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Abstract
Existing international environmental institutions curb fossil fuels by

rewarding countries for reducing demand and expanding substitutes. This
paper argues that it would be beneficial to create new institutions that
would reward countries for reducing their fossil fuel supply. Assuming
complete information, I prove a Price Preservation Lemma: For any given
budget, the optimal way to split the budget between the three approaches
(rewarding supply reduction, demand reduction and substitute expansion)
leaves the world market price of the fossil fuel unchanged. In a dynamic
setting, this result holds under full commitment for any given intertempo-
ral budget at the global institution’s disposal. Using this Lemma, I show
that the optimum cannot be implemented by relying on the supply side
entirely on a deposit purchase fund. The results suggest that it would
be valuable to also create funds rewarding countries for taxing fossil fuel
extraction.

1 Introduction
This project studies goods with global externalities. In applying the model I
focus throughout the paper on the case of fossil fuels and particularly on coal
and oil. However, the results of the static model that I analyze in section 3 are
arguably relevant for most goods with global externalities.

Specifically, I study the problem faced by a global institution having an
exogenous budget which it can split between the following three approaches to
curbing coal: It can pay countries to reduce coal extraction (supply reduction),
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to reduce energy use (demand reduction) and to expand renewables (substitute
expansion).

The question arises as to how to split the budget between these three ap-
proaches. An analogous question arises for any good with global externalities.
The following diagram summarizes how the world is currently answering this
question for several important goods with negative global externalities (left col-
umn in brown) and goods with positive global externalities (left column in
green):
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To analyzes this question, this paper starts by studying a static model with
complete information. A global institution announces reward payment schemes
for each country conditioning a positive transfer on the country’s coal extraction,
energy use and renewable energy production. Each country takes these reward
payment schemes and world market prices as given. Assuming that all demand
and supply elasticities are finite, I prove that the optimal amount of funding
allocated to each of the three approaches is always strictly positive and an
increasing function of the total available budget (see corollary 1).

For the case of coal, I find based on middle of the road elasticity estimates
taken from the literature, that for an exogenous budget it is optimal for the
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global institution to spend 43% on paying countries to reduce coal supply. This
contrasts with the current way that global institutions try to curb fossil fuels.
So far, all of the money has been spent on demand reduction and substitute
expansion. I find that for a given (not very large) available amount of money,
22% more welfare gains can be achieved if the money is split optimally between
the three approaches than if the world deprives itself of the supply side approach.
This provides a case for establishing a new global fund rewarding countries for
reducing fossil fuel supply.

In practice, such a new global fund could define for each country reference
levels of stocks of cumulative coal extraction based on business as usual scenario
projections and then reward countries each year to the extent that their actual
cumulative coal extraction is below the reference level for that year. This kind
of scheme is already being used for rewarding countries for preserving tropical
forests (Seymour and Busch (2016)).1

I show that under full commitment and assuming that such a global fund can
freely save and borrow, such a global fund does not loose anything by restricting
itself to this form of reward payment schemes rather than conditioning its reward
payments in a more general way on the countries’ extraction paths. However,
a widely recognized problem with this type of scheme is the difficulty of fixing
the right paths of reference levels (Mertz et al. (2018)).

One approach to avoiding this diffulty is to create instead a global fund
that buys up appropriately chosen fossil fuel deposits. However, I show that the
optimal mechanism cannot be implemented by relying entirely on such a deposit
puchase fund on the supply side. In fact, such an approach would amount to only
rewarding countries on the supply side on the basis of their eventual cumulative
coal extraction. However, I prove that the optimal mechanism always involves
rewarding in all period countries for having low cumulative coal extraction (see
Corollary 4).

A potentially promising approach to remedy this shortcoming of deposit
purchase funds could be to complement it with carbon pricing reward funds on
the supply side. Countries could in each period be rewarded on the basis of the
carbon taxes that they levy on fossil fuel extraction on their territories. Such an
approach would also obviate the need for defining reference levels for cumulative
coal extraction and with it the above-mentioned difficulties.

1The above diagram shows other goods with global externalities where supply-side ap-
proaches are currently absent, for example in the case of drugs for infectious disease control as
displayed in the diagram. However, in that case, marginal costs of production are presumably
approximately constant in the long run and so the price elasticity of supply is arguably very
large in the long run. It turns out that this implies that the optimal amount of spending on
rewarding supply reduction is very small. Thus the model can rationalize the fact that the
world is focusing on demand side contracting in this case. Some of the other empty boxes
in the above diagram appear to not be rationalizable within the model I will present. But I
leave it for future work to analyze the specifics of these cases.
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2 Related literature and contribution
Harstad (2012) studies a model where the countries adversely affected by climate
change act in a coordinated way. He finds that the coalition’s best policy is to
simply buy foreign deposits and conserve them.

The model presented in the current paper differs in that in it climate change
mitigation happens only due to the countries’ responses to the global institu-
tion’s reward payment schemes. I find that for exogenous funding it is optimal
for the global institution to use strictly positive amounts of money on contracts
rewarding supply reduction, demand reduction and substitute expansion. The
Coasian approach of simply buying up fossil fuel deposits is never optimal in
the model.

The current study tries to complement the literature on carbon leakage by
drawing out its implications for the design of global institutions. Fæhn et al.
(2017) analyze the problem of a country that tries to cause a given reduction in
global emissions at a minimal cost for itself. For the case of Norway they find
that two thirds of the emissions reductions should optimally come from supply
reduction. This result bears some similarity to my result that under exogenous
funding a global institution should optimally use 43% of its budget on spending
on rewarding supply reduction. Collier and Venables (2015) provide further
considerations in favor of focusing on supply side approaches.

I also contribute to the literature on the optimal roles of deposit purchase
contracts and leasing contracts as instruments of supply side climate policy.
I find that restricting supply side approaches to deposit purchase comes at
a welfare cost, which echoes the results from Eichner et al. (2020), despite
the difference in the settings. In the setting of the current paper, this result
holds even though I assume climate change damages to only depend of eventual
cumulative emissions.

A major limitation of the current study is that it only models a single fossil
fuel (interpreted to be coal) and a clean substitute. Daubanes et al. (2020)
highlight the importance of taking into account the substitution between coal
and gas. Extending the model presented here to simultaneously include coal,
oil and gas is left for future research.

3 The model
The set of countries is denoted I. Each country is assumed to be of negligible
size so that it acts as a price taker on the world market. zi is the amount of
energy from renewables that country i produces. xi denotes the amount of coal
that country i extracts. Coal is measured so that one unit of coal generates one
unit energy via combustion. The energy generated from coal is assumed to be
a perfect substitute to the energy generated from renewables. We denote by yi
the amount of energy that country i uses. All other energy sources are assumed
away.

There is a common numeraire good. Its price is normalized to 1. There are
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no trade costs and there is a global market for coal. The world market price of
coal is denoted p. Each country i ∈ I takes world market prices as given. Each
country i has energy xi from coal and energy zi from renewables. If the sum
xi + zi exceeds its energy use yi then the country exports the excess amount of
energy, xi− yi+ zi, in the form of coal. If the sum xi+ zi is less than its energy
use yi then the country imports the shortfall of energy, xi − yi + zi, in the form
of coal. In either case, the net revenue that the country gets is p(xi− yi+ zi). 2

Country i’s utility is quasilinear in the numeraire:
Ui(xi, yi, zi, p) = Bi(yi)− Ci(xi)−Gi(zi) + p(xi − yi + zi) + fi(xi, yi, zi)
Here Bi(yi) is the benefit that country i derives from energy use. 3 Ci(xi) is

country i’s cost of extracting xi of coal. Gi(zi) is country i’s cost of of producing
zi of energy from renewables. Moreover, fi(xi, yi, zi) denotes the transfer that
country i gets from the global institution, as explained further below4.

It will be convenient to impose that costs are strictly convex and benefits
strictly concave 5s:

Assumption 1 (strict convexity of costs and strict concavity of ben-
efits). C ′

i(xi) > 0, C ′′
i (xi) > 0∀i∀xi, G′

i(zi) > 0, G′′
i (zi) > 0∀i∀zi, B′

i(yi) >
0, B′′

i (yi) < 0∀i∀yi.

There is a global institution which evaluates global welfare as follows:

W =
∑
i∈I

Ui − η(
∑
j∈I

xj)

The interpretation is as follows: η is a positive and strictly increasing func-
tion. η(

∑
j∈I xj) is the aggregate value of the global climate change damages

due to the aggregate amount
∑

j∈I xj of coal combusted. Ui is the utility that
country i tries to optimize. Strictly, this should include the damage due to cli-
mate change that country i suffers due to its own coal use. However, I make the
simplifying assumption that country i neglects this, in line with our assumption
that all countries are of negligible size.

The global institution is endowed with an exogenous budget F . It offers
reward payments to countries to induce them to reduce their coal supply, their

2Currently, 20% of all coal is traded internationally. Consistent with our assumption of a
globally integrated coal market, Steckel et al. (2015) find that “in the increasingly integrated
global coal market the availability of a domestic coal resource does not have a statistically
significant impact on the use of coal and related emissions”.

3This should be interpreted to be the entire surplus that the country reaps from energy
use, both in the form of consumer surplus acrruing to end users and producer surplus from
production using energy as an input.

4It turns out that the global institution does not loose anything by restricting itself to using
additively separable reward payment functions, i.e. fi(xi, yi, zi) = fxi(xi)+ fyi(yi)+ fzi(zi).
I will therefore restrict attention to such additively separable reward payment functions later
on. For now I keep the notation more general, to avoid the impression that the additively
separable form is a restrictive assumption.

5This assumption excludes the case of constant marginal cost, which is of interest for
applications like the global health examples mentioned in the introduction. However, instead
of treating this case separately, we will discuss this as a limiting case as price elasticities of
supply go to infinity.
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coal demand and to expand their renewables supply. The timing is as follows:
First, the global institution announces transfers that it will pay to countries
conditional on their choices. fi(xi, yi, zi) denotes the transfer that country i
will receive if it chooses (xi, yi, zi). Since countries are sovereign, the global
institution cannot ask countries to pay it money, which means that the transfers
fi(xi, yi, zi) are constrained to be non-negative. Each country i takes the reward
payment scheme fi(xi, yi, zi) and the price p as given and chooses (xi, yi, zi) so
as to maximize its utility Ui(xi, yi, zi, p).

Definition 1. A reward payment scheme offered to country i is a map
fi(xi, yi, zi) assigning a nonnegative transfer to country i. A world market
equilibrium under a given set of reward payment schemes (fi)i∈I is a
combination of an allocation (xi, yi, zi)i∈I and world market price p such that
the following 2 conditions hold:

1) market clearing:
∑

i∈I xi − yi + zi = 0
2) individual rationality: (xi, yi, zi) = argmax(x,y,z)−Ci(x)+Bi(y)−Gi(z)+

p(x− y + z) + fi(x, y, z)∀i ∈ I

Definition 2. A set (fi)i∈I of reward payment schemes implements the
allocation-price pair ((xi, yi, zi)i∈I , p) with a budget F if ((xi, yi, zi)i∈I , p) is
a world market equilibrium under (fi)i∈I and

∑
i∈I fi(xi, yi, zi) = F .

