier in life, for both males

and females - a pattern driven by the dual role that housing plays: Recall housing acts not only

as a vehicle of wealth that can finance future non-durable consumption, but also directly provides

durable consumption services. Although housing offers ‘necessary’ consumption services in ad-

dition to real returns, adjusting housing stock is costly and so housing wealth decisions typically

occur earlier in life (Yang, 2009). In contrast, the negative role of bequests for housing only starts

to appear in middle years and more prominently for males than for females, although it leads to a

financial savings boost that drives down housing consumption for all (Kopczuk and Lupton, 2007).

Figure 12: Additional gross housing wealth by cohort (thousands of $)

Finally, we see precautionary saving motives in Figure 13 having a negligible effect on pension

wealth, as is to be expected since pension wealth cannot be decumulated during work years in

response to income shocks. In contrast, consumption smoothing motives seem to affect pension

wealth much more, and also much earlier than they affect financial wealth. Despite most people

postponing voluntary contributions until much later in their working life, it is the higher returns on

pension assets that allow consumption smoothing motives to drive the earlier moderate contribu-
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tions. As bequests only weakly affect pension balances, we conclude that voluntary contributions

during working years are primarily made for consumption smoothing rather than bequest reasons.

One final remark on bequests motives, given the prominence they have had in the lifecycle

literature and the fact that they only add moderately to financial and pension wealth accumulation

in our setup: Note how ceteris paribus plan choices, bequest motives boost financial wealth during

mid-working years for both males and females, but have no wealth effects later on. This finding

does not imply bequests are unimportant, but rather that, at the margin, the addition of a bequest

motive does not drastically increase savings over and above what is built up for consumption

smoothing reasons - a result consistent with Dynan et al. (2002). What our results add to Dynan

et al. (2002) is the part on bequest motives boosting financial wealth during mid-years (when

retirement savings are not yet built up) to increase savings in case of death before retirement.

Once enough retirement savings are accumulated in later years, however, bequest motives do not

further alter saving. But, as shown in Section 6.3, they do alter plan decisions, which in turn affects

pension balances: Recall bequests make individuals more willing to take on risk, and with an added

bequest motive, they will see the exposure to the diversified high risk-high returns allocations

offered by DC plans as helping them optimize their capacity to leave bequests. It is indeed this

greater willingness to switch to DC that leads to bequest motives indirectly generating the rise in

pension wealth accumulation in Table 5, rather than a direct increase in voluntary contributions.

7 Conclusions

How much to save and to diversify over the lifecycle are key decisions faced by all individuals

and households, significantly affecting the adequacy of their retirement nest eggs. In aggregate

these choices also impact the macroeconomic composition of capital - that in turn affects asset

returns, housing prices, rental yields and financial stability (Eckardt et al., 2018), as well as the

overall response of the economy to shocks (Kaplan and Violante, 2018). Hence, from a policy

perspective, understanding what drives saving decisions during one’s lifetime is central both for

the design of appropriate public programs and for understanding intergenerational wealth impacts.

This paper disentangles the saving motives behind the lifecycle wealth allocation. In particu-

lar, we examine how standard saving motives (i.e., consumption smoothing, leaving bequests and
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Figure 13: Additional pension wealth (DB+BC) by cohort (thousands of $)

precautionary savings) interact with pension choice architecture, returns, preferences and frictions

to drive lifetime saving across the main asset categories. To do so, we structurally estimate a rich

dynamic lifecycle model involving real and financial wealth accumulated in safe and risky assets

inside and outside pension plans with complex choice architecture, uninsurable labor income risk,

housing frictions and borrowing constraints. Our realistic setup, where people (i) can rent or own

a house for which they can take a collateralised mortgage, (ii) are automatically enrolled into an

employer sponsored plan, (iii) make a wide range of consequential plan decisions (about benefit

type, contributions and asset allocations) jointly with homeownership and liquid savings choices,

and (iv) incur the possibility that some components of consumption involve precommitments and

some choices involve inertia that make them costly to adjust, implies broadly generalizable re-

sults. Using panel individual data on members of an industry-wide retirement fund matched with

nationally representative survey data, we present two new sets of findings.

First, we empirically identify the various factors that affect the accumulation of assets. On the

pension side, older and wealthier individuals are more likely to opt for DC plans and to volun-

tarily contribute. Males and members with non-default allocations have higher pension balances,
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while females invest slightly more aggressively possibly in an attempt to close the gap with males.

Overall, however, risky assets share profiles appear relatively flat, with only some moderate rebal-

ancing away from risk as people age. Homeownership occurs relatively early in (working) life and,

unsurprisingly, housing wealth share increases as people get older. Females with default pension

allocations are more likely to own a home and hold more housing wealth, which given their slightly

higher liquid savings, is consistent with them deriving higher utility from housing than males.

Second, we run counterfactuals to quantify the extent to which various saving motives drive the

lifetime accumulation of each of these assets, taking into account the interplay between the stan-

dard saving determinants and pension choices, returns, preferences and frictions. These exercises

reveal that while all three motives (consumption smoothing, leaving bequests and precautionary

savings) have a significant impact on savings, there is considerable heterogeneity in how important

they each are for the lifetime dynamics of each asset class.

For instance, the costless redraw on mortgages allows housing assets to insure consumption

against labor income risk. This finding gives an important new insight into why households priori-

tize housing asset accumulation over other types of assets. The conventional treatment of housing

as an illiquid asset has overlooked its potential as a source of precautionary savings when redraw

is relatively frictionless. Moreover, due to the costless redraw option on mortgages, precautionary

saving does not lead to extra financial wealth, rather financial wealth is primarily accumulated as a

way to smooth consumption (despite people also having access to pensions). Consistent with life-

cycle theory, this rise in liquid savings for consumption smoothing reasons occurs typically after

the age of 40, with males reaching the end of their careers with almost double the wealth boost

of females. Finally, we see financial wealth also building up for bequest purposes, with females

saving slightly more and definitely earlier than males.

Interestingly, these trends appear somewhat inverted for housing, with consumption smoothing-

induced savings occurring earlier, although again more prominently on average for females than for

males. So while wage uncertainty does not ultimately matter much for housing wealth, bequests

seem to play a negative role during middle years due to financial wealth accumulation driving

down housing consumption.

Since pension wealth cannot be decumulated during working years in response to income
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shocks, we find precautionary motives unable to affect pension balances. Holding plan choice

fixed, adding a bequest motive also does not drive up pension balances, leading us to conclude

that people voluntarily contribute for consumption smoothing rather than bequest reasons. Indeed,

consumption smoothing in isolation significantly boosts pension wealth for everybody, and when

considered jointly with the second order effect that the plan choice change induces on saving, we

see males additionally benefitting due to higher DC and contribution prevalence.

Finally, flexibility in plan default provisions (related to plan type, voluntary contributions and

asset allocation choices) brings substantially higher pension balances, which slightly displaces

non-pension financial wealth but also considerably increases housing. This pension-housing com-

plementarity is stronger for males than for females, and stems from the higher post-retirement

wealth allowing the housing consumption desired in later years to drive up housing wealth through-

out the lifecycle. While accessing higher financial returns leads to a milder version of these effects,

disposing of costless mortgage redraws has the opposite result - a rise in non-pension financial

wealth and subsequently, a general shift away from DC plans and lower pension balances. Plan

choices thus prove a key secondary channel through which all three saving motives affect wealth.

In particular, DC plans serve not only to improve consumption smoothing via retirement income

adequacy, but also - since DB payouts are tied to uncertain wage levels in the final years of em-

ployment - they help manage the effects of income risk on pension balances and increase bequests.

As a rising proportion of the population lives longer, grows older and retires relying increas-

ingly on private savings, lifecycle portfolio decisions will soon become crucial in determining post-

retirement incomes. Considering the recent rapid shifts towards DC plans with complex choice and

default architectures, public policy and financial product design require a strong understanding of

portfolio dynamics over the lifecycle. By highlighting the considerable heterogeneity in how and

why people save, our results contribute to the ongoing policy debate over approaches to map out

adequate welfare programs, while theoretically lending support to modelling saving behavior in a

way that allows for different assets to display different lifecycle patterns - some following more

and others less the predictions of standard lifecycle theory.
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Online Supplementary Appendix
A Retirement Fund Features

Mandatory Default Option Alternative Options

Enrolment ✔   -    -  

Plan type   -  DB DC (within 1 yr)

Employer contributions 17%   -    -  

Employee contributions*
    Standard rate   -  7% (Irreversible) Choice to decrease
    Voluntary rate   -  0% Choice to increase

Investment options   -  Balanced Choice of other 14 options

Insurance   -  Life and TPD Choice to change cover

Table A1. UniSuper plan features

Notes: The table presents the key features of the retirement fund we study. Bold indicates the choice dimensions 
that we model. Recall all UniSuper members make investment choices as both DB and DC plans have a DC 
component *An additional choice dimension (that we do not model here) is that employee contributions can be 
made pre- or post-tax. TPD denotes total & permanent disability.

