Productivity, Demand and Growth

Marek Ignaszak, Goethe University Frankfurt

Petr Sedláček, University of New South Wales & University of Oxford

EEA, Milan 24 Aug 2022

Motivation: sources of aggregate economic growth

State of the art: aggregate growth driven by firm lifecycle dynamics

- Aggregate growth: R&D, creative destruction, selection, and reallocation
 - ightarrow Aghion, Howitt (1992), Klette, Kortum (2004), Acemoglu et al. (2018), Akcigit, Kerr (2018)

Data: firm selection and growth largely driven by demand side!

• e.g. Foster et al. (2008), Foster et al. (2016), Hottman et al. (2016), Cavenaile, Roldan-Blanco (forthcoming), Cavenaile et al. (2021), Eslava, Haltiwanger (2021)

This paper brings frictional demand into an endogenous growth model

- firms invest into R&D to raise own productivity
- AND invest into increasing demand for own products

Main idea in pictures - demand spurring innovation

Main idea in pictures - innovation creating demand

Our contribution

Firm lifecycle dynamics driven by more than just productivity

- Add to the empirical results on interactions between market size, and firm-level R&D
 - ightarrow Fiscal policy shocks as an instrument, study firm-level R&D over firm lifecycle

Build endogenous growth model with frictional customer base accumulation

- analytically show new channel affecting R&D decisions
- feedback loop between customer base and productivity at the firm-level

Quantitative results show that the customer base accumulation

- drives 20% of aggregate economic growth
- is the key determinant of the sensitivity of the economy to growth policies

Roadmap

Theoretical framework

Quantitative Results Firm-level outcomes Aggregate growth Sensitivity to growth pol

Empirical Support for Key Model Predictions

Conclusion

Representative household: max lifetime utility s.t. budget

• consumes composite good (price P = 1), investments (firm equity), and supplies inelastically labor $\left[\int_{-\infty}^{\infty} \frac{1}{p} \frac{\eta^{-1}}{p} d^{-1} \right]^{\frac{\eta}{\eta^{-1}}}$

$$C = \left[\int_{j \in \Omega} \mathbf{b}_j^{\frac{1}{\eta}} c_j^{\frac{\eta-1}{\eta}} dj \right]^{\frac{1}{\eta-1}}$$

- $ightarrow \Omega_j$: mass of firms (set of goods), η : elasticity of substitution between varieties
- $ightarrow c_j$: quantity of consumption variety produced by firm j
- \rightarrow b_i : "demand shifter (weight)" or tastes for good j

Optimal decisions: $c_j = b_j p_j^{-\eta} C$, $1 = \beta (1 + R') \frac{C}{C'}$

Firms: Entry/exit, production and R&D as in Akcigit and Kerr (2018)

- Firms produce goods varieties $c_j = q_j n_j$
- Pay fixed operating cost to continue
- Invest into R&D in order to improve q_i , x_j is the success probability

Customer capital accumulation as in Foster et al. (2016)

• customer capital:
$$b_j = \chi d_j^\gamma$$

• exogenous component: $\ln \chi' = \rho_{\theta} \ln \chi + \epsilon_j$, $\epsilon_j \sim IID(0, \sigma_{\epsilon}^2)$

• endogenous component:
$$\ln d'_j = (1 - \zeta) \underbrace{\left[(1 - \rho_d) \ln d_j + \pi_j \right]}_{\text{passive changes}} + \underbrace{\zeta \ln \left(\frac{c_j p_j}{C} \right)}_{\text{active changes}}$$

• "passive changes" (growing-by-being, age effects)

 $\rightarrow~\pi_i$: firm-specific, potentially varying, life-cycle growth factor

"active changes" (growing-by-doing): strategic pricing • details

Roadmap

Theoretical framework

Quantitative Results Firm-level outcomes Aggregate growth Sensitivity to growth policies

Empirical Support for Key Model Predictions

Conclusion

Parametrization strategy: Joint estimation

- Standard choices
 - ightarrow step size, λ : aggregate growth (real GDP)
 - ightarrow R&D cost elasticity, ψ : empirical studies suggest $\psi=2$
 - ightarrow R&D cost scaling with size, σ : R&D share firm size (**Compustat**)
- Key novelty: separation between productivity and customer capital at the firm-level
 - ightarrow optimal pricing implies markup lifecycle profile: ζ (Compustat)
 - ightarrow match model to estimated profile from firm-level data (Compustat)
 - $\rightarrow\,$ life-cycle profiles of size, exit and autocovariance structure to discipline remaining shocks (BDS)
 - ightarrow following Sterk (r) al. (2021)

Model fit: targeted moments

Model fit: Other implied moments

	model	data	
A: Targeted moments			
aggregate growth	1.45%	1.50%	
aggregate R&D-output ratio	2.66%	2.20%	
firm-level R&D-size relationship	-0.022	-0.028	