Definition 3. A reward payment scheme fi(xi, yi, zi) is called additively
separable if it can be written as fi(xi, yi, zi) = fix(xi) + fiy(yi) + fiz(zi).
A reward payment scheme is called a “positive affine linear scheme” if it
can be written as fi(xi, yi, zi) = max(0, θix(x̃i − xi)) + max(0, θix(ỹi − yi)) +
max(0, θiz(zi − z̃i)).

We will now prove that (under our assumption of convex cost functions and
concave benefit functions) nothing is lost by restricting attention to the positive
affine linear schemes for the reward payment schemes. We will also show that
we can view the global institution as if it was choosing the allocation and the
world market prices.

Lemma 1 (The Surjectivity Lemma). Consider a combination of an al-
location (xi, yi, zi)i∈I satisfying

∑
i∈I xi − yi + zi = 0 and world market price

p. There exists a set (fi)i∈I of positive affine linear schemes implementing
((xi, yi, zi)i∈I , p). Moreover, the minimal transfers required to implement((xi, yi, zi)i∈I , p)
under affine linear schemes are Fix for rewarding country i for supply reduction,
Fiy for rewarding country i for demand reduction and Fiz for rewarding country
i for substitute expansion with

Fix := sup
x

px− Ci(x)− (pxi − Ci(xi))

Fiy := sup
y

Bi(y)− py − (Bi(y)− py)

Fiz := sup
z

pz −Gi(z)− (pz −Gi(y))
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Moreover, there does not exist any set of reward payment schemes imple-
menting ((xi, yi, zi)i∈I , p) with a strictly smaller budget, i.e. with a budget
strictly less than

∑
i∈I Fix + Fiy + Fiz . Furthermore, these minimal required

transfers are the same if we allow for any reward payment schemes (instead of
restricting them to be positive affine linear).

Proof. See Appendix A.1

Let us now summarize the Surjectivity Lemma using the diagram below. In
practice, the global institution chooses reward payment schemes. The notion
of market equilibrium defined above yields a (potentially multivalued) mapping
assigning a (or several) combination(s) of a world market price and an allocation
to each set of reward payment schemes. By the surjectivity Lemma 1, this map
is surjective.

The surjectivity of this market equilibrium map allows us to view the global
institution as if it was choosing a combination of a world market price and an
allocation. Given a world market price and an allocation, there are many reward
payment schemes inducing them via the market equilibrium map. The trans-
fers that end up being paid are fxi(xi), fyi(yi), fzi(zi). The minimal required
transfers Fix, Fiy, Fiz are given by the formulae shown below:

market equilibrium
(surjective map)

minimal required 
transfers

In this diagram we are restricting attention to additively separable reward
payment schemes. This is justified by the Surjectivity Lemma : This restriction
does not affect the minimal transfers that are required.6

Hence the global institution’s problem can be written as:
max(p,(xi,yi,zi)i∈I)

∑
j∈I Uj −η(

∑
j∈I xj) subject to the market clearing con-

straint,
∑

i∈I xi−yi+zi = 0, and the budget balance constraint that
∑

j∈I
Fjx+

Fjy +Fjz ≤ F , where F is the exogenous budget at the global institution’s dis-
posal.

Lemma 2 (The First Best). For a sufficiently large budget F , the first best is
characterized by the following conditions plus the feasibility condition

∑
i∈I(xi−

yi + zi) = 0:
6Interestingly, this no longer holds if we were to depart from the assumption of complete

information. In fact, one can deduce from the results in Armstrong and Rochet (1999) that
even if types are independent across dimensions the optimal mechanism will not be additively
separable.
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B′
i(yi) = B′

j(yj) = G′
i(zi) = G′

j(zj) = C ′
i(xi) + η = C ′

j(xj) + η∀i, j ∈ I

There exists a continuum of ways to split the budget between supply reduction
reward payments schemes on the one hand and demand reduction and substitute
expansion reward payment schemes on the other, all of which achieve the optimal
global welfare.
Proof. See appendix A.2.

Lemma 2 asserts that if the global institution’s budget constraint is not
binding, then it does not matter how exactly the budget is split between supply
reduction on the one hand and demand reduction and substitute expansion on
the other, as long as the resulting required budget does not exceed the available
budget. However, from now on will will assume that the global institution’s
budget constraint is binding:
Assumption 2. The global institution’s budget constraint is binding. In other
words: its budget is insufficient to fully correct the global externalities from coal.

This assumption will mean that it will matter for global welfare how the
global institution’s budget is split, thereby overturning the conclusion from
Lemma 2. This is because the world market price of coal affects the sizes of the
transfers required to make countries change their actions instead of just ignor-
ing the reward payments. The world market price of coal, in turn, is affected
by how countries are rewarded: The stronger the reward payments for supply
reduction, the weaker the supply of coal on the world market and therefore the
higher the resulting world market price. On the other hand, the stronger the
reward payments for demand reduction and substitute expansion, the lower the
demand for coal on the world market and thus the lower the resulting world
market price for coal.

The following Lemma states that it is always optimal to choose a mixture
of these two kinds of approaches, balanced precisely such that the net effect of
the world market price of coal is neutral. It is important to emphasize that this
“Price Preservation Lemma” refers to the world market price and not to the net
prices that actors will face. Within a given country, the price that actors will
face is the sum of the world market price and any taxes (or regulation-induced
carbon prices, etc.) that the government will set. When the global institution
rewards countries for supply reduction then this effectively means that it will
pay countries for setting a carbon price on the coal extracted on its territory.
When the global institution rewards countries for demand reduction then this
effectively means that it will pay countries for taxing energy use (by households
and firms). When the global institution rewards countries for expanding renew-
ables it pays countries for exempting renewables from the tax on energy use or
even for subsidizing renewables.

The result of all this will always be that the net price of coal combustion
(including taxes and other implicit or explicit carbon prices) will increase. What
will optimally be preserved is the world market price of coal:
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Lemma 3 (The Price Preservation Lemma). “If a set of reward payment
schemes achieves a given allocation with minimal aggregate transfer payments
then it must preserve the world market price p of coal.”

Formally: Consider a fixed allocation (xi, yi, zi)i∈I . Consider a set of reward
payment schemes (fi(xi, yi, zi))i∈I implementing ((xi, yi, zi)i∈I , p) for some price
p under a budget F . Then if there is no other set of reward payment schemes
(f̃i(xi, yi, zi))i∈I implementing ((xi, yi, zi)i∈I , p̃) for some price p̃ under a bud-
get F̃ with F̃ < F then p must equal the price of energy in the absence of any
reward payment schemes.

In particular, the optimal reward payment schemes must leave the world
market price p of coal at the same level as when there are no reward payment
schemes.7

Proof. See Appendix A.3

For the case where there is no substitute, we can illustrate the Price Preserva-
tion Lemma graphically. Suppose for simplicity that all countries have identical
demand and supply functions shown in the following diagram:

In the absence of any reward payment schemes, the world market price for
coal is p and the quantity of coal produced and used by each country is Q0. Now
let us compare different ways of reducing the quantity produced (and used)
to Q < Q0. Suppose first the global institution achieves this using a reward
payment scheme that leaves the price unchanged. In that case, the minimal

7It is straightforward to generalize both the Surjectivity Lemma and the Price Preservation
Lemma to the case where there are intermediate inputs used only for the good in question.
This is relevant in other applications. For example, consider the problem of how to best cause
the production of vaccines in normal times to increase so that the world is better prepared
for the next pandemic. Consider all the intermediate inputs to vaccines that are only used for
them. The Price Preservation Lemma implies that it is optimal for the global institution to
use a part of its budget for paying countries to expand production of these intermediate inputs.
This is because if it does not then the prices for these intermediate inputs would increase as
a result of the increased demand, in contradiction to the Price Preservation Lemma.
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transfer that it has to pay each country for reducing their coal use from Q0

to Q is given by the green area. The minimal transfer that it has to pay each
country for reducing their coal extraction is given by the blue area.

Now suppose the global institution were to implement Q with a higher world
market price P ′ > P . This corresponds to a higher spending on rewarding
supply reduction:

We see that the total size of the green and the blue areas together is larger
now than when the price was preserved at P .

Similarly, greater demand side emphasis, corresponding to a smaller price
P ′ < P , would require larger overall transfers:

Thus we have graphically recovered the Price Preservation Lemma: If a
reward payment scheme is to achieve a given allocation with minimal aggregate
transfers then the world market price p of coal must be the same as in the
absence of any reward payment scheme.

Having established the Price Preservation Lemma by holding the allocation
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constant and finding the price that minimizes the required transfers, let us now
hold the price constant and find the optimal allocation for the given price.
Lemma 4 (The Constrained Efficiency Lemma). At the optimal reward
payment scheme we have: The allocation (xi, yi, zi) achieves maximal welfare
among all allocations satisfying market clearing and having the same value of∑

i∈I xi. Moreover, this constrained efficiency result even holds if we add the
constraint that the world market price p of coal be any fixed value.

Proof. See Appendix A.4

Given the Price Preservation Lemma and the Constrained Efficiency Lemma,
it is intuitively clear that as the available budget F increases, so will the amounts
spent on each of the three approaches at the optimal reward payment scheme.
To see why, we note that if we were to only expand the budget for reward-
ing supply reduction, then the world market price p of coal would increase, in
contradiction to the Price Preservation Lemma. Similarly, if we were to only ex-
pand the budget for rewarding demand reduction and the budget for rewarding
substitute expansion, then the world market price of coal would fall. More-
over, from the Constrained Efficiency Lemma it is intuitively clear that the
demand side budget and the substitute side budget must both expand: restrict-
ing marginal abatement to demand reduction or substitute expansion would
come at an efficiency loss. I will formally validate this conclusion by proving
the following:
Corollary 1 (The Interior Solution Corollary). For the optimal reward
payment scheme given the budget F , let Fx(F ) denote the amount optimally
used for supply side payments and similarly Fy(F ) the optimal demand side
budget and Fz(F ) the optimal substitute side budget. We have: dFx

dF > 0,
dFy

dF >

0, dFz

dF > 0∀F .