Table A2. UniSuper standard contribution schedule

Pre-tax Post-tax
8.25 7.00 100.00 82.30
5.25 4.45 100.00 100.00
4.70 4.00 97.40 100.00
3.55 3.00 91.70 100.00
2.35 2.00 86.00 100.00
1.20 1.00 80.20 100.00
0.00 0.00 74.50 100.00

% of employer contribution 
to DB component

Standard contribution rates %
ACF %

Notes: The table presents the standard contribution rates that an employee can opt for, before- 
or after-tax, along with the corresponding Average Contribution Factor (ACF) and share of 
employer contributions to the DB component.
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B HILDA Spending Imputation Estimates

Table B1. Share of individual-to-household consumption

Wave 10 Wave 14

(1) (2) (3) (4) (5)
Age 0.397 0.040 0.141∗ 0.094 -4.540

(0.978) (0.966) (0.063) (0.915) (2.583)

Male -6.432∗∗∗ -6.331∗∗∗ -6.124∗∗∗ -6.076∗∗∗ -4.849∗∗

(1.464) (1.490) (1.478) (1.479) (1.559)

Couple -1.255 -1.926 -3.067 -3.282 0.470
(1.720) (1.885) (1.915) (1.989) (2.132)

Household size 1.295∗ 1.351∗ 1.347∗ 2.191∗∗

(0.579) (0.568) (0.572) (0.711)

Health insurance premium 0.001∗ 0.002∗ 0.001∗ 0.000
(0.001) (0.001) (0.001) (0.000)

Ln annual wage -0.246 -0.130 -0.201 -0.211 0.564
(0.646) (0.622) (0.622) (0.626) (0.693)

Ln net wealth 1.723 1.053 0.924 -16.997
(2.847) (2.625) (2.418) (10.543)

Ln net wealth X Age -0.021 0.008 0.001 0.355
(0.072) (0.071) (0.067) (0.188)

Constant 62.467 67.690 81.043∗∗∗ 70.248∗ 293.585∗

(38.239) (35.251) (6.893) (32.947) (140.602)
Observations 510 510 510 510 636
AIC 4227.9 4229.1 4220.9 4223.7 5472.6

Notes: All specifications are OLS models. Specifications (4)-(5) are the final ones used
for the imputation of individual-to-household consumption share in Wave 10 and Wave 14,
respectively. Since net wealth contains negative values, log net wealth is the log of adjusted
net wealth, where Adjusted net wealth= (net wealth - min net wealth) +1. Robust standard
errors are in parenthesis below estimated parameters. *, **, and *** denote significance at
the 10%, 5%, and 1% level, respectively.
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Table B2. Share of individual-to-household housing expenses

Wave 10 Wave 14

(1) (2) (3) (4) (5)
Age -0.239 -0.016 0.305 -0.016 -14.255

(2.317) (2.303) (0.198) (2.319) (7.656)

Male 7.476 7.439 7.265 7.364 2.298
(5.079) (5.063) (5.084) (5.068) (5.469)

Couple 3.906 5.258 7.053 6.320 -0.887
(4.864) (6.025) (6.168) (6.364) (6.956)

Household size -1.535 -1.520 -1.590 3.308
(1.896) (1.904) (1.902) (2.059)

Health insurance premium -0.001 -0.001 -0.001 -0.002
(0.001) (0.001) (0.001) (0.001)

Ln annual wage 3.610∗ 3.558∗ 3.618∗ 3.604∗ 1.899
(1.453) (1.432) (1.439) (1.444) (1.619)

Ln net wealth 5.027 5.498 5.675 -62.434∗

(4.634) (4.594) (4.626) (28.886)

Ln net wealth X Age 0.028 0.009 0.011 1.053
(0.163) (0.163) (0.164) (0.546)

Constant -18.829 -21.093 43.095∗ -23.763 924.231∗

(68.835) (68.222) (19.009) (68.649) (401.742)
Observations 419 419 419 419 507
AIC 4324.3 4323.8 4326.6 4325.3 5389.9

Notes: All specifications are OLS models. Specifications (4)-(5) are the final ones used
for the imputation of individual-to-household consumption share in Wave 10 and Wave
14, respectively. Note that compared to Wave 10, Wave 14 misses (i) holiday and travel
costs, and (ii) new vehicles, computers, audio visual equipment, household appliance and
furniture. To adjust Wave 14 consumption for these missing categories, we compute the
Wave 10 ratio of missing to non-missing consumption categories, where these categories
are identified based on whether they appear in Wave 14 or not. We then use the coeffi-
cients of specification (4) run on this Wave 10 ratio to impute the value of missing Wave
14 consumption categories and add it to Wave 14 raw consumption to get total consump-
tion. Since net wealth contains negative values, log net wealth is the log of adjusted net
wealth, where Adjusted net wealth= (net wealth - min net wealth) +1. Robust standard
errors are in parenthesis below estimated parameters. *, **, and *** denote significance
at the 10%, 5%, and 1% level, respectively.

65



C Solving the model using the Endogenous Grid Method

This technical appendix provides a complete derivation of the first order sequential Euler equations
for the lifecycle model. We also show how we apply the EGM to obtain a numerical solution of the
model. While the Euler equations are sequentially sufficient, they will not be recursively sufficient.
Thus, to take advantage of the computational speeds offered by the EGM and make our structural
estimation feasible, we use the upper-envelope scan method by Shanker and Dobrescu (2022) that
allows us to recover the optimal policy from the candidate solution points generated by the EGM
in the presence of discrete choices.

We proceed as follows. In section C.1, we introduce some preliminary mathematical defini-
tions. In section C.2, we formalise the lifecycle model as a sequential problem on abstract function
space, which allows us to derive functional Euler equations in Section C.3. In Section C.4, we show
the sequential sufficiency of the Euler equations. Finally, we detail our computational approach
using EGM in Section C.5.

C.1 Mathematical preliminaries

We start by stating some mathematical definitions. The Gateaux derivative is a generalisation of
derivatives to vector spaces; we follow the terminology used by Penot (2013) - Definition 2.24.

Definition 1 (Gateaux differential) Let X be a real topological vector space and Y a normed

space. Let W be an open subset of X, let x ∈W and let f : W → Y . If the following limit exists:

f ′r(x,u) = lim
λ→0

f (x+λu)− f (x)
λ

then f ′r(x,u) is the radial derivative of f at x in the direction u. If the radial derivative exists

for every u ∈ X and the mapping f ′g(x) : u 7→ f ′r(x,u) is linear and continuous, then f is Gateaux

differentiable at x and f ′g(x) is the Gateaux differential of f at x.

Next, let X be a Hilbert space, with X =×iXi where each Xi is space of square integrable random
variables on a common separable probability space. The following inner-product defines the dual
paring for x,y ∈ X (Aliprantis and Border, 2006):

xy = ⟨x,y⟩=
∫
⟨x(ω),y(ω)⟩RiP(dω)

=
∫

∑
i

xiyiP(dω)

= ∑
i

∫
xiyiP(dω)
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Finally, we require a definition of stopping times. Let τ be an arbitrary stopping time relative to
the filtration (Ft)

T
t=0. For a progressively measurable stochastic process (lt)T

t=0, recall that (lτ
t )

T
t=0

is a stochastic process stopped at τ , a random variable measurable with respect to (Ft)
T
t=0 such

that lτ
t = lt∧τ . Moreover, the process (lτ

t )
T
t=0 is measurable with respect to the stopped filtration

(F τ
t )

T
t=0, where F τ

t = Ft∧τ . Also recall that lτ is a random variable and is Fτ measurable.46

C.2 Statement of primitive form lifecycle problem

C.2.1 Model environment

Here we show the sufficiency of generalized sub-derivative Euler equations for the stochastic life-
cycle problem. We first write the problem as a sequential primitive form problem with an infinite
dimensional state-space. In particular, the sequential problem optimizes over sequences of func-
tions (random variables defined on an underlying probability space) to employ the results from
Shanker and Dobrescu (2022). While we start with a sequential, infinite-dimensional framing
of the problem, the computational algorithm generates a recursive solution. A discussion of the
connection between recursive and sequential solutions is given in Shanker (2017).

To begin we start with some formal structure on the uncertainty driving the exogenous shocks. Let(
Ω,Σ,(Ft

)T
t=0,P

)
be a filtered probability space on which uncertainty for all individuals will be

defined. To simplify the exposition, we will refer to the space
(
Ω,Σ,(Ft

)T
t=0,P

)
as the underlying

probability space throughout this appendix. The sequence of σ −algebras denoted by (Ft
)T

t=0 are
a sequence of information sets. Define et =

{
yt ,Rr

t ,R
s
t ,Pt ,αt ,βt ,{ξ ν

t }ν∈V ,{ξ ν
t }ν∈Π

}
as the set

of shocks at each t and assume (et)
T
t=0 generates (Ft)

T
t=0. Also, let (F t

j)
T
j=t denote the natural

filtration with respect to the sequence (et , . . . ,eT ) for any t. For a F t
k measurable random variable

v, with k ≥ t, we will use the notation Et
j,ev to denote the conditional expectation of v with respect

to F t
j , conditioned on a realisation e = (et , . . . ,e j).

Next, we formally define the endogenous states and controls. The sequence of state variables in
the model are the progressively measurable sequences of financial assets (at)

T
t=0, housing assets

(Ht)
T
t=0, pension assets (aDC

t )T
t=0, mortgage liabilities (mt)

T
t=0 and risky assets shares (xπ

t )
T
t=0. Fol-

lowing Shanker and Dobrescu (2022), we split the control variables into two groups. The first
group includes controls that enter the problem via a convex function conditional on the discrete
choices related to renting, adjusting housing stock, voluntary contributing and risky assets share.
The convex control variables are the sequences of non-durable consumption (ct)

T
t=0, housing ser-

vices consumed from rented housing services (hsR
t )

T
t=0, housing capital investments (gH

t )
T
t=0 and

mortgage repayments (gm
t )

T
t=0. The second group are the discrete choice controls that enter the

problem via a non-convex and non-separable function. These are the choices related to renting

46Recall that Fτ : = {A ∈ Σ |A∩{ω |τ(ω)≤ t} ∈ Ft ,∀t ≤ T}.
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(dR
t )

T
t=0, adjusting the housing capital stock (dH

t )T
t=0, voluntary contributing (vt)

T
t=0 and risky as-

sets share (πt)
T
t=0. Here we have that dR

t and dH
t each realize values in {0,1}, and vt and πt realize

values in V and Π. Note that V and Π are defined as the sets of discrete choices for the voluntary
contributions and risky assets share, respectively.