B: Untargeted firm dynamics moments

job creation rate	20%	17%
job destruction rate	20%	15%
job creation share from entry	11%	9%
job destruction share from exit	18%	17%

Model fit: Untargeted firm-size distribution

Decomposing baseline results: A counterfactual economy

The key channel operates through expected demand growth at firm-level

- consider a counterfactual, "fixed-demand", economy
 - ightarrow expected demand = today's demand, as in standard growth models
 - separately for passive, passive+active, all (passive+active+exogenous) demand
- otherwise all else equivalent to baseline model, including
 - ightarrow realizations of demand shocks
 - ightarrow equilibrium variables (wages, mass of firms, consumption, growth)

Baseline - counterfactual = (PE) impact of expected demand growth

Demand stock accumulation over firms' life-cycle

Endogenous R&D and demand accumulation at the firm-level

In the presence of customer accumulation, aggregate growth is 20% higher!

Sensitivity to growth policies

Consider 2 examples of growth policies: (i)subsidize R&D, (ii) subsidize operation Compare baseline to "productivity-only" model (recalibrated to baseline targets)

	innovation	firm exit	agg. growth
	A: Operational cost subsidies		
Baseline specification	+0.55	-0.33	-0.04
Restricted: Fixed demand stocks	+0.74	-1.42	-0.11
	B: R&D subsidies		
Baseline specification	+0.51	-0.14	+0.04
Restricted: Fixed demand stocks	+0.86	+0.98	+0.28

Customer base and the sensitivity to operation cost subsidies

Roadmap

Theoretical framework

Quantitative Results Firm-level outcomes Aggregate growth Sensitivity to growth polici

Empirical Support for Key Model Predictions

Conclusion

Personal income tax cuts (Mertens and Ravn, 2013) as aggregate demand shocks

$\operatorname{og}\left(\frac{R\&D_{j,t}}{revenues_{j,t}}\right) = \delta_j + \delta_t + \hat{g}_{j,t+1}^{(m)}$	$+ \hat{g}_{j,t+1}^{(m)} \times$	$age_{j,t} + X_{i,t} + \eta_j$
future revenue growth	0.032***	0.156***
	(0.007)	(0.027)
log age	-0.010***	-0.002
	(0.002)	(0.003)
log age $ imes$ future revenue growth		-0.052***
		(0.011)
additional controls	\checkmark	\checkmark
Observations	44,432	44,432
Within R ²	0.32	0.32
firm fixed effects	\checkmark	\checkmark
time $ imes$ industry fixed effects	\checkmark	\checkmark

R&D subsidies across the US states (Wilson, 2009) and firm-level R&D intensity

$$\log\left(\frac{\mathsf{R\&D}_{j,t}}{\mathsf{revenues}_{j,t}}\right) = \tau_{s,t} + \log(\mathsf{age})_{j,t} \times \tau_{s,t} + \log(\mu)_{j,t} \times \tau_{s,t} + X_{j,t} + \delta_j + \delta_s + \delta_t + \epsilon_{j,t}$$

R&D user cost	-0.014	-0.141***	-0.108**
	(0.035)	(0.044)	(0.052)
age \times R&D user cost		0.048***	0.047***
		(0.010)	(0.011)
average markup $ imes$ R&D user cost			-0.050*
			(0.030)
additional controls	\checkmark	\checkmark	\checkmark
firm fixed effects	\checkmark	\checkmark	\checkmark
time \times industry fixed effects	\checkmark	\checkmark	\checkmark
state fixed effects	\checkmark	\checkmark	\checkmark

Roadmap

Theoretical framework

Quantitative Results Firm-level outcomes Aggregate growth Sensitivity to growth polici

Empirical Support for Key Model Predictions

Conclusion

Summary

Business dynamism driven by demand, not productivity alone

- evidence on interactions between productivity, demand, and firm-level growth
- build endogenous growth model reflecting this
- analytically show how the new channel affects the R&D decisions

Quantitative results show that demand growth is important for

- 20% of aggregate economic growth demand-driven
- a higher sensitivity of the economy to growth policies

We believe our paper opens the door to more research

• new set of growth policies (monetary policy, procurement, transfers)?

Endogenous demand

Optimal markup over marginal costs:

$$\mu_{j} = \underbrace{\frac{\eta}{\eta - 1}}_{\text{static markup}} -\beta(1 - \delta)(1 - \rho_{d}) \mathbb{E} \underbrace{\frac{q_{j} c_{j}' \varphi_{j}'}{q_{j}' c_{j} \varphi_{j}} \left[\mu_{j}'(\zeta - 1) + \frac{\eta}{\eta - 1} - \zeta \right]}_{>0}$$

- firms choose low markups in expectation of high consumption growth
- over lifecycle, gradually increase markups towards static value
- \rightarrow increasing life-cycle profile of markups (controlled by ζ) 20 back