Proof. See Appendix A.5

Corollary 2 (The Optimal Budget Split Corollary for Small Budgets).
For the optimal reward payment scheme given the budget F , let Fx(F ) denote the
amount used for supply side reward payments and similarly Fy(F ) the demand
side budget and Fz(F ) the substitute side budget. Moreover, let us denote by
X(F ) the resulting aggregate coal extraction and by εx the aggregate price elas-
ticity of supply of coal, Y (F ) the resulting aggregate energy consumption and
and by εy the aggregate price elasticity of energy demand, by Z(F ) the resulting
aggregate renewable energy production and by εz the aggregate price elasticity of
supply of renewable energy. We “generically” have:

limF→0
dFx

dF
=

εz
Z(0)
Y (0) + εy

εz
Z(0)
Y (0) + εx

X(0)
Y (0) + εy

limF→0
dFy

dF
=

εy
εz + εy

εx
X(0)
Y (0)

εz
Z(0)
Y (0) + εx

X(0)
Y (0) + εy
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limF→0
dFz

dF
=

εz
εz + εy

εx
X(0)
Y (0)

εz
Z(0)
Y (0) + εx

X(0)
Y (0) + εy

Proof. See Appendix A.5

We see that the more elastic the supply of coal, the smaller the proportion of
money that will optimally be used to pay countries for reducing coal extraction.
We even get the following:

Corollary 3. limεx→∞limF→0
dFx

dF = 0

Proof. This follows directly from Corollary 2

For the case without any substitute we can again illustrate this result dia-
grammatically:

By the Price Preservation Lemma we know that the optimal reward pay-
ment scheme consists of spending the amount corresponding to the blue area on
rewarding supply reduction. Making supply more and more elastic corresponds
to making the supply curve flatter and flatter. This decreases the blue area,
so the optimal proportion of spending on rewarding supply reduction decreases.
Thus in the limiting case where there are constant returns to scale on the supply
side, it is optimal to focus all reward payments on the demand (and substitute)
side.

Intuitively, this can be explained as follows: If there are constant marginal
costs on the supply side then each ever so tiny country could reap large profits
if the world market price was increased as result of reward payments inducing
the other countries to reduce their supply. Thus the global institution would
need to pay them large transfers to prevent them from seizing this opportunity
to increase profits.

We conclude this section with some concavity results:
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Lemma 5. Let W (F ) be the maximal welfare achievable with a given budget
F . Suppose that η(

∑
i xi) is linear. Then W (F ) is strictly concave.

Proof. See Appendix A.6

Lemma 6. Let F (Fx,W ) denote the budget required to achieve welfare W under
the further constraint that the budget spent on reducing coal supply is Fx. Then
F (Fx,W ) is convex in Fx.

Proof. See Appendix A.7.

Lemmas 5 and 6 make the following conjecture plausible:

Conjecture 1. Let W (Fx, Fy, Fz) be the maximal welfare achievable under the
further constraint that the amount Fx be spent on coal supply reduction, Fy be
spent on energy demand reduction and Fz be spent on renewable supply expan-
sion. W (Fx, Fy, Fz) is concave.

In the special case where all supply and demand functions have constant
elasticities, conjecture 1 does seem to hold, as suggested by the numerical results
shown in the next section.

4 Numerical results for the model under con-
stant elasticity specification

All the numerical calibrations whose results are summarized here are fully doc-
umented in the accompanying Mathematica notebook that can be downloaded
here.

Drawing on the literature, I use the following middle-of-the-road for the
parameters 8:

εD = 0.85 based on Freehan (2018) and Espey, J. A., & Espey, M. (2004).
εSG

= 2.7 based on Johnson (2011)
εSC

= 1.3 based on Dahl (2009)
η = 0.4 based on a social cost of carbon of $36 per ton of CO2 (based on

EPA (2015))
9
X(0)
Y (0) = 0.4

0.26+0.4

8For the numerical calibrations that follow I use a slightly more complicated (but formally
isomorphic model) that is detailed in the accompanying Mathematica notebook. The model
takes into account that energy is required as an input to produce renewable energy.

9In the accompanying Mathematica notebook I take into account that there are costs for
generating coal-powered electricity other than the coal itself. The model is arguably most
relevantly applied to the non-Annex 1 countries, given that existing global environmental
institutions limit their reward payments to these countries. This is why I take India for
calibrating the cost parameters for coal powered electricity:

Electricity prices are around $0.08 per kwh in India.
Per kwh of electricity from coal 900g of CO2 gets emitted.
Assume a social cost of carbon of $36 per ton of CO2 (based on EPA (2015)).
Thus we have: p = 0.08 per kwh and η= 0.9×36/1000 per kwh
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Z(0)
Y (0) =

0.26
0.26+0.4

10

By Lemma 2, the optimal budget split for an infinitesimally small bud-
get only depends on the elasticities at the situation where no reward payment
scheme is in place. Shown in the following figure is the optimal budget split as
a function of the available budget:

Figure 1:

proportion of budget for supply reduction

proportion of budget for demand reduction

proportion of budget for substitute expansion

0.0 0.2 0.4 0.6 0.8 1.0

available budget as a proportion of the

budget required to achieve maximal welfare

0.2

0.4

0.6

0.8

1.0
split of budget at optimal mechanism

The plot shows the results starting from an infinitesimal budget all the way
to the minimal budget allowing the global institution to fully correct the global
externality. Interestingly, the result for the optimal budget split hardly depends
on the budget.

In the following figure I show how global welfare depends on how the budget
is split between the three approaches:

Hence η
p
= 0.4. Thus with our normalization of p = 1 we get η = 0.4.

The amount of coal used to generate 1 kWh is 0.00052 short tons by the US DOI. The price
per short ton of bituminous coal is p=$58.93 (based on EIA). This gives a cost on coal inputs
of $0.0306436 per kWh of coal generated electricity. Assuming that the cost of generating
coal-powered electricity equals its price in India ($0.08 per kwh), this means that 38% of the
cost is due to the coal itself. I use this this figure in the accompanying Mathematica notebook
to commpute the plots that follow.

10As of 2018, renewables generates 26 % of global electricity (IEA (2019)), whilst coal
generates 40 % of global electricity (World Bank). Since the model does not take into account
the other electricity sources, I ignore them for the purposes of this illustrative calibration.
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Figure 2: welfare as a function of budget split

On the x-axis and the y-axis are the proportions of the budget used for re-
warding supply reduction and rewarding demand reduction, respectively. By
definition, the remaining proportion of the budget is used for rewarding substi-
tute expansion. On the z-axis is the ratio of the global welfare gains achieved
divided by the maximal global welfare gains achievable with the given budget.
The figure depicts the case where the budget is small. It turns out that the
results change very little when one chooses any other budget value between 0
and half the minimal value required to fully correct the global externality.

Around the optimum the surface is quite flat. In fact, as long as each of the
three approaches to curbing coal is funded at at least 50% its optimal proportion,
welfare losses relative to the optimal budget split are at most 10%. In E I show
that this result is quite robust across the ranges of elasticity estimates found in
the literature.

This result has important implications for the design of mechanisms to fund
the global institution. It suggests that it might not be so important to get
the budget split exactly right and thus weighs in favor of decentralized funding
mechanisms that have no guarantee for allocative efficiency but that create
strong participation incentives by giving participating countries the opportunity
to influence the allocation of funding across the different approaches to curbing
fossil fuels (see Stern (2020) for an example of such a mechanism).

5 Implementation via tax-based reward payment
schemes in the static model

Let us now assume that all governments determine the amount of fossil fuel
extraction, fossil fuel use and renewable energy production by setting taxes and
subsidies. In this case, the global institution can reward countries on the basis
of these tax and subsidy rates. The definitions 1 and 2 from the previous section
can be straightforwardly adapted to this setting.

15

https://drive.google.com/file/d/1rsAdrAodK2ZfLxFYdfpxgNhlNnevdNFK/view


Lemma 7. Let p denote the world market price of coal in the absence of any
reward payment schemes. Let x∗

i (px) the supply of coal in country i when the
after-tax producer price for extracted coal is px, y∗i (py) the demand for energy
in country i when the after-tax user price for energy is py and z∗i (pz) the sup-
ply of renewable energy in country i when the after-subsidy producer price for
renewable energy is pz.

The optimal mechanism can be implemented as follows: The global institu-
tion makes each country a take-it-or-leave-it offer to set a tax τx on the extrac-
tion of fossil fuel against a reward payment of tx := supx px−Ci(x)− (px∗

i (p−
τx)−Ci(x

∗
i (p− τx))), a take-it-or-leave-it offer to set a tax τy on the energy use

against a reward payment of supy Bi(y) − py − (Bi(y
∗
i (p + τy)) − py∗i (p + τy)),

a take-it-or-leave-it offer to set a subsidy on renewable energy production of τy
against a reward payment of pz − Gi(z) − (pz∗i (p + τy) − Gi(p + τy)). Here
(τx, τy) is uniquely determined by the requirement of global market clearing un-
der p,

∑
i∈I x

∗
i (p− τx)− y∗i (p+ τy) + z∗i (p+ τy) = 0 and the condition that the

sum of the transfers equals the global institution’s budget F .

Proof. The Constrained Efficiency Lemma 4 implies that the tax and subsidy
rates have to be equal across countries and also that the marginal benefit of
energy use equals the marginal cost of renewable energy production. By the
Price Preservation Lemma 3, optimality requires implementing the world market
price p. Lemma 1 implies that at this world market price the transfers are the
minimal transfers making the countries accept the offers.

The take-it-or-leave-it offers of the previous Lemma are clearly not ideal
for use in practice since inaccuracies in the calculation of the required reward
payments could lead to some countries rejecting some offers. It would be more
robust if we could use for example affine linear reward payment schemes. In
the setting of the previous section, where countries are rewarded on the basis of
their quantities (i.e. xi, yi, zi), Lemma 1 shows that restricting reward payments
to positive affine linear reward payment schemes does not lead to any welfare
loss. This is reassuring: Under such schemes, if a country ends up having for
example unexpectedly large fossil fuel extraction then it might still have some
incentives to reduce it under the affine linear scheme even in situations where
under the take-it-or-leave-it offers it would be best off rejecting the offer.

In addition to this, the positive affine linear reward payment schemes also
have the advantage of simplicity which can explain why they are used, for ex-
ample in the case of Norway’s REDD contracts Angelsen (2017).

Unfortunately, positive affine linear reward payment schemes are in general
not sufficient to implement the optimal allocations when countries are rewarded
on the basis of their prices (i.e. their tax and subsidy rates), the focus of the
current section. However, I will now provide sufficient conditions under which
we can use a truncated form of the positive affine linear reward payment schemes
without loss of welfare:

Definition 4. A reward payment scheme is called an “upwardly truncated
positive affine linear scheme” if it can be written as fi(xi, yi, zi) = min(γix,max(0, θix(x̃i−
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xi))) +min(γiy,max(0, θix(ỹi − yi))) +min(γiz,max(0, θiz(zi − z̃i))).