The notation for the states is identical to the main text, except now the states and controls should be
formally read as random variables rather than scalars. However, to write the problem as a primitive

form sequential problem, we introduce additional controls variables to capture housing services
(hsR

t )
T
t=0, housing capital investments (gH

t )
T
t=0 and mortgage repayments (gm

t )
T
t=0. In addition to

the main text, we capture (i) the choice of renting - that is if Ht+1 = 0 and St > 0 - by the discrete
random variable dR

t , and (ii) the choice of adjusting - when Ht+1 ̸= (1− δ )Ht - by the discrete
random variable dH

t . Finally, we add a state variable xπ
t that will transition according to the time t

period discrete choice risk share and link the t period risk choice to the t +1 period realisation of
stochastic return for the DC assets.

We let K denote the number of states, J is the number of convex controls, J̃ is the number of
non-convex non-separable controls (the discrete controls), and use JH to denote the number of
constraints. Let Ā (with Ā ⊂ RK) be the space where the states take on values and let Z (with Z ⊂
RJ) be the space where the convex controls zt realise values. Moreover, let Z̃ : = {0,1}2 ×V×Π

be the space where the discrete choices realise values.

To define the state-space and control spaces, denote X as the set of RK valued square integrable
random variables with finite variance defined on

(
Ω,Σ,(Ft

)T
t=0,P

)
, let Y be the RJ valued square

integrable functions, and let Ỹ be Z̃ valued random variables. The spaces X and Y are Hilbert
spaces, and thus reflexive with X⋆ = X , for instance. We will denote elements of the tuple xt with
xt ∈ X , using the notation in the main text - xt = (at ,aDC

t ,Ht ,mt ,xπ
t ). Similarly, zt = (ct ,St ,gH

t ,g
m
t )

and z̃t = (dR
t ,d

H
t ,vt ,πt).

The state-spaces of the lifecycle problem will be a sub-set of X , in particular:

St : = {x ∈ X |x ∈ mFt−1} (30)

where mFt is the sub-space of all Ft measurable functions. Thus, the states at time t are measur-
able with-respect to the (t −1) information and are determined at the beginning of period t, before
the t period shock is realised. Next, the control spaces will be:

Zt : = {y ∈ Y |y ∈ mFt} , Z̃t : =
{

y ∈ Ỹ |y ∈ mFt
}

(31)
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C.2.2 Constrains, transitions and payoffs

Having described the mathematical environment for the model, we proceed to formally define the
constraints, transition functions and pay-offs for the agent.

Constraints. To characterise the constraints, we will define a function ht : St × Zt × Z̃t → W

where W is the space of RJh valued random variables on the underlying probability space. The
mapping ht maps a random variable to a space of random variables such that the constraints of
the lifecycle model hold. The constraints themselves are real-valued functions with real domain,
defining the mortgage collateral constraint (mc), the non-negativity constraint for liquid assets (a),
the non-negativity constraint for housing assets (H), the non-negativity constraint for mortgages
(m) and a rental choice constraint the ensures agents can rent if and only if they own no housing
capital (dR). Use the tuple I h = (mc,a,m,H, dR) to index the constraints and define real valued
functions ϕh

l for l ∈ I h as follows:

ϕ
h
mc(m,gm,H,dH) =−m+gm +φ

C
t ((1−δ )H +dHgH)

ϕ
h
a (y,R

s,Rr,P,a,xπ ,aDC,c,hsR,gm,gH ,dH ,dR) = Ra+(xπRr +(1− xπ)Rr)aDC +(1− v− vS)y

− c−PShsR

−PgH −dH
τHP

(
(1−δ )H +dH

t gH)−gm

ϕ
h
H(H,gH ,dH) = (1−δ )H +dHgH

ϕ
h
m(m,gm) = (1+ rm)m−gm

ϕ
dR
m (H,gH ,dR,dH) =−dR((1−δ )H +dHgH)

The functional constraint function can now be defined as:

ht(xt ,zt , z̃t) =


ϕh

mc(mt ,gm
t ,H,dH

t )

ϕh
a (yt ,Rs,Rr,Pt ,at ,xπ

t ,1t=RaDC
t ,ct ,hsR

t ,g
m
t ,g

H
t ,d

H
t )

ϕh
H(Ht ,gH

t ,d
H
t )

ϕh
m(mt ,gm

t )

ϕdR
m (Ht ,gH

t ,d
R
t ,d

H
t )

 (32)

and the feasibility correspondences, Γt : St ⇒×Zt × Z̃t , will be:

Γt(xt) : =
{

zt , z̃t |ht(xt ,zt , z̃t)≥ 0
}

(33)
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where the inequality in the definition of the feasibility correspondences is assumed to hold P almost
everywhere (a.e.).

Transition equations. We proceed along similar lines to define the transition equation. Use the
tuple I f = (a,DC,H,m) to collect the indexes for the transition functions for liquid assets (a),
pension assets (DC), housing (H), mortgages (m) and risk position (xπ). Define the real valued
functions ϕ

f
l for l ∈ I f as follows:

ϕ
f

a (y,R
s,Rr,P,a,xπ ,aDC,c,hsR,gm,gH ,dH ,dR) = Ra+(xπRr +(1− xπ)Rr)aDC +(1− v− vS)y

− c−PShsR

−PgH −dH
τHP

(
(1−δ )H +dH

t gH)−gm

ϕ
f

DC(R
r,Rs,aDC,v,xπ) = (xπRr +(1− xπ)Rs)aDC +(v+ vS + vE)y

ϕ
f

H(H,gH ,dH) = (1−δ )H +dHgH

ϕ
f

m(m,gm) = (1+ rm)m−gm

ϕ
f

π (π) = π

The functional transition function ft : GrΓt → St+1, will be:

ft(xt ,zt , z̃t) =


ϕh

a (yt ,Rs,Rr,Pt ,at ,xπ
t ,1t=RaDC

t ,ct ,hsR
t ,g

m
t ,g

H
t ,d

H
t )

1t+1<Rϕ
f

DC(R
r
t ,R

s
t ,a

DC
t ,vt ,xπ

t )

ϕ
f

H(Ht ,gH
t ,d

H
t )

ϕ
f

m(mt ,gm
t )

ϕ
f

π (πt)

 (34)

Payoffs. The payoff function for the functional sequence problem will be defined on a space of
random variables which integrates the real-valued payoffs for each realisation on the probability
space. The underlying payoffs will be given by a real valued function ϕu, defined as:

ϕ
u(s,e,β ,x,z, z̃) = −βκ

(
c,S;αt

)
+ νv1v̸=0 + νπ1π ̸=πd + ξv + ξπ − (1 − s)b(B′) (35)

where κ(c,S;α) = u(c,S,α) if c > 0 and s > 0 or u(c,S;α) = ∞ otherwise. Moreover:

B′ = ϕ
h
a (y,R

s,Rr,P,a,xπ ,aDC,c,hsR,gm,gH ,dH ,dR)

−ϕ
f

m(m,gm)+Pϕ
f

H(H,gH ,dH)+ϕ
f

DC(R
r,Rs,aDC,v,xπ) (36)
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and
S = dRhsR +(1−dR)

(
(1−δ )H +gH) (37)

Using the real-valued payoffs, we can define the functional the per-period payoffs, ut : GrΓt →R∞

as:
ũt(xt ,zt , z̃t) = ŝtEϕ

u(pt , β̂t ,et ,xt ,zt , z̃t)

where β̂t = Πt
j=0β j, ŝt = Π

t−1
j=0s j. By Remark 2.1.1 from Shanker (2017), we will allow the

Lebesgue integral above to take on the value +∞.

The fundamentals of the lifecycle model can now be collected as a tuple:

ELS : =
(
(X ,Y,Ỹ ),(St)

T
t=0 ,(Zt)

T
t=0 ,

(
Z̃t
)T

t=0 ,(ut)
T
t=0,( ft)T

t=0,(Γt)
T
t=0

)
(38)

C.2.3 Sequential primitive form dynamic optimization problem and sub-problems

We now define the lifecycle problem for which we seek a solution. The lifecycle problem becomes:

min
(xt ,zt ,z̃t)T

t=0

T

∑
t=0

ũt(xt ,zt , z̃t) (PLS(x0))

such that feasibility holds:

x0, zT ,z̃T and xT+1 is given and zt , z̃t ∈ Γt(xt), xt+1 = ft(xt ,zt , z̃t) for all t ≤ T (Y )

The sufficiency proofs require us to define a sub-problem of solving the discounted sum of future
payoffs given a sequence of discrete choices. In particular, the sub-problem PS(t,e,x, ¯̃z,(z̃ j)

T
j=t+1)

starts at time t given realised discrete choices ¯̃z, exogenous state e and endogenous state x fixed,
and given a (F t+1

j )T
j=t+1 adapted sequence of discrete choices from t, (z̃ j)

T
j=t+1 fixed.

Let V
t,( ¯̃z j)

T
j=t

t (e,x) be the value function for the problem starting at time t, defined by:

V
t,( ¯̃z j)

T
j=t

t (y,x) = min
(x j,z j)

T
j=t

T

∑
j=t

ũ j(x j,z j, ¯̃z j) (PLS(t,e,x, ¯̂z,( ¯̂z j)
T
j=t+1))

such that x and e are given, x j+1 = f j(x j,z j, ¯̃z j), z j, ¯̃z j ∈ Γ
t+1
j (x j) for all t ≤ j ≤ T and we have:

ũ j(x j,z j, z̃ j) = ŝt
jEt

eϕ
u(s j, β̂ j,e j,x j,z j, z̃ j) (39)

where β̂ t
j = Π

j
l=tβl , ŝt

j = Π
j−1
l=t sl .
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C.2.4 Recursive primitive form problem

In keeping with the terminology by Sorger (2015) and Shanker (2017), the problem PLS is a se-

quential primitive form finite horizon problem. The planner selects a sequence of actions and states
to maximise a finite horizon discounted sum. Both the actions and staes in the sequential primitive
form problem are progressively measurable random variables - thus on a suitable space of random
variables, the problem resembles a deterministic one. The sequential primitive form problem fur-
nishes us with a solution that is a sequence of progressively measurable random variables, each
dependent on the entire history of shocks up-to time t. By contrast, a stochastic recursive primitive

form problem is conditioned at each time t and is a problem where the agent selects the realisations

of the next period states and current period controls, conditioned on a realisation of the current pe-
riod states. The stochastic recursive problem is characterised by a Stochastic Recursive Bellman
Equation (SRBE) and stochastic recursive value function Vt : E × Ā → R defined by:

Vt(e,x) = min
(x j,z j,z̃ j)

T
j=t

T

∑
j=t

ũ j(x j,z j, z̃ j) (PS(t,e,x))

such that the per-period payoff is given by (39), x and e are given, x j+1 = f j(x j,z j, z̃ j) and z j, z̃ j ∈
Γ

t+1
j (x j) for all t ≤ j ≤ T .