Lemma 8. Let p denote the world market price of coal in the absence of any
mechanism. Denote x∗

i (p) := argmaxx px − Ci(x), y∗i (p) := argmaxy Bi(y) −
py, z∗i (p) := argmaxz pz − Gi(z). Consider a budget F . Let (xi, yi, zi)i∈I

denote the optimal allocation implementable under F . Then each of the 3 sets
of conditions listed below is sufficient to ensure that the optimal allocation can
be implemented as an interior solution under upwardly truncated positive affine
linear reward payment schemes (in the sense that it can be implmented under a
reward payment scheme of the form fi(τix, τiy, τzi) = min(γix,max(0, θix(τ̃ix −
τix))) +min(γiy,max(0, θix(τ̃iy − τiy))) +min(γiz,max(0, θiz(τiz − τ̃iz))) with
τix < γix, τiy < γiy, τiz < γiz):

1)

1− (
B′

i(y)− p

B′
i(y)

)
εB′′

i
(y)

εB′
i
(y)

> 0∀y ∈ [yi, y
∗
i (p)] (1)

where εB′
i
(y);= y

B′
i(y)

B′′
i (y) and εB′′

i
(y);= y

B′′
i (y)B

′′′
i (y),

1− (
C ′

i(x)− p

C ′
i(x)

)
εC′′

i
(x)

εC′
i
(x)

> 0∀x ∈ [x∗
i (p), xi] (2)

where εC′
i
(x);= x

C′
i(x)

C ′′
i (x) and εC′′

i
(x);= x

C′′
i (x)C

′′′
i (x),

1− (
G′

i(x)− p

G′
i(x)

)
εG′′

i
(x)

εG′
i
(x)

> 0∀z ∈ [z∗i (p), zi] (3)

where εG′
i
(z);= z

G′
i(z)

G′′
i (z) and εG′′

i
(z);= z

G′′
i (z)

G′′′
i (z)

or
2) The budget F is sufficiently small.
or
3) C ′

i is convex on [x∗
i (p), xi], B′

i is concave on [yi, y
∗
i (p)], and G′

i is concave
on [z∗i (p), zi]

Proof. See appendix A.8

6 The dynamic model
There are T discrete time periods, denoted by t = 1, ..., T . Country i’s coal
reserves are such that the order in which it is best to extract is always the same.
Thus country i’s only relevant choice is how much to extract in each period.
Country i’s cumulative extraction of coal until the end of period t is denoted by
xit.

Country i’s energy use in period t is denoted by yit and its renewable energy
production by zit. Country i’s pursues the objective of maximizing Ui given by:
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Ui =

T∑
t=1

1

(1 + r)t
(bit(yit)−git(zit)−(cit(xit)−cit(xit−1))+fit(xit,yit, zit)+pt(xit+zit−yit))

Here I am assuming that each country i discounts future benefits and costs
using the market interest rate r. bit(yit) denotes country i’s benefit in period t
from using the amount yit of energy in that period. git(zit) denotes country i’s
cost of producing zit of renewable energy in period t.

The term cit(xit)−cit(xit−1) represents the incremental cost in of extracting
in period t the amount xit−xit−1, given that the cumulative coal extraction by
the end of period t − 1 is xit−1. The form of the coal extraction cost assumed
here is a discrete-time analogue of the assumption of stock-dependent extraction
cost common in the continuous time literature (see e.g. van der Ploeg and With-
agen (2014)). In fact, it is more general in that it allows the stock-dependent
extraction cost to also explicitly depend on time.

The transfer that country i receives from the global institution in period t
is denoted by fit(xit, yit, zit). With this notation I am implicitly constraining
the global institution to not condition its reward payments in more complicated
ways on the past. However, with Lemma 11 I establish that this is in fact
without any loss.

As in the static model, I assume that the benefit functions are concave and
the cost functions convex:
Assumption 3. bit is concave ∀i, t . Moreover, git and cii are convex ∀i, t.

Analogously to the static model, the global institution evaluates global wel-
fare as follows:

W =
∑
i∈I

Ui − η(
∑
i∈I

xiT )

where η is a positive and strictly increasing function representing the global
aggregate climate change damages. I am thus assuming here that climate change
damages are determined by the aggregate cumulative emissions by the end of
the last period. I conjecture that the results that follow hold under much weaker
assumptions on how the aggregate emissions path translates into climate change
damages11 .

As throughout all of the formal analysis in this paper, I assume that the
funding available for the global institution is exogenous. Specifically, I now as-
sume that there is an exogenous flow of funding Ft being given to the global
institution in period t. Moreover, I assume that the global institution can freely
save and borrow at the interest rate r, which is also the rate at which the
countries discount future money flows. Thus the global institutions has an in-
tertemporal budget constraint: The discounted value of the aggregate transfers
paid cannot exceed F :=

∑
t∈{1,...,T}

Ft

(1+r)t .
11In Stern (2021)I prove other results about the dynamic model that do in fact hold under

more general assumptions.
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The following definition extends to the dynamic model the market equilib-
rium notion that I introduced already for the static model:

Definition 5. A path of reward payment schemes offered to country i is
a sequence of maps (fit((xis)s=1,...,t), (zis)s=1,...,t, (zis)s=1,...,t))t∈{1,...,T}, each
assigning a non-negative transfer to country i depending on the prior history of
the country’s choices. A path of reward payment schemes is called period-
by-period if it can be written as (fit(xit, yit, zit))t∈{1,...,T}, meaning that the
reward payment in a period t only depends on the the country’s cumulative coal
extraction xit by the end of the period t, its energy use yit in period t and its
renewable energy production zit in period t.

A world market equilibrium under a given set of paths of re-
ward payment schemes ((fit)t∈{1,...,T})i∈I is a combination of an allocation
(xit, yit, zit)i∈I,t∈{1,...,T} and a world market price path p = (pt)t∈{1,...,T} such
that:

1) market clearing:
∑

i∈I xit − xit−1 − yit + zit = 0∀t ∈ {1, ..., T}
2) individual rationality: (xit, yit, zit)t∈{1,...,T} ∈ argmax(xit,yit,zit)t∈{1,...,T}Ui∀i,

where country i’s utility is:

Ui =

T∑
t=1

1

(1 + r)t
(bit(yit) − git(zit) − (cit(xit) − cit(xit−1)) + fit((xis)s=1,...,t), (zis)s=1,...,t, (zis)s=1,...,t) + pt(xit + zit − yit))

It turns out that the global institution actually does not loose anything by
restricting itself to using paths of period-by-period reward payment schemes, as
long as it can freely borrow and save at the market interest rate r. I will show
this in Lemma 11.

From now on we will use the following assumption:

Assumption 4. c′′it+1(x) < (1 + r)c′′it(x) ∀i, t, x.

Assumption 4 has some plausibility: If extraction technology does not change
much over time then assumption 4 clearly holds.12

Lemma 9. Suppose assumption 4 holds. Then for any world market price path
p there exists for each country a unique utility maximizing extraction path.

Proof. See Appendix B.1.

Definition 6. Consider a path of world market prices p = (pt)t∈{1,...,T} for
coal. Let (x∗

it(p))t∈{1,...,T} denote the unique (by Lemma 9) corresponding coal
extraction path that maximizes country i’s utility in the absence of any reward
payment schemes, assuming the world market price path p.

12In fact, assumption 4 is also plausible if extraction technology improves over time: The
marginal extraction cost of coal increases as one extracts more and more of the reserves. This
is because the remaining coal is harder to access. However, as time passes, technological
improvements might reduce the associated increases in marginal extraction costs. This makes
it plausible that we even have c′′it+1(x) ≤ c′′it(x)∀i, t, x.
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Lemma 10. Suppose assumption 4 holds. Then in the absence of any reward
payment schemes there is a unique world market equilibrium.

Proof. See Appendix B.2.

Definition 7. “Positive affine linear reward payment schemes” are de-
fined to be schemes where the global institution offers country i in period t the
transfers fiyt(yit) = max(0, θiyt(ỹit−yit)), fizt(zit) = max(0, θizt(zit− z̃it)) and
fixt(xit) = max(0, θixt(x̃it − xit)).

Lemma 11 (The Surjectivity Lemma, dynamic version). Consider a
combination of an allocation, (xit, yit, zit)i∈I,t∈{1,...,T} with (xit)∈{1,...,T} non-
decreasing satisfying

∑
i∈I xit − yit + zit = 0∀t ∈ {1, ..., T} and a world market

price p. Then for any set of paths of period-by-period reward payment schemes
implementing this combination, the global institution must end up paying at least
the amount Fiyt := supy bit(y) − pty − (bit(yit) − ptyit) on rewarding country i
for demand reduction in period t and at least the amounts Fizt := supz ptz −
git(z)−(ptzit−git(zit)) on rewarding country i for substitute expansion in period
t.

Moreover, the global institution must at least spend the amount Fix :=∑
t=1,...,T

1
(1+r)tFixt in discounted money on rewarding country i for supply re-

duction, where Fixt is defined as follows:
Fixt := (pt− 1

1+rpt+1)(x
∗
it(p)−xit)+(cit(xit)−cit(x

∗
it(p)))+

1
1+r (cit+1(x

∗
it(p))−

cit+1(xit)) for t ∈ {1, ..., T − 1}
FixT := pT (x

∗
iT (p)− xiT ) + (ciT (xiT )− ciT (x

∗
iT (p)))

Furthermore, there does indeed exist a set of paths of reward payment schemes
implementing the allocation (xit, yit, zit)i∈I,t∈{1,...,T} and the world market price
path p that ends up paying exactly the amounts Fiyt on rewarding country i for
demand reduction in period t, the amounts Fizt on rewarding country i for
substitute substitute expansion in period t and the discounted amount Fixt on
rewarding country i for supply reduction in period t. Furthermore, there exists a
set of positive affine linear period-by-period reward payment schemes achieving
this.

Moreover, if the global institution can freely save and borrow then it does
not anything by restricing itself to using only period-by-period reward payment
schemes in the following sense: If a pair of an allocation and a price path can be
implemented through some path of reward payment schemes f then it can also
be implemented through a path f ′ of period-by-period reward payment schemes
at which the total discounted value of transfers that end up getting paid out to
countries is no more than under f .

Proof. See Appendix B.3

A natural question is whether the dynamic version of the Surjectivity Lemma
could be strengthened. Are the Fixt actually the minimal amounts that a global
institution relying on period-by-period reward payment schemes has to end up
paying in period t to induce country i to choose xit? It turns out that this
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is not true in general. To see why, we note that if in some period the global
institution were to pay out sufficiently large rents to country i for sufficiently
low cumulative extraction, then this could even create incentives to conserve in
previous periods and thereby decrease the required transfers in those previous
periods.13

Lemma 12 (The Price Preservation Lemma, dynamic version). Sup-
pose (fit)i∈I,t∈{1,...,T} is a set of reward payment schemes implementing a given
allocation (xit, yit, zit)i∈I,t∈{1,...,T} such that the discounted value of the aggre-
gate transfers paid to countries is minimal. Then we must have: The entire
world market price path (pt)t≥0 is identical to when there is no reward payment
scheme.

In particular, under a binding intertemporal budget constraint the global in-
stitution’s optimal path of reward payment schemes leaves the world market price
path of coal unchanged.

Proof. See Appendix B.4.

Lemma 13 (The Constrained Efficiency Lemma, dynamic version).
Suppose the global institution has an intertemporal budget of F and it can fully
commit to any path of reward payment schemes. Consider the following set of
allocations

SF,p := {(xit, yit, zit)i∈I,t∈{1,..,T} : ∃(fit)i,t, p : (fit)i,t implements ((xit, yit, zit)i∈I,t∈{1,..,T}, p)with spending F}
We have: If (xit, yit, zit)i∈I,t∈{1,..,T} maximizes global welfare W on SF,p it

maximizes global welfare amongst all allocations having the same value for the
global damages η(

∑
xiT ) due to climate change.

In particular we have: The allocation implemented by the optimal reward
payment scheme for a given discounted budget F is the unique allocation maxi-
mizing global welfare W under the constraint that the the global damages η(

∑
xiT )

due to climate change be a given constant.

Proof. See Appendix B.5

Intuitively, the Constrained Efficiency Lemma should imply that it is optimal
to reduce coal combustion in all periods so as to efficiently spread the mitigation
effort. The following Lemma confirms this:

Lemma 14 (The Monotone Mitigation Lemma). Suppose the global in-
stitution has an intertemporal budget of F =

∑T
t=1

Ft

(1+r)t .
Denoting by xit(F ) the cumulative coal extraction of i by the end of period t

at the optimal mechanism, we have:
0 > dxi1

dF > ... > dxiT

dF ∀i, t.
In particular, increasing the budget F reduces coal extraction (and use),

xit(F )− xit−1(F ), of each country in each period.
13If we suppose that the global institution cannot commit to a path of reward payment

schemes then this possibility vanishes: Even if future rents could contribute to participation
incentives now, once the future arrives the global institution will no longer have incentives
to pay rents. In fact, if the global institution cannot commit to a path of reward payment
schemes, the Surjectivity Lemma can be strengthened, as shown in Lemma Stern (2021).
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Proof. See Appendix B.6

Corollary 4 (The Monotone Optimal Spending Corollary). Suppose the
global institution has an intertemporal budget of F =

∑T
t=1

Ft

(1+r)t .
Denoting by Ftx(F ), Fty(F ), Ftz(F ) the global institution’s optimal spending

on supply reduction, demand reduction and substitute expansion in period t, we
have:

dFtx

dF > 0,
dFty

dF > 0, dFtz

dF > 0∀t

Proof. By the Dynamic Price Preservation Lemma 12, world market prices must
under the optimal reward payment scheme be just as in the absence of any
reward payment scheme. By the Monotone Mitigation Lemma 14, both cu-
mulative coal extraction and marginal coal extraction are strictly decreasing
functions of F . The former implies that the global institution’s spending on re-
warding supply reduction strictly increases and the latter implies (invoking the
Constrained Efficiency Lemma) that the spending on demand reduction and
substitute expansion must strictly increase.

Corollary 5 (The Coase-Does-Not-Hold Corollary). Suppose that the
global institutions restricts its supply side spending to the last period. (This
would effectively be the case if the global institution were to restrict itself to
buying up coal deposits.) Then the global institution cannot achieve optimal
welfare.

Thus we have: The “Coase Theorem” does not hold when the global institu-
tion’s budget is insufficient to achieve a full correction of the global externalities.

Proof. This follows directly from the Monotone Optimal Spending Corollary.

Corollary 6 (The Time Inconsistency Corollary). Suppose the global in-
stitution announces at time 1 the optimal reward payment scheme assuming it
fully commits to it. Suppose that at time T the global institution reneges, to all
countries’ surprise, on its promised reward payment schemes and instead offers
a set of reward payment schemes that maximize global welfare, given the state
(xiT−1)i∈I of the world then. Then this new reward payment scheme used for
the last period involves less spending on rewarding supply reduction than the
originally announced reward payment scheme.

Proof. See Appendix B.7.

Intuitively, corollary 6 makes sense: Part of the benefits of future spending
on rewarding supply reduction are that they will by raising world market prices
then increase the incentives to conserve in the prior periods. However, once the
future arrives, this consideration disappears and thus the global institution is
better off spending less on rewarding supply reduction.14 This result suggests a

14This argument also suggest that the Time Inconsistency Corollary 6 could be strengthened
to a claim that if the global institution reoptimizes from a period t > 1 onwards (instead of
just for period T as in the statement of the corollary) then it will spend less on rewarding
supply reduction than under the initially announced reward payment scheme.
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valuable role for deposit purchase funds because they could mitigate this time
consistency problem: The global institution could early on purchase appropriate
coal deposits in a way that does not undermine future incentives to spend on
supply reduction: Buying up these appropriately chosen coal deposits early on
amounts in the model to effectively increasing spending on supply reduction in
the last period.

7 Implementation
We have seen that for any given budget at the global institution’s disposal the
optimal (in terms of global welfare and also in terms of reductions in eventual
cumulative emissions) allocation can be implemented by having the global insti-
tution announce and commit to a set of reward payment schemes of the following
form: In each period, each country is rewarded on the basis of its energy use
and renewable energy production production during the period and also on the
basis of its cumulative coal extraction by the end of the period. Moreover, we
have seen that positive affine linear reward payment schemes can be used for
this (Lemma 1).

On the supply side, this looks as follows: For each period t, the global
institution can define a reference level for country i’s cumulative coal extraction
and reward it proprtionally to the amount by which its actual cumulative coal
extraction by the end of the period is below the reference level.

A well-recognized problem with these kinds of schemes in practice is that
errors in the specification of the reference levels can drastically undermine its
performance (Angelsen (2017)). For example, suppose that the global institu-
tion’s budget is such that the optimal reward payment scheme (under complete
information) reduces cumulative coal extraction in a given country by 10% by
a given year relative to the situation in the absence of the global institution.
Now suppose that the global institution underestimates for that year by 10%
the cumulative emissions ocurring in the country in the absence of any reward
payment schemes. Then it would end up not rewarding the country at all even if
the country makes the substantial effort of reducing its cumulative coal extrac-
tion by 10%. Such an estimation mistake by 10% can arguably happen quite
easily, given that the global institution only has incomplete information about
factors such as the future discovery of fossil fuel deposits.

This problem can to varying degrees be mitigated through alternative schemes
on the supply side. One alternative scheme is to buy up coal deposits and
thereby prevent them from being exploited. The informational requirements for
this approach are arguably much less demanding. Fossil fuel deposits that are
traded on the world market are expected by the market participants to be ex-
ploited eventually. Thus by buying up such deposits to conserve them a global
institution could be quite confident that it is causing emission reductions.

Given these potential informational advantages of the deposit purchase ap-
proach for supply reduction, the question arises as to whether a global institution
with a fixed intertemporal budget as analyzed in this paper should do all its
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supply side intervention via deposit puchase. First best reasoning would suggest
that nothing would be lost by restricting supply side intervention to deposit pur-
chase, at least in this paper’s model where global externalities are determined
purely by the eventual amount of coal that is combusted. However, by the
Coase-Does-Not-Hold-Corollary 5 this is not the case in the realistic case where
the global institution’s budget is insufficient to fully correct the externalities
from fossil fuels.

Thus restricting the supply side approaches to deposit purchase would lead
to a loss in global welfare. Given this result, it is important to explore alterna-
tive ways to reward supply reduction. One such approach could be to reward
countries in each period for taxing coal extraction in that period.

Specifically, the reward payment for a given country in a given period could
be defined to be proportional to some function of the country’s tax rate on coal
extraction. The actual reward payment could be defined to be this function
times an estimate of the country’s coal extraction in the period in the absence
of any reward payments. This would ensure that countries of different “sizes”
would get commensurate reward payments. Thus the incentive power would
be distributed evenly across countries of different sizes which is required for
efficiency given the convexity of abatement costs. Analogous schemes could
be used for rewarding countries for taxing fossil fuel combustion which induce
them to reduce energy use and to expand renewables (see Stern (2021) for an
operational version of such a proposal).

Such schemes would be much less sensitive to errors in the estimations of
the countries’ business as usual (BAU) extraction paths. To see why, consider
the example discussed above where the global institution could under complete
information induce countries to reduce coal extraction by 10% relative to what
they would do otherwise, but where it underestimates a country’s BAU coal
extraction by 10%. Under the tax-based reward payment scheme just discussed
this estimation mistake would lead to the reward payment being 10% too low.
The associated welfare losses would likely be small.

This suggest that rewarding countries each period for taxing coal extraction
is a promising approach to inducing countries to reduce coal supply. Intuitively,
it is clear that in this paper’s model a version of this approach can achieve the
optimum for the global institution, for any given value of its budget. To see why,
we first note that by Lemma 7, the global institution can in the static model
restrict itself to rewarding countries on the basis of tax and subsidy rates. Now
in the dynamic setting, we know by the Monotone Optimal Spending Corol-
lary 4 that the global institution needs to spend in each period strictly positive
amounts on rewarding supply reduction, demand reduction and substitute ex-
pansion. Intuitively, it is clear that the global institution can use tax/subsidy
based reward payment schemes for this instead of the quantity based reward
payment schemes in the original Corollay 4. It turns out that this argument
goes through formally with some minor qualifications, as I show in appendix C.

Given this result about the sufficiency of tax-based reward payment schemes,
the question arises as to whether this approach should be used exclusively or
whether deposit purchase should be used in parallel on the supply side. The
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Time Inconsistency Corollary 6 provides an argument for relying at least par-
tially on deposit purchase: The ex ante optimal path of reward payment schemes
involves spending more on rewarding supply reduction in the future than what
will be optimal ex post once the future arrives. In the model, the global insti-
tution can partially mitigate this time inconsistency problem through deposit
purchase, as I explained at the end of section 6.

8 Conclusion and limitations
This paper has analyzed the problem faced by global institutions such as the
Green Climate Fund, the Global Environment Facility and the Climate Invest-
ment Fund. With the part of the budgets allocated to climate change mitigation,
these institutions can be viewed as being able to reward countries for reducing
fossil fuel supply, reducing energy demand and expanding renewable energy.
So far, these institutions only pursue the demand reduction and the substitute
expansion approaches. The results in this paper suggest that it would be op-
timal for them to pursue a mixture of supply, demand and substitute based
approaches to curbing fossil fuels.

In fact, for a given intertemporal budget and under full commitment, it
is optimal to reward each country in each period for demand reduction and
substitute expansion as well as for having extracted less of the fossil fuel than
what would have been optimal for it in the absence of such a reward payment.
On the demand and substitute side, this can be achieved by rewarding countries
on the basis of the rate at which they tax the combustion of the fossil fuel. Fossil
fuel tax rates are a good measure of a country’s effort to reduce demand for fossil
fuels and to expand substitutes. Thus they are plausibly superior to quantities
as variables to contract on, since the latter depend on many other factors such
as economic growth.

The results of this paper suggest that it could be valuable to explore how
carbon pricing reward funds could best be used on the supply side, where coun-
tries could be rewarded for taxing the extraction of fossil fuel. Indeed, I find
that the commonly proposed deposit purchase approach to supply reduction
is on its own unable to implement the optimal mechanism (corollary 5). De-
posit purchase funds could play a valuable role in mitigating a time consistency
problem identified in corollary 6. But it should plausibly be complemented by
carbon pricing reward funds on the supply side.