If we let (x j,z j, ẑ j)
T
j=t be a solution sequence for PS(t,e,x), by the Bellman Principle of Optimality

(BPO), the stochastic recursive value function will satisfy the SRBE:

Vt(e,x) = min
z,z̃

ϕ
u(pt ,β ,α,ξv,ξπ ,c,S,v,π,A′)+ ptβEt

t,eVt+1(et+1,x′) (40)

such that x′ = ϕ
f

t (x,z, z̃) and ϕh
t (x,z, z̃)≥ 0. The stochastic recursive problem of solving the SRBE

period by period furnishes us with a sequence of measurable policy functions σt : E × Ā → Z × Z̃

such that σt(e,x) solves the SRBE. Moreover, a stochastic recursive sequence (SRS) generated
by (σt)

T
t=0, that is, zt , z̃t = σt(et ,xt), with xt+1 = f (xt ,zt , z̃t), solves the sequential primitive form

problem.

In what follows we will consider a candidate solution of the following form: A sequence of mea-
surable functions (σt)

T
t=0 and

{
(σd

t )
T
t=0

}
d∈Z̃ where σ j : E × Ā → Z × Z̃ and σd

t : Ā → Z such that

σt = ∑
d∈Z̃

1σz̃,t=dσ
d
t (41)

In words, σt is the policy function for the convex states unconditional on the discrete choice and
σd

t is the policy function conditioned on a set of discrete choices. We will use σd
c,t (and similarly
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for all the other controls in the tuple z) to denote the consumption policy function condition on the
discrete choice d at time t. And we have used σz̃,t to denote the discrete choice policy function.

Finally, for a sequence of policy function (σt)
T
t=0, define the continuation value at each time t:

W σ
t (e,x) = Et

e

T

∑
j=t

ũ j(x j,z j, z̃ j) (42)

where per-period payoff is given by (39), z j, z̃ j =σ j(e j,x j), with x j+1 =ϕ
f

t (e j,x j,z j, z̃ j) and xt = x.

This completes our formal characterisation of the lifecycle problem and associated concepts. We
can now move to characterising the necessary conditions for the lifecycle problem.

C.3 Necessary conditions

Our functional approach to derive Euler equations for the sequence problem utilises the original
18th century line of attack proposed by Euler (see Stokey and Lucas, 1989, Section 3.2), which
recognises that the Euler equation is a necessary derivative for a perturbation problem. Typically,
the perturbation problem in economic dynamics is implemented as a ‘one-shot’ deviation problem
at time t, maximising over t and (t+1) utility subject to the feasibility of the (t+2) state. However,
when the state is not liquid, the t + 2 state may determine the (t + 1) state if no adjustment is
being made at t +1, thus not providing us with any opportunity for a feasible perturbation to take
derivatives. The approach here is to take the perturbation not at (t+1), but at time τ - the next time
the illiquid stock is being adjusted.

C.3.1 The τ- shot deviation problem

Now fix t and define the stopping time:

τ : = inf
{

k ≥ t +1 |dH
k ≥ 1

}
∧T (43)

Proposition 1 (τ - shot Deviation Problem )

If (x⋆t )
T+1
t=0 and (z⋆t , z̃

⋆
t )

T
t=0 solve problem PS, then for each t, (x⋆,τj )T+1

j=t+1 and (z⋆,τj )T
j=t solves:

(Pτ
t ) min

(x j)
T+1
j=t+1,(z j)

T
j=t

Eϕ
u(cτ

t ,S
τ
t ,v

⋆,τ
t ,π⋆,τ

t )+E
τ

∑
j=t+1

β
j−t

ϕ
u(cτ

j ,hsτ
j ,π

⋆,τ
j ,v⋆τ

j ) (44)

subject to the following constraints for each j ∈ {t, . . . ,τ}:

1. x j+1 = f (x j,z j, z̃⋆j)
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2. (z j, z̃⋆j) ∈ Γt(x j)

3. xt = x⋆t

4. xτ+1 = x⋆
τ+1

where St = dR,⋆
t hsR

t +(1−dR,⋆
t )

(
(1−δ )Ht +gH

t
)
.

Proof. Fix t ∈ {1,2, . . . ,T} and suppose for the sake of contradiction that there exist sequences
(x j)

T+1
j=t+1 and (z j)

T
j=t that satisfy constraints 1. -5. above such that:

Eϕ
u(cτ

t ,S
τ
t ,v

⋆,τ
t ,π⋆,τ

t )+E
τ

∑
j=t+1

β
j−t

ϕ
u(cτ

j ,hsτ
j ,v

⋆,τ
j ,π⋆,τ

j )

< Eϕ
u(c⋆,τt ,S⋆,τt ,v⋆,τt ,π⋆,τ

t )+E
τ

∑
j=t+1

β
j−t

ϕ
u(c⋆,τj ,hs⋆,τj ,v⋆,τj ,π⋆,τ

j )

(45)

Now define the sequence (x′k)
T+1
k=0 and (z′k)

T
k=0 as follows:

x′k = x⋆k1{k≤t,k>τ}+ xk1{k>t,k≤τ} (46)

and
z′k = z⋆k1{k<t,k>τ}+ zk1{k≥t,k≤τ} (47)

Note, by constraints 3. and 4. above, the sequences (x′k)
T+1
k=0 and (z′k)

T
k=0 are feasible. Adding the

term E∑
T
j=τ+1 β j−tϕu(c⋆j ,hs⋆j ,v

⋆
j ,π

⋆
j ) to both sides of (45), it follows that:

Eϕ
u(cτ

t ,S
τ
t ,v

⋆,τ
t ,π⋆,τ

t )+E
τ

∑
j=t+1

β
j−t

ϕ
u(cτ

j ,hsτ
j ,v

⋆,τ
j ,π⋆,τ

j )+E
T

∑
j=τ+1

β
j−t

ϕ
u(c⋆j ,hs⋆j ,v

⋆
j ,π

⋆
j )

= Eϕ
u(c′t ,S

′
t ,v

⋆
t ,π

⋆
t )+E

T

∑
j=t+1

β
j−t

ϕ
u(c′j,hs′j,v

⋆
j ,π

⋆
j )

< Eϕ
u(c⋆,τt ,S⋆,τt ,v⋆t ,π

⋆
t )+E

τ

∑
j=t+1

β
j−t

ϕ
u(c⋆,τj ,hs⋆,τj ,v⋆,τj ,π⋆,τ

j )

+E
T

∑
j=τ+1

β
j−t

ϕ
u(c⋆j ,hs⋆j ,v

⋆
j ,π

⋆
j )

= Eϕ
u(c⋆t ,S

⋆
t ,v

⋆
t ,π

⋆
t )+E

T

∑
j=t+1

β
j−t

ϕ
u(c⋆j ,hs⋆j ,v

⋆
j ,π

⋆
j )

(48)

The first equality follows from the construction of the processes (x′k)
T+1
k=0 and (z′k)

T
k=0 at (46) and

(47). The first inequality follows from the contradictory assumption given by Equation (45) and
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the final equality follows from the definition of a stopped process. To finish the proof, we have:

E
T

∑
j=0

β
j
ϕ

u(c′j,hs′j,v
⋆
j ,π

⋆
j ) = E

t−1

∑
j=0

β
j
ϕ

u(c⋆j ,hs⋆j ,v
⋆
j ,π

⋆
j )+β

tEϕ
u(c′t ,S

′
t ,v

⋆
t ,π

⋆
t )

+E
T

∑
j=t+1

β
j−t

ϕ
u(c′j,hs′j,v

⋆
j ,π

⋆
j )

< E
t−1

∑
j=0

β
j
ϕ

u(c⋆j ,hs⋆j ,v
⋆
j ,π

⋆
j )+β

tEϕ
u(c⋆t ,S

⋆
t ,v

⋆
t ,π

⋆
t )

+E
T

∑
j=t+1

β
j−t

ϕ
u(c⋆j ,hs⋆j ,v

⋆
j ,π

⋆
j )

= E
T

∑
j=0

β
j
ϕ

u(c⋆j ,hs⋆j ,v
⋆
j ,π

⋆
j )

(49)

The first line follows from the construction of the processes (x′t)
T+1
t=0 and (z′t)

T
t=0 at (46) and (46).

The inequality follows from (48) and the final equality is obtained by collecting the elements of
the summation. However, the processes (x′t)

T+1
t=0 and (z′t)

T
t=0 are feasible, thus, the above yields a

contradiction since (x⋆t )
T+1
t=0 , (z⋆t )

T
t=0 does not solve problem PS.

C.3.2 Heuristic derivation of the Euler equation

Our task now is to derive functional Euler equations based on the necessary condition we stated
above. Because our objective is to show how to sufficiently characterise a solution, we start by
using the necessary τ shot deviation result to to heuristically derive the Euler equation. We then
use Euler equations with respect to the convex controls to characterise a candidate sequence and
show the Euler equations lead to multipliers that are sufficient for the candidate sequence to be
a solution. We give proofs for the sufficiency result here, since our objective is to show that a
computed solution is in fact the optimiser. For simplicity, we only give a heuristic derivation of the
necessary conditions.