An important limitation of this paper’s model is that it abstracts away from
informational asymmetries. Since in reality countries have private information
about their costs and benefits of extracting coal, using energy and producing
renewable energy, most of them will reap informational rents at the optimal
mechanism. In Stern (2021) I develop a model taking this into account. Specifi-
cally, I study the optimal mechanism for reducing fossil fuel demand if the global
institution can only condition its reward payments on each country’s tax/sub-
sidy rate on the fossil fuels. The model could be applied to the supply side and
the substitute side and then integrated into the model presented in the current
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paper.
A further limitation of the model used in this paper is that does not take into

account the adverse effects of fossil fuel rents on global welfare via the natural
resource curse (Ross (2015)). This consideration weighs in favor of focusing
on demand reduction and substitute expansion instead of supply reduction.
Possibly, it could rationalize the current absence of international institutions
paying countries for reducing fossil fuel supply.

A Proofs for section 3
A.1 Proof of Surjectivity Lemma 1
Suppose first, hypothetically, the global institution could make countries pay
transfers and suppose it were to impose the reward payment scheme θixt(x̃it −
xit). Then since x 7→ px − Ci(x) + θix(x̃i − x) is concave, its global optimum
is xi iff θix = p− C ′

i(xi). Now suppose the global institution offers instead the
reward payment scheme fix(xi) = max(0, θixt(x̃it − xit)). xit is still an optimal
choice for i iff pxi − Ci(xi) + θixt(x̃it − xit) ≥ supxpx− Ci(x), or equivalently:

θixt(x̃it − xit) ≥ Fix = supxpx− Ci(x)− (pxi − Ci(xi))
Thus we have shown that the minimal transfer required to pay the country

i to induce it to choose xi under some affine linear reward payment scheme is
indeed Fix = supxpx− Ci(x)− (pxi − Ci(xi)). Analogously, one can prove the
claims for the other variables.

What is left to be proved is that there does not exist another set (fi)i∈I of
reward payment schemes implementing ((xi, yi, zi)i∈I , p) with a strictly smaller
budget. To establish this, we note that the individual rationality condition
implies:

Bi(yi)− Ci(xi)−Gi(zi) + p(xi − yi + zi) + fi(xi, yi, zi) ≥ sup(x,y,z)Bi(y)−
Ci(x)−Gi(z)+p(x−y+z) = supyBi(y)−py−supx(Ci(x)−px)−supz(Gi(z)−gz),
so we have:

fi(xi, yi, zi) ≥ supx px−Ci(x)− (pxi−Ci(xi))+ supy Bi(y)− py− (Bi(yi)−
pyi) + supz pz −Gi(z)− (pzi −Gi(zi)) = Fix + Fiy + Fiz.

A.2 Proof of Lemma 2
Proof. If the budget is sufficiently large, the global institution’s problem’s La-
grangian becomes equal to:

L =
∑

j∈I Uj − η(
∑

j∈I xj) + µ
∑

i∈I(xi − yi + zi)
where µ is the Lagrange multiplier associated with the feasibility constraint.

The first order conditions are:
∂L
∂xi

= ∂Ui

∂xi
− η + µ = −C ′

i(xi)− η + µ = 0
∂L
∂yi

= ∂Ui

∂yi
− η + µ = B′

i(yi)− µ = 0
∂L
∂zi

= ∂Ui

∂zi
− η + µ = −G′

i(zi) + µ
Thus the first best is characterized by the following conditions plus the

feasibility condition
∑

i∈I(xi − yi + zi):
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B′
i(yi) = B′

j(yj) = G′
i(zi) = G′

j(zj) = C ′
i(xi) + η = C ′

j(xj) + η∀i, j ∈ I
In particular, the world market price p of energy does not appear in this

characterization. The greater the emphasis on rewarding countries for supply
reduction, the larger the resulting price p will be. But as long as the required
overall budget does not exceed the available budget, this does not matter for
global welfare.

A.3 Proof of Price Preservation Lemma 3
Proof. Based on the Surjectivity Lemma (1), we view the global institution as
choosing the price p and the allocation (xi, yi, zi)i∈I . Global welfare is deter-
mined by the allocation, (xi, yi, zi)i∈I , and the price p only is relevant because
it affects the aggregate transfers required to get all countries to participate.
The minimal required transfers (Fix, Fiy, Fiz)i∈I are given by the Surjectivity
Lemma. In particular, the minimal aggregate required transfer is given by∑

i∈I Fix + Fiy + Fiz.
We now show that

∑
i∈I Fix+Fiy +Fiz is convex when viewed as a function

of p. To do so, we use that Fix := supx px − Ci(x) − (pxi − Ci(xi)), Fiy :=
supy Bi(y) − py − (Bi(y) − py), Fiz := supz pz − Gi(z) − (py − Gi(y)) and we
compute:

d
dp (

∑
i∈I Fix + Fiy + Fiz) =

∑
i∈I x

∗
i (p)− xi − (y∗i (p)− yi) + z∗i (p)− zi

where x∗
i (p) denotes country i’s supply function in the absence of any mech-

anism, i.e. px − Ci(x) = argmaxxpx − Ci(x) and analogously for y∗i (p) and
z∗i (p). By market clearing, we have:

d
dp (

∑
i∈I Fix + Fiy + Fiz) =

∑
i∈I x

∗
i (p)− y∗i (p) + z∗i (p)

But this is just the excess supply function, which is strictly increasing in p as
can be deduced directly from assumption 1 . Thus the optimal p is characterized
by the condition∑

i∈I x
∗
i (p)− y∗i (p) + z∗i (p) = 0

The price obtaining at the market equilibrium in the absence of any mecha-
nism satisfies this condition by market clearing. It is the unique price satisfying
this condition.

A.4 Proof of Constrained Efficiency Lemma 4
Proof. The basic reason for this result is as follows: The global institution has
two considerations to take into account: it cares intrinsically about the countries’
aggregate utility and it wants to minimize the required transfers. But the outside
options are determined by the price and so the required transfers decrease in
the countries’ aggregate utility. Thus the two considerations perfectly align. I
will now flesh out this argument in full formal detail.

Consider a fixed price p. Consider the set S of all allocations satisfying the
market clearing condition and having a given value X for

∑
xi.

S := {(xi, yi, zi) :
∑

i∈I(xi − yi + zi) = 0,
∑

i∈I xi = X}
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Let µ denote the Lagrange multiplier associated with the market clearing
constraint. Let β denote the Lagrange multiplier associated with the global
institution’s budget constraint. The global institution’s Lagrangian is:

L =
∑

i∈I Ui−η(
∑

j∈I xj)+µ
∑

i∈I(xi−yi+zi)−β(
∑

i∈I Fix+Fiy+Fiz−F )
When choosing amongst allocations in this set S, there are only two terms in

the Lagrangian that are affected, namely
∑

i∈I Ui and −β(
∑

i∈I Fix+Fiy+Fiz):
L =

∑
i∈I Ui−η(

∑
j∈I xj)+µ

∑
i∈I(xi−yi+zi)−β(

∑
i∈I Fix+Fiy+Fiz−F )

So we can write:
L =

∑
i∈I Ui − β(

∑
i∈I Fix + Fiy + Fiz) + φ

where φ does not depend on the allocation (as long as the allocation is chosen
from the set S).

Using the expressions for the minimal transfers, we obtain:
L =

∑
i∈I Ui − β(

∑
i∈I Fix + Fiy + Fiz) + φ

We have:∑
i∈I Fix +Fiy +Fiz = supx px−Ci(x)− (pxi −Ci(xi))+ supy Bi(y)− py−

(Bi(y)− py) + supz pz −Gi(z)− (py −Gi(y))∑
i∈I Fix +Fiy +Fiz =

∑
i∈I supx,y,z p(x− y+ z)−Ci(x)+Bi(y)−Gi(z)+

Ci(xi)−Bi(yi) +Gi(zi))∑
i∈I Fix+Fiy+Fiz = F+

∑
i∈I supx,y,z p(x−y+z)−Ci(x)+Bi(y)−Gi(z)−Ui

Now we can write the Lagrangian as follows:
L = (1 + β)

∑
i∈I Ui + φ#

where φ# does not depend on the allocation (as long as the allocation is
chosen from the set S). Thus for any given p and a given value X for

∑
xi, the

global institution’s optimization problem for the allocation (xi, yi, zi)i∈I boils
down to simply maximizing

∑
i∈I Ui under the constraint that

∑
xi = X.

A.5 Proof of the Interior Solution Corollary 1 and the
Optimal Budget Split Corollary for Small Budgets 2

Proof. (of the Interior Solution Corollary and the Optimal Budget Split Corol-
lary for Small Budgets) By the Price Preservation Lemma, the price at the
optimal mechanism is the same as at the market equilibrium in the absence of
any mechanism. We denote this price simply by p.

As before, let µ denote the Lagrange multiplier associated with the market
clearing constraint. Let β denote the Lagrange multiplier associated with the
global institution’s budget constraint. The global institution’s Lagrangian is:

L =
∑

i∈I Ui−η(
∑

j∈I xj)+µ
∑

i∈I(xi−yi+zi)−β(
∑

i∈I Fix+Fiy+Fiz−F )
By differentiating the Lagrangian with respect to the allocation, we obtain

the following optimality conditions:

hxi(x, y, z, µ) := (1 + β)(p− C ′
i(xi)) + µ− η′ = 0

hyi(x, y, z, µ) := (1 + β)B′
i(yi)− p− µ = 0

hzi(x, y, z, µ) := (1 + β)(p−G′
i(zi))− p+ µ = 0
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We also have the market clearing condition:

fµ(x, y, z, µ) :=
∑
i

xi − yi + zi = 0 (4)

Define σ := 1
1+β , so σ = 0 corresponds to the case where the budget F = 0

and σ = 1 corresponds to the case where the budget F is the minimal amount
sufficient to implement the global optimum. With this, we can rewrite the
optimality conditions as follows:

hxi(x, y, z, µ) := p− C ′
i(xi) + σ(µ− η′) = 0 (5)

hyi(x, y, z, µ) := B′
i(yi)− p− σµ = 0 (6)

hzi(x, y, z, µ) := (1 + β)(p−G′
i(zi))− p+ σµ = 0 (7)

Now we can study what happens as we relax the budget constraint, which
corresponds to increasing σ. Let us denote by h := ((hxi)i∈I , (hyi)i∈I , (hzi)i∈I , hµ),
where h is a vector function whose components are defined in equations 5, 6, 7
and 4. The σ determines (x, y, z, µ) via the condition h(x, y, z, µ) = 0.

For σ ∈ (0,∞) we know that this system has a unique solution. To see
this, consider a fixed σ > 0. We can think of a choice of µ as determining
the (xi, yi, zi)i∈I . Define g(µ) := hµ(x(µ), y(µ), z(µ), µ), where x(µ) denotes
the vector of the xi determined via equation 5 etc.. Each of the xi and zi are
strictly increasing in µ, whilst all of the yi are strictly decreasing in µ. Hence
g is increasing. Moreover, g(0) < 0. To see why, we note that for µ = 0 the
yi and the zi are as in the absence of any mechanism whilst the xi are strictly
smaller. We also have that g(η) > 0. To see why, we note that for µ = η the xi

are as in the absence of any mechanism, whilst the yi are strictly smaller and
the zi are strictly larger.