Setting up the Lagrangian. To derive the Euler Equations using FOCs, let (x⋆t )
T+1
t=0 and (z⋆t , z̃

⋆
t )

T
t=0

solve problem PLS. We must have that for each t, (x⋆,τj )T+1
j=t+1 and (z⋆,τj )T

j=t solves:

min
(x j)

T
j=t+1,(z j)

T
j=t

Eŝtϕ
u(β̂ j,α j,cτ

t ,S
τ
t ,v

τ
t ,π

τ
t ,A

τ
t+1)+E

τ

∑
j=t+1

ŝ jϕ
u(β̂ j,α j,cτ

j ,S
τ
t ,v

τ
t ,π

τ
t ,A

τ
j+1)

subject to the constraints 1. - 5. of Proposition 1.

The constraints can be written as follows. Start with conditions 2. and 3. - for all periods after t,
the feasibility conditions must hold:
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hl
j(x

τ
j ,z

τ
j , z̃

⋆
j)≥ 0, j ≥ t +1, l ∈ I h (50)

Moreover, at time t, the feasibility condition must hold such that the time t state is x⋆t :

hl
t(x

⋆
t ,z

τ
t , , z̃

⋆
τ)≥ 0, l ∈ I h (51)

Next, conditions 1. and 4. can be re-written as follows. The transition at time τ , leading to the
state at time τ +1 must satisfy:

a⋆τ+1 = f a(xτ
τ ,z

τ
τ , z̃

⋆
τ), aDC,⋆

τ+1 = f DC(xτ
τ ,z

τ
j), m⋆

τ+1 = f m(xτ
τ ,z

τ
τ) (52)

The transition at time t, leading to the state at time t +1 must satisfy (given condition 3.):

aτ
t+1 = f a(x⋆t ,z

τ
t , z̃

⋆
t ), aDC,τ

t+1 = f DC(x⋆t ,z
τ
t , , z̃

⋆
t ), mτ

t+1 = f m(x⋆t ,z
τ
t , z̃

⋆
t ) (53)

Moreover, for each j after t, the states must satisfy the transition equations:

aτ
j+1 = f a(x j,zτ

j , z̃
⋆
j), aDC,τ

j+1 = f DC(x j,zτ
t , z̃

⋆
τ), mτ

t+1 = f m(x j,zτ
j , z̃

⋆
τ), j ≥ t +1 (54)

However, note that there is no investment in the housing stock between t and time τ , thus the
housing transition equations can be written as:

Hτ = H⋆
t (1−δ )τ−t +dH,⋆

t gH,⋆
t (1−δ )τ−t+1 (55)

H⋆
τ+1 = Hτ(1−δ )+gH,⋆

τ (56)

Now let Ξl
j, with j ∈ t, . . . ,T and l ∈ I h be the multipliers associated with (50) and (51). Next,

let Λa
j , ΛDC

j , Λm
j , with j ∈ t, . . . ,T be the multipliers associated with (52) to (53) and, combine the

constraints (55) and (56) to give:

H⋆
τ+1 = f̃ τ(H⋆

t ,g
H
t ,g

H
τ ) : =

(
H⋆

t (1−δ )+dH
t gH

t
)
(1−δ )τ−t +gH

τ (57)

76



let ΛH be its multiplier. Proceeding heuristically, write the Lagrange for the problem as:

L = Eŝtϕ
u(β̂ t ,αt ,cτ

j ,S
τ
t ,v

τ
t ,π

τ
t )+E

τ

∑
j=t+1

ŝ jϕ
u(β̂ j,α j,xτ

j ,c
τ
j ,d j)+

T

∑
j=t

∑
l∈I h

Ξ
l
jh

l
j(x

τ
j ,z

τ
j , z̃

⋆
j)

+
T

∑
j=t

Λ
a
j( f 1(xτ

j ,z
τ
j , z̃

⋆
j)−aτ+1

j+1)+
T

∑
j=t

Λ
DC
j ( f DC(xτ

j ,z
τ
j , z̃

⋆
j)−aDC,τ+1

j+1 )

+
T

∑
j=t

Λ
π
j ( f π(xτ

j ,z
τ
j , z̃

⋆
j)− xπ,τ+1

j+1 )+
T

∑
j=t

Λ
m
j ( f m(xτ

j ,z
τ
j , z̃

⋆
j)−mτ+1

j+1)

+Λ
H f̃ τ(H⋆

t ,gt ,gτ)

(58)

The arguments of the Lagrange are (aτ
j ,m

τ
j ,a

τ,DC
j )T

j=t+1,(c
τ
j ,hsτ,H

j ,hsτ,R
j )T

j=t ,g
τ,H
t and gτ,H

τ .

FOCs. The multipliers and arguments for the Lagrange are all square integrable random variables
defined on the underlying probability space, thus to characterise necessary FOCs formally, we
require the use of functional derivatives. However, we proceed heuristically and take the FOCs “as
if” each argument was real valued. First, taking the derivative with respect to a j+1 gives:

(1+ r)E j(Λ
a
j+1 +Ξ

a
j+1 + ŝ j+1(1− s j+1)β̂ j+1b′(B j+2))−Λ

a
j = 0 (a)

Next, taking the derivative with respect to aDC
j+1, xπ

j+1 and m j+1 gives:

E j((Λ
a
j+1 +Ξ

a
j+1)1 j+1=R +Λ

DC
j+11 j+1<R + ŝ j+1(1− s j+1)β̂ j+1b′(B j+2))

· (xπ
j+1Rr

j+1 +(1− xπ
j+1)R

s
j+1)−Λ

DC
j = 0 (DC)

E j(Ξ
a
j+11 j+1=R +Λ

DC
j+11 j+1<R)

(
Rr

j+1 −Rs
j+1

)
aDC

t+1 −Λ
π
j = 0 (xπ )

E j(1+ rm
t )(Ξ

m
j+1 +Λ

m
j+1 −Ξ

mc
j+1)−Λ

m
j = 0 (m)

We can also take the derivative with respect to each of the controls. Thus, the following hold mFt

almost everywhere:

ŝ jβ̂ ju1(c j,S j,α j)− ŝ j(1− s j)β̂ jb′(B j+1)−Λ
a
j −Ξ

a
j = 0 (c)

dR
t (ŝ jβ̂ ju2(c j,S j,α j)−Λ

a
jP

S
j −Ξ

a
jP

S
j −PS

j ŝ j(1− s j)β̂ jb′(B j+1)) = 0 (hsR)
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dH
t Pt(Λ

a
t +Ξ

a
t ) = φ

CdH
t Ξ

mc
t +dH

t Ξ
H
t + ŝ jβ̂ jdH

t (1−dR
t )u2(ct ,St ,αt)

+dH
t Et

τ

∑
l=t

(1−δ )τ−t
β̂lPl ŝl(1− sl)b′(Bl+1)

+dH
t Et(1−δ )τ−t(ΛH +Ξ

H
τ +φ

C
Ξ

mc
τ +Ξ

H
τ +(1−dR

τ )ŝτ β̂τu2(cτ ,Sτ ,ατ))

(gH
t )

−Ξ
dR
t dH

t dR
t

dH
τ Ξ

mc
τ φ

C +dH
τ Ξ

H
τ +dH

τ (1−dR
τ )u2(cτ ,Sτ ,ατ)+dH

τ β̂τPτ ŝτ(1− sτ)b′(Bτ+1)

+ΛH −Ξ
dR
τ dH

τ dR
τ = dH

τ Pτ(Λ
a
τ +Ξ

a
τ) (gH

τ )

Λ
m
j +Ξ

mc
j −Ξ

m
j −Ξ

a
j −Λ

a
j = 0 (gm

t )

Euler equations. We can now combine these FOCs to eliminate most of the multipliers. First,
combining (a) and (c) gives us the formulation for the financial assets Euler equation, with the
standard interpretation:

u1(ct ,St ,αt)−Ξ
a
t = βt ptEt(1+ r)u1(ct+1,St+1,αt+1)+(1− pt)b′(Bt+1) (59)

Now, using (DC), the Euler equation for DC assets gives us, for period R−1:

Λ
DC
R−1 = βR−1ER−1(Λ

a
R +Ξ

a
R + ŝR(1− sR)b′(BR+1))(xπ

RRr
R +(1− xπ

t )R
s
R) (60)

and for periods t < R−1:

Λ
DC
t = βtEt(Λ

DC
t+1 + ŝt(1− st+1)b′(Bt+1))(xπ

t Rr
t +(1− xπ

t )R
s
t ) (61)

Turning to mortgages, combine (m) with (gm
t ) to arrive at:

u1(ct ,St ,αt)−Ξ
m
t +Ξ

mc
t = βt ptEt(1+ rm

t )(u1(ct+1,St+1,αt+1))− (1− pt)b′(Bt+1) (62)

Next, turning to the housing stock, combine (gH
t ) with (gH

τ ) to arrive at:

dH
τ Ptu1(ct ,St ,αt)−dH

t Ξ
H
t = Et β̂

τ
t (1−δ )τ−t [ŝτ

t Pτu1(cτ ,Sτ ,ατ)+dH
t Ξ

mc
t φ

C

+ ŝτ
t dH

t (1−dR
t )u2(ct ,St ,αt)]

+Et

τ

∑
l=t

β̂
l
t ŝl

t(1− sl)b′(Bl+1)Pl

(63)
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Finally, we have an intra-temporal constraint for renters:

dR
t
(
u2(c j,S j,α j)

)
= PS

j u1(c j,S j,α j)− (1− pt)b′(At+1)Pt (64)

The above Euler equations (59) - (64), characterise the solution conditional on a sequence of dis-
crete choices. The Euler equations for the liquid capital stock, mortgages and pension assets are
standard. However, solving the τ-shot problem allows us to recover an Euler equation for the
illiquid stock - equation (63), which would not have been possible following standard approaches
(say, by differentiating the Bellman equation). In terms of interpretation, equation (63) tells us that
the shadow value (price) of investment (withdrawal) from the illiquid capital stock is given by the
discounted expected value of the stock when the stock is next liquidated, at random time τ not in
the next period as in the standard Euler equation. Thus, subject to the multipliers for the boundary
constraints, the agent equates the marginal utility of adjusting the capital stock today with the sum
of (i) the marginal utility of the housing capital stock the next time the stock is adjusted, (ii) the
utility of housing services if the agent is not renting, (iii) the value of relaxing the collateral con-
straint, and (iv) the expected marginal value to bequests if the agent dies between period t and τ .
We now move to showing how the discrete choices and the above solution sufficiently characterise
a solution.