Given that thus g(0) < 0, g(η) > 0 and that g(µ) is increasing, we can
apply the intermediate value theorem as long as g is continuous. But all the
xi(µ), yi(µ), zi(µ) are continuous which implies that g is continuous. Hence,
by the intermediate value theorem, there exists a unique µ such that equation
4 holds and this µ is in (0, η). This shows that there is a unique solution to
equations 5, 5, 7 and 4. We now denote the unique solution by (x, y, z, µ)(σ).

Now we will show that (x, y, z, µ)(σ) is continuously differentiable at all
σ ∈ (0, 1). For this it suffices by the implicit function theorem to show that
the Jacobian of h is nonsingular on (0, 1), since f is continuously differentiable.
The Jacobian J is as follows:

J = (

−C ′′(x) 0 0 σ
0 B′′(y) 0 −σ
0 0 −G′′(z) σ
1 −1 1 0

)

where C ′′(x) is a diagonal matrix with entries C ′′
i (xi) etc. and in a slight

abuse of notation the 6 zeros in the upper left denote |I| by |I| matrices with
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all entries 0 and the σ denote column vectors of length |I|. For σ > 0, J is
non-singular, since by assumption C ′′

i > 0, B′′
i < 0, G′′

i > 0.
To see why, we note that if we want to write the bottom row vector as

a linear combination of the other rows, then the weight given to each of the
first |I| rows (corresponding to the (xi)i∈I) must be strictly positive, whilst the
weight given to the rows from row |I| + 1 to row 2|I| must be negative, whilst
the weight given to the rows from row 2|I| + 1 to row 3|I| must be negative.
But all this together implies that the last component of this linear combination
will be strictly positive, in contradiction to the fact that the last component of
the last row is 0.

Hence we have established by the implicit function theorem that (x, y, z, µ)(σ)
is continuously differentiable at all σ ∈ (0,∞). We also note that limσ→0+J is
singular. This explains why we will now need to do some more work to establish
a fact that we will later need, namely that “generically” limσ→0+σ

dµ
dσ = 0.

Differentiation of the first order conditions (5,6,7) with respect to σ yields:

C ′′
i (xi)

dxi

dσ
= µ− η + σ

dµ

dσ
(8)

B′′
i (yi)

dyi
dσ

= µ+ σ
dµ

dσ
(9)

G′′
i (zi)

dzi
dσ

= µ+ σ
dµ

dσ
(10)

Above we showed that µ(σ) ∈ (0, η)∀σ > 0. From this it follows that
σ dµ

dσ ∈ (−µ, η)∀σ > 0. This is because for σ such that σ dµ
dσ > η − µ we would

have dxi

dσ > 0∀i (by equation 8), dyi

dσ < 0∀i (by equation 9) and dzi
dσ > 0∀i (by

equation 10), so that d
dσ (xi − yi + zi) > 0∀i which would contradict the market

clearing condition.
Similarly, for σ dµ

dσ < −µ we would have dxi

dσ < 0∀i (by equation 8), dyi

dσ > 0∀i
(by equation 9) and dzi

dσ < 0∀i (by equation 10) so that d
dσ (xi − yi + zi) > 0∀i,

which would contradict the market clearing condition.
We are now ready to show that “generically” we must have limσ→0σ

dµ
dσ = 0.

To establish this, let us first suppose that limσ→0σ
dµ
dσ exists. Suppose we have

limσ→0σ
dµ
dσ = K ∈ (0,∞]. Then there exists some σ̃ > 0 such that for all

σ ∈ (0, σ̃] we have dµ
dσ > K

2σ . Integrating this yields for all σ ∈ (0, σ̃]: µ(σ̃) −
µ(σ) =

∫ σ̃

s=σ
dµ
dσ >

∫ σ̃

s=σ
K
s ds = K(log(σ̃)− log(σ)). Rearranging yields: µ(σ) <

µ(σ̃) −K(log(σ̃) − log(σ)). But this would imply that limσ→0µ(σ) = −∞, in
contradiction to the fact that, as shown above, we always have µ(σ) ∈ (0, η)∀σ.
Similarly, we can show that limσ→0σ

dµ
dσ = K < 0 leads to a contradiction.

Now in our quest to show that limσ→0σ
dµ
dσ = 0 we only have one more case

to show to be impossible, namely the case where limσ→0σ
dµ
dσ does not exist.

But in this case dµ
dσ has to fluctuate infinitely often by unbounded amounts as

σ approaches 0. Intuitively, this will “generically” never happen.
Now using the surjectivity lemma 1yields:
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dFx

dσ =
d(

∑
i Fix)

dσ =
∑

i(C
′
i(xi)− p)

µ−η+σ dµ
dσ

C′′
i (xi)

dFy

dσ =
d(

∑
i Fiy)

dσ =
∑

i −(B′
i(yi)− p)

µ+σ dµ
dσ

B′′
i (xi)

dFz

dσ =
d(

∑
i Fiz)

dσ =
∑

i(G
′
i(xi)− p)

µ+σ dµ
dσ

G′′
i (xi)

Using the optimality conditions yields:
dFx

dσ =
∑

i σ(µ− η)
µ−η+σ dµ

dσ

C′′
i (xi)

dFy

dσ =
∑

i σµ
µ+σ dµ

dσ

−B′′
i (xi)

dFi,z

dσ =
∑

i σµ
µ+σ dµ

dσ

G′′
i (xi)

dFx
dσ

dFx
dσ +

dFy
dσ + dFz

dσ

=
(µ−η+σ dµ

dσ )(µ−η)
∑

1
C′′
i

(xi)

(µ−η+σ dµ
dσ )(µ−η)

∑
1

C′′
i

(xi)
+(µ+σ dµ

dσ )µ
∑

1
−B′′

i
(yi)

+(µ+σ dµ
dσ )µ

∑
1

G′′
i
(zi)

Now we differentiate the market clearing condition, getting∑ dxi

dσ + dzi
dσ =

∑ dyi

dσ
Substituting into this gives:
(µ− η + σ dµ

dσ )
∑

1
C′′

i (xi)
+ (µ+ σ dµ

dσ )
∑

1
G′′

i (xi)
= (µ+ σ dµ

dσ )
∑

1
B′′

i (yi)

so (µ− η + σ dµ
dσ )

∑
1

C′′
i (xi)

= −(µ+ σ dµ
dσ )(

∑
1

−B′′
i (yi)

+
∑

1
G′′

i (xi)
)

which we can plug in to get:

dFx
dσ

dFx
dσ +

dFy
dσ + dFz

dσ

=
−(µ+σ dµ

dσ )(
∑

1
−B′′

i
(yi)

+
∑

1
G′′

i
(xi)

)(µ−η)

−(µ+σ dµ
dσ )(

∑
1

−B′′
i

(yi)
+
∑

1
G′′

i
(xi)

)(µ−η)+(µ+σ dµ
dσ )µ

∑
1

−B′′
i

(yi)
+(µ+σ dµ

dσ )µ
∑

1
G′′

i
(zi)

=
−(µ+σ dµ

dσ )(
∑

1
−B′′

i
(yi)

+
∑

1
G′′

i
(xi)

)(µ−η)

−(µ+σ dµ
dσ )(

∑
1

−B′′
i

(yi)
+
∑

1
G′′

i
(xi)

)(µ−η)+(µ+σ dµ
dσ )µ

∑
1

−B′′
i

(yi)
+(µ+σ dµ

dσ )µ
∑

1
G′′

i
(zi)

=
−(

∑
1

−B′′
i

(yi)
+
∑

1
G′′

i
(xi)

)(µ−η)

−(
∑

1
−B′′

i
(yi)

+
∑

1
G′′

i
(xi)

)(µ−η)+µ
∑

1
−B′′

i
(yi)

+µ
∑

1
G′′

i
(zi)

= −(µ−η)
−(µ−η)+µ

= η−µ
η

Increasing σ corresponds to increasing F . Therefore, we must have dFx

dσ +
dFy

dσ + dFz

dσ > 0. But we already established that µ ∈ (0, η), so it follows that
dFx

dσ > 0 .
We now proceed analogously for Fy:

dFy
dσ

dFx
dσ +

dFy
dσ + dFz

dσ

=
(µ+σ dµ

dσ )µ
∑

1
−B′′

i
(yi)

(µ+σ dµ
dσ )(

∑
1

−B′′
i

(yi)
+
∑

1
G′′

i
(xi)

)(η−µ)+(µ+σ dµ
dσ )µ

∑
1

−B′′
i

(yi)
+(µ+σ dµ

dσ )µ
∑

1
G′′

i
(zi)

dFy
dσ

dFx
dσ +

dFy
dσ + dFz

dσ

=
µ
∑

1
−B′′

i
(yi)

η(
∑

1
−B′′

i
(yi)

+
∑

1
G′′

i
(xi)

)

Hence dFy

dσ > 0, since µ ∈ (0, η).q
Now we proceed analogously to Fz:

dFz
dσ

dFx
dσ +

dFy
dσ + dFz

dσ

=
µ
∑

1
G′′

i
(yi)

η(
∑

1
−B′′

i
(yi)

+
∑

1
G′′

i
(xi)

)

Hence dFy

dσ > 0, since µ ∈ (0, η).
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Rearranging the condition derived from market clearing yields: (µ − η +
σ dµ

dσ )
∑

1
C′′

i (xi)
= −(µ − η + σ dµ

dσ )(
∑

1
−B′′

i (yi)
+

∑
1

G′′
i (xi)

) − η(
∑

1
−B′′

i (yi)
+∑

1
G′′

i (xi)
)

µ− η = −η

∑
1

−B′′
i

(yi)
+
∑

1
G′′

i
(xi)∑

1
C′′
i

(xi)
+
∑

1
−B′′

i
(yi)

+
∑

1
G′′

i
(xi)

− σ dµ
dσ

dtx
dσ

dtx
dσ +

dty
dσ + dtz

dσ

=

∑
1

−B′′
i

(yi)
+
∑

1
G′′

i
(xi)∑

1
C′′
i

(xi)
+
∑

1
−B′′

i
(yi)

+
∑

1
G′′

i
(xi)

+ σ
η

dµ
dσ

using that µ0 := limσ→0σ
dµ
dσ = 0 we get:

limσ→0

dtx
dσ

dtx
dσ +

dty
dσ + dtz

dσ

=

∑
1

G′′
i
(ẑi)

+
∑

1
−B′′

i
(ŷi)∑

1
G′′

i
(ẑi)

+
∑

1
−B′′

i
(ŷi)

+
∑

1
C′′
i

(x̂i)

Letting y∗i (p) denote as before the energy demand function for country i in
the absence of any mechanism, we have:

B′
i(y

∗
i (p)) = p, so B′′

i (p)
dy∗

i

dp (p) = 1
Letting c denote the supply function for coal for country i in the absence of

any mechanism, we have:
C ′

i(x
∗
i (p)) = p, so C ′′

i (p)
dx∗

i

dp (p) = 1
Letting z∗i denote the supply function for coal for country i in the absence

of any mechanism, we have:
G′

i(z
∗
i (p)) = p(1− q), so G′′

i (p)
dz∗

i

dp (p) = 1
With this we obtain:∑

1
−B′′

i (ŷi)
=

dy∗
i

dp =
y∗
i (p)
p

p
y∗
i (p)

dy∗
i

dp =
y∗
i (p)
p εy, where εD denotes the price

elasticity of demand for energy.∑
1

C′′
i (x̂i)