C.4 Sequentially sufficient first order conditions

C.4.1 Constructing candidate sequence of convex controls and multipliers

We now begin the sufficiency results. Consider a sequence of measurable policy functions (σt)
T
t=0

and
{
(σd

t )
T
t=0

}
d∈D as described by (41). Suppose the policy functions generate a stochastic re-

cursive sequence (xt)
T+1
t=0 and (zt , z̃t)

T
t=0 that satisfies the following conditions P- a.e. The first

condition is an Euler equation for liquid assets:

u1(ct ,St ,αt)≤ βt pt(1+ r)Etu1(ct+1,St+1,αt+1)+(1− pt)b′(Bt+1) (65)

with the inequality strict if:

ϕ
h
a (yt ,Pt ,at ,ct ,hsR

t ,g
m
t ,g

H
t ,d

H
t ) = at+1 = 0 (66)

Second condition is an Euler equation for mortgages when mortgages are not bounded at the re-
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finance constraint:

u1(ct ,St ,αt)− (1− pt)b′(Bt+1)

≥ βt ptEt(1+ rm
t )u1(ct+1,St+1,αt+1), 0 ≤ mt+1 < φ

CHt+1 (67)

with the inequality strict if:
ϕ

h
m(mt ,gm

t ) = mt+1 = 0 (68)

The third condition is an Euler equation for mortgages when mortgages are bounded at the re-
finance constraint:

u1(ct ,St ,αt)− (1− pt)b′(Bt+1)

≤ βt ptEt(1+ rm
t )u1(ct+1,St+1,αt+1), 0 < mt+1 ≤ φ

CHt+1 (69)

with the inequality strict if:
ϕ

h
m(mt ,gm

t ) = mt+1 = φ
CHt+1 (70)

The fourth condition is an Euler equation for housing if an adjustment is being made at time t:

Ptu1(ct ,St ,αt)≤ Et ŝτ
t β̂

τ
t (1−δ )τ−tPτu1(ct ,St ,αt)

+Ξ
mc
t φ

C +(1−dR
t )u2(ct ,St , ,αt)

+Et

τ

∑
l=t

β̂
l
t ŝl

t(1− sl)b′(Bl+1)Pl

(71)

with the inequality strict if:
ϕ

h
H(Ht ,gH

t ,d
H
t ) = Ht+1 = 0 (72)

where we have defined:

Ξ
mc
t = min{0,u1(ct ,St ,αt)− (1− pt)b′(Bt+1)−βt ptEt(u1(ct+1,hst+1,αt+1))(1+ rm

t )} (73)

Ξ
m
t = min{0,βt ptEt(u1(ct+1,St+1,αt+1))(1+ rm

t )−u1(ct ,St ,αt)+(1− pt)b′(Bt+1)} (74)
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Finally, if dR
t = 1, then:

u2(c j,S j,α j) = PS
j u1(ct ,St ,αt) (75)

Now define a sequence (Λt)
T
t=0 and (Ξt)

T
t=0 as follows. First define:

Ξ
a
t = min{0,u1(ct ,St ,αt)−βt pt(1+ r)Etu1(ct+1,St+1,αt+1)+(1− pt)b′(Bt+1)} (76)

and then define:

Ξ
H
t = min{0,Ptu1(ct ,St ,αt)−βtEt β̂

τ
t ŝτ

t (1−δ )τ−tPτu1(ct ,St)

−Ξ
mc
t φ

C − (1−dR
t )u2(ct ,St ,αt)−Et

τ

∑
l=t

β̂
l
t ŝl

t(1− sl)b′(Bl+1)Pl} (77)

and for the shadow values, we have:

Λ
a
t = u1(ct ,St ,αt)−Ξ

a
t (78)

Λ
m
t = Ξ

a
j +Λ

a
j −Ξ

m
j +Ξ

mc
j (79)

Now recursively define ΛH
t as follows. Given ΛH

t+1 and ΞH
t+1, define:

Λ
H
t = dH

t
(
Ptu1(ct ,St ,αt)−Ξ

H
t
)
+(1−dH

t )βt ptEt
(
Λ

H
t+1 +Ξ

H
t+1

)
+(1− pt)b′(Bt+1) (80)

Note that a sequence (xt)
T+1
t=0 , (zt , ẑt)

T
t=0, (Λt)

T
t=0 and (Ξt)

T
t=0 that satisfies (a) - (gm

t ) is equivalent
to a sequence that satisfies (65) - (80).

The Euler equations (65) - (80) will characterise a sequence of convex controls and states condi-
tional on a sequence of discrete choices, but we need to impose further conditions to characterise
the discrete choices. We turn to these in the next sub-section.

C.4.2 Constructing candidate sequence of discrete choices

Consider again the stochastic recursive sequence described in Section C.4.1 and suppose the dis-
crete choices satisfy:

σz̃,t(e,x) = argmin
z̃∈Z̃,σ z̃

t (x,e,z̃)∈Γt
t(e,x)

ϕ
u
t (x,σ

z̃
t (x,e, z̃))+EtW σ

t+1(et+1,ϕ
f (x,σ z̃

t (e,x), z̃)) (81)

In words, the discrete choices optimize the sum of the per-period payoff and continuation value

81



under the choice specific policy function. We now turn to showing a candidate sequence that
satisfies (65) - (80) and (81) solves problem PLS.

C.4.3 Proof of sufficiency

To show sufficiency we are going to show that for each t and given time t states x and e and the
time t discrete choice ¯̃z, the sequence (z j)

T
j=t solves the problem P(t,r,x,(z̃ j)

T
j=t), where (z̃ j)

T
j=t

is the sequence of discrete choice random variables starting at t with value ¯̃z.

The j period Hamiltonian, H j, for the sub-problem can be written as:

H j(x,z) = Et â j
t ϕ

u
j (β̂

j
t ,α j,ξv, j,ξπ, j,c j,S j,v j,π j,B j+1)

+Λ
a
jϕ

h
a (e j,Pj,a j,c j,hsR

j ,g
m
j ,g

H
j ,d

H
j ,d

R
j )

+Λ
DC
j ϕ

f
DC(R

r
j,R

s
j,a

DC
j ,v j,π j)

+Λ
H
j ϕ

f
H(H j,gH

j ,d
H
j )

+Λ
m
j ϕ

f
m(m j,gm

j )

+Λ
π
j ϕ

f
π (π j)

+Ξ
mc
j ϕ

h
mc(m j,gm

j ,H j,dH
j )

+Ξ
a
jϕ

h
a (y j,Pj,a j,c j,hsR

j ,g
m
j ,g

H
j ,d

H
j )

+Ξ
H
j ϕ

h
H(H j,gH

j ,d
H
j )

+Ξ
m
j ϕ

h
m(m j,gm

j )

+Ξ
dR
j ϕ

h
dR(H j,gH

j ,g
R
j ,d

H
j )

(82)

Since the candidate sequence was recursive, we are now viewing the sequence of multipliers as
adapted to the filtration (F t+1

j )T
j=t given an initial value d, x and y at time t.

Proposition 2 Fix t and fix the time t endogenous state x, exogenous state e and discrete choice
¯̃z. Let (x j)

T
t=t+1 and (z j)

T
j=t be stochastic recursive sequences constructed from a sequence of

measurable policy functions (σt)
T
t=0 and

{
(σ z̃

t )
T
t=0

}
z̃∈Z̃ that satisfy (41). Moreover, let (x j)

T
t=t+1

and (z j)
T
j=t satisfy (65) - (75). If there exists (Λ j)

T
j=t and (Ξ j)

T
j=t that satisfy (76) - (80), then

(x j)
T
t=t+1 and (z j)

T
j=t solves problem P(t,e,x,(z̃ j)

T
j=t).
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The proof for the proposition above relies on showing standard sufficient optimality conditions
for a sequence problem on abstract vector space. We provide a brief sketch here to show 0 ∈
∂H j(x j,z j), where H j(x j,z j) is the sub-differential of the Hamiltonian. Further details of the
vector space problem are available from the authors on request.

Note that H j is Gateaux differentiable. Thus, ∂H j(x,z) = H ′
j,g(x,z). Where H ′

j,g(x,z)(x
′,z′)

satisfies the following for any x′,z′ ∈ X j,Z j:

H ′
j,g(x,z)(x

′,z′) =



(
Λa

j(1+ r)+Ξa
j(1+ r)−Λa

j−1

)
a′(

(1−δ )(ΛH
j +ΞH

j +Ξmc
j +(1−dR

j )u2(c j,S j,α j))−ΛH
j−1

)
H ′(

(1+ rm
t )(Λ

m
j +Ξm

j −Ξmc
j )−Λm

j−1

)
m′(

(πtRr
t +(1−πt)Rs

t )(1 j+1<RΛDC
j 1 j+1=RΞa

t )−ΛDC
j−1

)
aDC,′

(u1(c,S,α)−Ξ1
a −Λa

j)c
′

dH
t

(
Ξmc

j φC +ΞH
j +(1−dR

j )u2(c j,S j,α j)+ΛH
t −Pt(Λ

a
t +Ξa

t )
)

gH,′(
Ξmc

j +Λm
j −Ξm

j −Ξa
j −Λa

j

)
gm,′

dR
j

(
u2(c j,S j,α j)−Λa

jP
S
j −Ξa

jP
S
j

)
hsr,′



Now, since a′, H ′, m′ and aDC,′ are F j−1 measurable, we have:

H ′
j,g(x,z)(x

′,z′) =



(
(1+ r)Et

j−1(Λ
a
j +Ξa

j)−Λa
j−1

)
a′(

Et
j−1(1−δ )(ΛH

j +ΞH
j +Ξmc

j +(1−dR
j )u2(c j,S j,α j))−ΛH

j−1

)
H ′(

Et
j−1(1+ rm

t )(Λ
m
j +Ξm

j −Ξmc
j )−Λm

j−1

)
m′(

Et
j−1(πtRr

t +(1−πt)Rs
t )(1 j+1<RΛDC

j 1 j+1=RΞa
t )−ΛDC

j−1

)
aDC,′

(u1(c,S,α)−Ξ1
a −Λa

j)c
′

dH
t

(
Ξmc

j φC +ΞH
j +(1−dR

j )u2(c j,S j,α j)+ΛH
t −Pt(Λ

a
t +Ξa

t )
)

gH,′(
Ξmc

j +Λm
j −Ξm

j −Ξa
j −Λa

j

)
gm,′

dR
j

(
u2(c j,S j,α j)−Λa

jP
S
j −Ξa

jP
S
j

)
hsr,′



Finally, since (x j)
T
j=t+1 and (zt)

T
j=t satisfies (76) - (80), we have that (63) holds and:

Λ
H
j−1 = Et

j−1(1−δ )(ΛH
j +Ξ

H
j +Ξ

mc
j +(1−dR

j )u2(c j,hs j)) (83)
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Thus the first element of the tuple H ′
j,g(x j,z j) equal 0. Moreover, since (a) - (m) also hold, the

first, third and forth of H ′
j,g(x j,z j) are also equal to 0. Finally, since (c) - (gm

t ) also hold, the final
five elements of H ′

j,g(x j,z j) are also equal to 0. Thus 0 ∈ ∂H j(x j,z j).

The following result is a straightforward application of the Bellman Principle of Optimality (details
available from the authors on request).

Proposition 3 Let (xt)
T
t=0 and (zt , z̃t)

T
t=0 satisfy (65) - (75) and be stochastic recursive sequences

constructed from (σt)
T
t=0 and

{
(σd

t )
T
t=0

}
d∈Z̃ starting at time 0. If (z̃t)

T
t=0 satisfies equation (2) for

each t, then (zt , z̃t)
T
t=0 solves PLS(x0).

C.5 Computation

C.5.1 Constructing the computational grids

We begin our description of the computation by describing how we discretize our lifecycle model.

Wages. For the average wage over the last three years of continuous employment yt we have that

g
(
yt− j

)
=

1
Pr (ξt)

Nξ

∑
i=1

Pr (ξi) ·P(ξi,ξt) · exp

[
λ0 +

4

∑
k=1

λk (t − j)k +
2

∑
k=1

λ4+k (τ − j)k +ξi

]
.

This is derived from the reverse of the Markov process (5) (Chung and Walsh, 1969), with Nξ

discrete state points, distribution Pr (·) and transition matrix P(·, ·) and allows us to reduce com-
putational burden and not carry (ξt−2,ξt−1) in the state space.

State-space. We create state-space grids for each age as follows:

For t > TR, we have
X̂t = Â× B̂× Ŝ× Ĥ×M̂× P̂, (84)

while for t ≤ TR, we have

X̂t = Ẑ× Â× B̂× Ŝ× ŜDC × Ĥ×M̂× P̂× T̂t ×{DB,DC} (85)

where Ŝ is the financial wealth grid, Ĥ is the housing wealth grid, P̂ is the housing price grid, ŜDC

is the DC pension wealth grid, M̂ is the mortgage asset grid, Ẑ is the wages shock grid, T̂t is the set
of possible tenure levels at age t, {DB,DC} is the plan type, Â is the grid for housing preferences
(α), and B̂ is the grid for time preferences (β ). We also let V̂ denote the voluntary contribution
grid and Π̂ denote the risky assets share grid and define an extended grid with the discrete choices:

X̄t = Ẑ× Â× B̂× Ŝ× ŜDC × Π̂× V̂× Ĥ×M̂× P̂× T̂t ×{DB,DC} (86)
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We discretize the financial, housing and DC pension wealth space and mortgage assets into 35 grid-
points each, and the housing price space into 11 grid-points. The wage term ξt is discretized into
a 3-state Markov process following Kopecky and Suen (2010). The α and β preference processes
are also discretized into 3-point Markov process each, asset returns are discretized to 2 grid-points
for safe and risky alternatives, and finally the housing price shock is discretized into a 3 grid-points.

The tenure years state space τ is integer and ranges from 0 to 48(= 65−17). Finally, we consider
5 different levels of voluntary contribution rates (besides the 0% default) and 5 different levels for
the share of the DC portfolio invested in risky assets (besides the 70% default). Experiments with
the grids fineness suggested that the ones we used produce reasonable approximations.

C.5.2 Solution using EGM

Note if the SRS generated by a sequence of measurable policy functions (σt)
T
t=0, (xt ,zt , z̃t ,Ξt ,Λt)

T
t=0,

satisfies (Y ) and the conditions of Proposition 3 for each t, then the sequence is a recursive so-
lution by Proposition 3. However, a recursive policy function that solves the Euler equations will
not necessarily be a sequential solution, and as discussed in detail by Iskhakov et al. (2017), more
than one recursive policy function will solve the Euler equations. The EGM thus proceeds in the
standard manner, but additionally utilises the fast upper-envelope scan (FUES) method by Shanker
and Dobrescu (2022) to eliminate sub-optimal grid points

To proceed, note the purpose of the algorithm is to construct interpolants (lt)T
t=0 defined on (Xt)

T
t=0

that agree with an approximation of the sequence of policy functions (σt)
T
t=0 such that the SRS

generated by the policy functions satisfies the Euler equations (65) - (75) and the discrete choices
satisfy (2). In particular, the set of interpolants will contain a consumption policy (c), a liquid
asset policy (a), a next period housing stock policy (H), a next period mortgage stock policy (m), a
decision to rent or not rent (dR) and the decision to adjust or not adjust the housing stock (dH):

lt = (lc
t , l

S
t , l

a
t , l

H
t , lm

t , l
z̃
t , l

ΛH
t , lWt ) (87)

We will also compute interpolants lΛH
t and lWt denoting interpolants of the housing shadow value

and continuation value at each t.

We use the Python and the model consists of a instance of a LS model solver class. Each
LS model solver is instantized with an instance of a parameter class and contains:

1. Numpy grids X̂t and X̄t for each t

2. Auxiliary grids (see below)

3. Model primitive functions including u, u1, u2 and their inverses, the adjustment cost func-
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tions and DB pay-out function

4. Auxiliary policy function generators rent pol maker, mort pol maker, no adj pol maker

and adj pol maker defined below

5. A function time iter that recursively generates the sequence (lt)T
t=0.

Note that not all of the Euler equations can be analytically inverted to avoid all root-find operations
(Iskhakov, 2015). Thus, a number of policy functions are recovered via a combination of analytical
inversion and single dimensional numerical root-finding. Efficiency is gained since a number of
auxiliary policies can be defined on auxiliary grids, which are smaller than X̂t . To save notation,
we have not stated explicitly the auxiliary grids; the grids will be the domain of the auxiliary
functions defined below.

Before detailing the algorithm, note that we do not explicitly construct the discrete choice as a
function of the taste shocks. We also do not condition the policy functions on the taste shocks.
Rather we condition the policy functions on a restricted shock vector ẽ, the set of shocks other than
the taste shocks and an extended state vector x̄, the set of endogenous states along with the volun-
tary contribution choice. The discrete choices themselves are given as a |X̂t |× |Π̂×V̂ | probability
matrix P̂t . The rows of P̂t index time t states (endogenous and exogenous, excluding the discrete
choice risk share at t) and the columns index the discrete choices. It is important to note that the
probability matrix P̂t corresponds to the probability of making the discrete choice vt at time t and
the discrete state xπ

t at time t, not the choice πt at time t.

Finally, note that if the matrix P̂t+1 is re-shaped to a matrix ¯̂Pt+1 with shape |Ẑ × Â× B̂|× |X̄t |×
|Π̂× V̂ |, where ¯̂Xt+1 is the grid with only non-stochastic states, then ˆ̄Pt+1 can be pre-multiplied
with the transition matrix of the exogenous preference, returns and wage shocks to obtain a prob-
ability matrix Êt conditioned on time t exogenous stochastic states and time t + 1 endogenous
states.

In generating the auxiliary policy functions below, we obtain all multiple roots and pick the root
with the highest implied value function.

Evaluate renter auxiliary policy

• Define renters’ consumption function interpolant l̄Rc

t (ẽ,hsR) as the root of

c 7→ −u1(c,hsR,α)PS +u2(c,hsR,α)

• Define the renters’ liquid asset policy interpolant l̄Ra

t (ẽ,aDC,′,hsR,PS) as the optimal numer-
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ical root of:

a′ 7→ u1(l̄c
t (hsR,PS,α))− ptβ Êt(1+ r)u1((lC1,t+1(x̄

′, ẽ′), lhs
1,t+1(x̄

′, ẽ′))+(1− pt)b′(A) (88)

where x̄′ = (v′,xπ,′,a′,1t<RaDC,′,0,0) and aDC,′ is the end of period DC assets at time t after
contributions have been made but (t + 1) returns not realised. Expectations are taken over
the random variables ẽ′, π and v′ and are conditioned on ẽ and x′, where ẽ denotes the vector
of exogenous states.

• Using EGM and FUES, define the interpolant l̄Rhs

t (ẽ,W̄ ,aDC,′,PS) as the root to:

hs 7→ W̄ − l̄Ra

t (ẽ, āDC,hs,PS)−PS (89)

Evaluate mortgage auxiliary policy

• Define mortgage policy interpolant l̄m
t (ẽ,a

′,aDC,′,H ′) as the optimal numerical root of:

m′ 7→ Êt(1+ rt+1)u1((lCt+1(x̄
′, ẽ′), lhs

t+1(x̄
′, ẽ′))

− Êt(1+ rm
t+1)u1((lCt+1(x̄

′, ẽ′), lhs
t+1(x̄

′, ẽ′)) (90)

where x̄′ = (v′,xπ,′,a′,aDC,′,0,0).

Define non-adjusting owner auxiliary

• Define consumption policy interpolant l̄c,nad j
t (ẽ,a′,aDC,′,H,m,PS) as the optimal numerical

root of:

c 7→ u1(c,(1−δ ))− ptβEt(1+ rt+1)u1((lCt+1(x̄
′, ẽ′), lhs

t+1((x̄
′, ẽ′))+(1− pt)b′(B′)

where
x̄′ = (v′,xπ,′,a′,aDC,′,(1−δ )H, l̄m

t (ẽ,a
DC,′,(1−δ )H))

• Fix an exogenous grid of a′ and (ẽ,xπ ,v,aDC,H,m,PS) values. Using EGM and FUES,
define the optimal endogenous grid over a. Thus, define the non-adjust liquid asset policy
interpolant l̄a,nad j

t (ẽ,xπ ,v,a,aDC,H,m,PS) as the root of:

a′ 7→ a+1t<Rw(1− vS − v)− l̄c,ad j
t (a′,aDC,′,H,m,PS)+ l̄m

t (e,a
DC,′,(1−δ )H)− (1+ rm)m

where aDC,′ = aDC(xπRr +(1− xπ)Rs)+(1+ v+ vS)y.
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Define adjusting home-owner auxiliary

• Define l̄c,adj
t (e,a′,aDC,′,H ′,m) as the optimal numerical root of:

c 7→ u1(c,H ′,α)−max{ptβEt(1+rt+1)u1((lCt+1(x̄
′, ẽ′), lS

t+1(x̄
′, ẽ′))+(1− pt)b′(B′),u1(c̄,H ′)}

where c̄ is the level of consumption if a′ = 0

• Define liquid asset policy interpolant l̄a,adj
t (e,aDC,′,H ′,m) as the optimal numerical root of:

a′ 7→ Ξ
mc

φ
C +β Êt lΛH

t+1(x̄
′, ẽ′)+u2(c,H ′,α)−u1(c,H ′,α)(1+ τHP)+(1− pt)b′(B′)P

where
c = l̄c,adj

t (a′,aDC,′,H ′,m)

Ξ
mc = 1

m′=φC Ht+1
1−δ

(u1(c,hs)−Λ
m)

Λ
m = Êt(1+ rm

t+1)u1(lCt+1(x̄
′,e′), lS

t+1(x̄
′, ẽ′))

and
m′ = l̄m

t (ẽ,a
DC,′,H ′)

• Fix an exogenous grid over H ′ and (ẽ,aDC,H,m). Using EGM and FUES, create an optimal
endogenous grid over a values. Thus, define a housing policy function l̄H,ad j

t (ẽ,a,aDC,H,m)

as the root of:

H ′ 7→ (1+ r)a+1t<Ry(1− vS − v)− l̄c,ad j
t (a′,aDC,′,H ′,m)

+ l̄m
t (ẽ,a

DC,′,H ′)− (1+ rm)m− (1+Pt)(H ′−H)− τPH ′

Next, we detail the back-ward induction function.

Time iteration (time iter)

• Initialise lT+1 as interpolants filled with zeros defined on XT

• Solve terminal period problem at time T:

1. Evaluate auxiliary functions

2. Interpolate policy functions X̄t

– Interpolate renter policy functions:

* lS,R
T (x, ẽ) = l̄Rhs

T (ẽ,W̄ ,0,PS), where W̄ = (1+ r)a− (1+ r)m+(1−δ )HP
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* lH,R
T (x, ẽ) = 0

* lm,R
T (x, ẽ) = 0

* lc,R
T (x, ẽ)= l̄Rc

T (ẽ, l̄Rhs

T ( ˜̃e,W̄ ,0,PS)), where W̄ =(1+r)a−(1+r)m+(1−δ )HP

– Interpolate non-adjuster owner functions as:

* lH,nad j(x, ẽ) = lS,nad j(x, ẽ) = (1−δ )H

* lm,nad j(x, ẽ) = l̄m
t ( ˜̃e,0,(1−δ )H)

* lc,nad j(x, ẽ) = l̄T (ẽ, l̄
ã,nad j
t (ẽ,0,H,m)

* la,nad j
t (x, ẽ) = l̄a,nad j

t (ẽ,0,H,m)

– Interpolate adjuster owner policy functions as:

* lH,ad j(x, ẽ) = l̄H,ad j
t (ẽ,a,0,H,m)

* lc,ad j(x, ẽ) = l̄c,ad j
t (ẽ, l̄a,ad j

t (ẽ,0, lH,ad j(x, ẽ),m))

* lm,nad j(x, ẽ) = l̄m
t (ẽ,0, l

H,ad j(x, ẽ))

* la,ad j
t (x, ẽ) = l̄a,ad j

t (ẽ,0, lH,ad j(x, ẽ),m)

– Evaluate discrete choices as follows:

* For all x, ẽ ∈ X̄t such that H > 0 (incumbent owners), evaluate l z̃
t as:

l z̃
t (ẽ,x) = argmin

z̃∈{adj rent, adj own, nadj own},
l z̃
t (x,ẽ,z̃)∈Γt

t(ẽ,x)

ϕ
u
t (x, l

z̃
t (x, ẽ, z̃))

* For all x, ẽ ∈ X̄t such that H > 0 (incumbent renters), evaluate l z̃
t as:

l z̃
t (ẽ,x) = argmin

z̃∈{adj rent,adj own},
l z̃
t (x,ẽ,z̃)∈Γt

t(ẽ,x)

ϕ
u
t (x, l

z̃
t (x, ẽ, z̃))

3. Construct l j
T , with j ∈ {c,H,a,m} as follows:

l j
T = ∑

k∈
{
adj rent,
adj own,
nadj own

}1k=l z̃
t (ẽ,x)

l j,k
T

4. Define interpolant lWT (ẽ,x) = ϕu
t (x, lT (x, ẽ))

• While t > t0:

1. Evaluate auxiliary functions

2. Interpolate policy functions X̄t as follows:

– Interpolate renter policy functions on X̄t :
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* lS,R
T (x̄, ẽ) = l̄Rhs

T (ẽ,W̄ ,aDC,′,PS), where W̄ = (1+r)a−(1+r)m+(1−δ )HP+

1t<R(1− vS − v)y+1t=RaDC,′ and aDC,′ = aDC(xπRr +(1− xπ)Rs)+(1+ v+

vs)y

* lH,R
T (x̄, ẽ) = 0

* lm,R
T (x̄, ẽ) = 0

* lc,R
T (x̄, ẽ) = l̄Rc

T (ẽ, l̄Rhs

T (ẽ,w,0,PS)

– Interpolate non-adjuster owner functions as:

* lH,nad j(x̄, ẽ) = lS,nad j(x,e) = (1−δ )H

* lm,nad j(x̄, ẽ) = l̄m
t (ẽ,a

DC,′,(1−δ )H)

* lc,nad j(x̄, ẽ) = l̄T (ẽ, l̄
ã,nad j
t (ẽ,aDC,′,H,m)

* la,nad j
t (x̄, ẽ) = l̄a,nad j

t (ẽ,aDC,′,H,m)

– Interpolate adjuster owner policy functions as:

* lH,ad j(x̄, ẽ) = l̄H,ad j
t (ẽ,a,aDC,′,H,m)

* lc,ad j(x̄, ẽ) = l̄c,ad j
t (ẽ, l̄a,ad j

t (ẽ,aDC,′, lH,ad j(x, ẽ),m))

* lm,nad j(x̄, ẽ) = l̄m
t (ẽ,a

DC,′, lH,ad j(x, ẽ))

* la,ad j
t (x̄, ẽ) = l̄a,ad j

t (ẽ,aDC,′, lH,ad j(x̄, ẽ),m)

– Evaluate discrete choices for housing:

* For all x̄, ẽ ∈ X̄t such that H > 0 (incumbent owners), evaluate l z̃
t as:

l z̃
t (x̄, ẽ) = argmin

z̃∈{adj rent, adj own, nadj own},
l z̃
t (x̄,ẽ,z̃)∈Γt

t(ẽ,x̄)

ϕ
u
t (x̄, l

z̃
t (x̄, ẽ, z̃))+ Êt lWt (x̄′, ẽ′)

where x̄′ = (v′,xπ,′, la,z̃
t (x̄,e, z̃),aDC,′, lH,z̃

t (x̄,e, z̃), lm,z̃
t (x̄,e, z̃))

* For all x̄, ẽ ∈ X̄t such that H > 0 (incumbent renters), evaluate l z̃
t as:

l z̃
t (x̄, ẽ) = argmin

z̃∈{adj rent,adj own},
l z̃
t (x̄,ẽ,z̃)∈Γt

t(ẽ,x̄)

ϕ
u
t (x, l

z̃
t (x̄, ẽ, z̃))+ Êt lWt (x̄′, ẽ′)

– Evaluate discrete choice probabilities for pension accounts:

* If t < R, then generate the discrete choice probabilities as interpolants on X̂t

for voluntary contributions and risky assets share choice using equation (26)
and (27)

* Generate probability transition matrix Êt−1

3. Construct l j
T , with j ∈ {c,H,a,m} as follows:

l j
t (x̄, ẽ) = ∑

k∈
{
adj rent,
adj own,
nadj own

}1k=l z̃
t (x̄,ẽ)

l j,k
t (x̄, ẽ)
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4. Define interpolant lWT (ẽ, x̄) = ϕu
t (x̄, lt(x̄, ẽ))+ Êt lWt (x̄′, ẽ′), where

x̄′ = (v′,xπ,′, la
t (x̄, ẽ),a

DC,′, lH,z̃
t (x̄, ẽ), lm

t (x̄, ẽ, z̃))

5. Set t = -1
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