=
dx∗

i

dp =
x∗
i (p)
p

p
x∗
i (p)

dx∗
i

dp =
x∗
i (p)
p εx, where εx denotes the price

elasticity of supply of coal.∑
1

G′′
i (ẑi)

=
dz∗

i

dp =
z∗
i (p)
p

p
z∗
i (p)

dz∗
i

dp =
z∗
i (p)
p εSG

, where εSG
denotes the price

elasticity of supply of renewable energy.
Using these identities we get:
limσ→0

dFx
dσ

dFx
dσ +

dFy
dσ + dFz

dσ

=
εz

Z(0)
Y (0)

+εD

εz
Z(0)
Y (0)

+εx
X(0)
Y (0)

+εy
=

εz
Z(0)
Y (0)

+εy

εSG
Z(0)
Y (0)

+εx
X(0)
Y (0)

+εy

where X(0),Y (0),Z(0) denote the aggregate quantities for F = 0.
From this we deduce:
limσ→0

dFy
dσ

dFx
dσ +

dFy
dσ + dFz

dσ

=
εy

εz+εy

εx
X(0)
Y (0)

εz
Z(0)
Y (0)

+εx
X(0)
Y (0)

+εy

limσ→0

dFz
dσ

dFx
dσ +

dFy
dσ + dFz

dσ

= εz
εz+εy

εx
X(0)
Y (0)

εz
Z(0)
Y (0)

+εx
X(0)
Y (0)

+εy

But we also have:
dFx

dF =
dFx
dσ
dF
dσ

=
dFy
dσ

dFx
dσ +

dFy
dσ + dFz

dσ

so the claimed result follows.

A.6 Proof of Lemma 5
Proof. Let (xi(F ), yi(F ), zi(F )) be the optimal allocation under the budget F .
Given any F1, F2 > 0, suppose we have a budget of φF1 + (1 − φ)F2 with φ ∈
(0, 1). Set p equal to the status quo value in the absence of any mechanism and
set (xi, yi, zi) = (φxi(F1)+(1−φ)xi(F2), φyi(F1)+(1−φ)yi(F2), φzi(F1)+(1−
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φ)zi(F2)). The transfers required for this allocation to satisfy the participation
constraints is lower than φF1 + (1 − φ)F2 by the assumed convexity of Ci and
Gi and the assumed concavity of Bi. Suppose we set the transfer so that the
participation constraints are satisfied with equality. Then, denoting by Ũi the
values of Ui under the status quo, we have:

W =
∑

Ũi − η(φxi(F1) + (1− φ)xi(F2))
=

∑
φ(Ũi − ηxi(F1)) + (1− φ)(Ũi − ηxi(F2)))

= φW (F1) + (1− φ)W (F2)s
But since we have not even used up all our budget, this shows that we can

do strictly better than this.

A.7 Proof of Lemma 6
Proof. The first order conditions for the xi require that C ′

i(xi) = C ′
j(xj)∀i, j.

Thus once we stipulate a value for
∑

i xi, all the xi are determined via C ′
i(xi) =

C ′
j(xj)∀i, j. Then all the yi, zi are determined via

∑
i xi =

∑
i yi −

∑
i zi,

B′
i(yi) = B′

j(yj) = G′
i(zi) = G′

i(zj). Thus in particular, once
∑

i xi is fixed, the
welfare W is determined and the transfers only depend on p. Conversely, W
determines all the xi, yi, zi and the Fx then only depends on p.

Specifically, Fx corresponds to p via Fx =
∑

i Fix =
∑

i px
∗
i (p)−Ci(x

∗
i (p))−

(pxi − Ci(xi))
where, as usual, we denote by x∗

i (p) i’s coal supply in the absence of the
mechanism.

dFx

dp =
∑

i x
∗
i + (p− α)

∑
i
dx∗

i

dp −
∑

i
dx∗

i

dp C ′
i(x

∗
i ) =

∑
i x

∗
i , so dp

dFx
= 1∑

i x
∗
i

Similarly, we get:
d
∑

i Fiy

dFx
=

d
∑

i Fiy

dp
dp
dFx

=
−

∑
i y

∗
i∑

k x∗
k
,
d
∑

i Fiz

dFx
=

∑
i z

∗
i∑

i x
∗
i
, so dF

dFx
=

∑
i x

∗
i +

∑
i z

∗
i −

∑
i y

∗
i∑

k x∗
k

d2F
dF 2

x
= d

dp

∑
i x

∗
i +z∗

i −y∗
i∑

k x∗
k

dp
dFx

=
−

∑
k

dx∗
k

dp

∑
i(x

∗
i +z∗

i −y∗
i )+

∑
k x∗

k(
∑

i

dx∗
i

dp +
dz∗i
dp − dy∗

i
dp )

(
∑

k x∗
k)

2
dp
dFx

=∑
k

dx∗
k

dp

∑
i(y

∗
i −z∗

i )+
∑

k x∗
k(

dz∗i
dp − dy∗

i
dp )

(
∑

i x
∗
i )

3

At the optimal mechanism, each country i will bee paid to lower their energy
use relative to what it would individually choose were it to ignore the mechanism.
Hence we must have yi ≤ y∗i ∀i. Similarly, we must have zi ≥ z∗i ∀i. Moreover,
market clearing implies that

∑
i yi − zi ≥ 0, so

∑
i(y

∗
i − z∗i ) ≥ 0.

Since dz∗
i

dp ≥ 0,dx
∗
i

dp ≥ 0∀i by the law of supply and dy∗
i

dp ≤ 0 by the law of
demand, it follows that d2F

dF 2
x
≥ 0

A.8 Proof of Lemma 8
Proof. Denote by uiy the net payoff that country i gets from setting a tax rate
τiy > 0 on energy use relative to setting τiy = 0 is.

uiy = Bi(y
∗
i (p+ τiy))− py∗i (p+ τiy)− (Bi(y

∗
i (p))− pty

∗
i (p)) + θiy(τiy − τ̃iy)

33



duiy

dτiy
= (B′

i(y
∗
i (p+ τiy))− p)y∗

′

i (p+ τiy) + θiy

Given that y∗i is characterized by the optimality condition

B′
i(yi) = p+ τiy

we have

y∗
′

i (p+ τiy) =
1

B′′
i (y

∗
i (p+ τiy))

Hence:

duiy

dτiy
= (B′

i(y
∗
i (p+ τiy))− p)

1

B′′
i (y

∗
i (p+ τiy))

+ θiy

d2uiy

dτ2iy
= B′′

i (y
∗
i (p+τiy))

1

(B′′
i (y

∗
i (p+ τiy)))2

−(B′
i(y

∗
i (p+τiy))−p)B′′′

i (y∗i (p+τiy))
1

(B′′
i (y

∗
i (p+ τiy)))3

Given that B′′
i (y) < 0∀y, d2uiy

dτ2
iy

< 0 is equivalent to:

1− (B′
i(y

∗
i (p+ τiy))− p)B′′′

i (y∗i (p+ τiy))
1

(B′′
i (y

∗
i (p+ τiy)))2

> 0

Using the definition of the elasticities, this can be rewritten as:

1− B′
i(y

∗
i (p+ τiy))− p

B′
i(y

∗
i (p+ τiy))

εB′′
i
(y∗i (p+ τiy))

εB′
i
(y∗i (p+ τiy))

> 0

Now the sufficiency of conditions 2) follows from the fact that limF→0
B′

i(y)−p
B′

i(y)
=

0.
To show the sufficiency of condition 3), we note that by assumption 1 we

have εB′
i
(y) < 0 and B′′

i < 0. this implies that if B′′′
i < 0 then equation 1 is

satisfied.
For the supply side, an analogous computation yields that the following is a

sufficient condition:
1− C′

i(x)−p
C′

i(x)

εC′′
i
(x)

εC′
i
(x) > 0

By assumption 1, we have εC′
i
(x) > 0. Moreover, we also have C′

i(x)−p
C′

i(x)
< 0.

Hence it is sufficient that εC′′
i
(x) > 0, which is equivalent to C ′′′

i > 0 on the
relevant domain.

For the substitute side, an analogous computation yields that the following
is a sufficient condition:

1− (
G′

i(z)−p
G′

i(z)
)
εG′′

i
(z)

εG′
i
(z) > 0

By assumption 1, we have εG′
i
(z) > 0. Moreover, we also have G′

i(z)−p
G′

i(z)
> 0.

Hence it is sufficient that εG′′
i
(x) < 0, which is equivalent to C ′′′

i < 0 on the
relevant domain.
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B Proofs for section 6
B.1 Proof of Lemma 9
Proof. Country i’s problem on the supply side is to choose a nondecreasing
sequence of cumulative extraction (xit)t=1,...,T so as to maximize the discounted
payoffs:

dUi

dxit
= 1

(1+r)t (pt −
1

1+rpt+1 − c′it(xit) +
1

1+r c
′
it+1(xit))

d2Ui

dx2
it

= 1
(1+r)t (−c′′it(xit) +

1
1+r c

′′
it+1(xit))

By assumption 4 we can from this conclude that d2Ui

dx2
it

< 0∀t ∈ {1, ..., T −

1). Since d2Ui

dxitdxjt
∀i 6= j, we can conclude that the function Ui is concave in

(xit)t∈{1,...,T} on RT . It follows in particular that it is concave on the subspace
of RT defined by the condition that (xit)t=1,...,T be non-decreasing. Thus there
exists a unique utility maximizing extraction path for country i.

B.2 Proof of Lemma 10
Proof. Formally, we can reinterpret the Walrasian World model of this paper as
a classical Walrasian model with a numeraire good by viewing each country as
being comprised of three parts:

1) a representative consumer with utility Bi that is quasilinear in the nu-
meraire good15

2) a firm able to use the numeraire good to extract coal and turn it into
energy

3) a firm able to use the numeraire good to produce renewable energy energy.
Now existence of a market equilibrium follows from proposition 17.BB.2 of

Mas-Colell et. al 1995 (page 634), using assumption 3.
To establish uniqueness, we note that the first welfare theorem requires that

any Walrasian equilibrium is Pareto optimal. However, given that all utilities
are quasilinear in the same numeraire, this means that every Walrasian equilib-
rium must maximize the sum of all the utilities. But since all the utilities are
concave functions of the allocations, this uniquely determines the allocation up
to transfers in the numeraire good between consumers.

B.3 Proof of Surjectivity Lemma, Dynamic Version with
full Commitment 11

Proof. For the demand side and the substitute side each country’s optimiza-
tion problem is separable across periods. Thus the claims follow by the same
arguments as in the proof of Lemma 1.

15Of course, for the application of the model, the appropriate interpretation of the model
is that Bi captures both the utility that consumers in i derive from energy consumption
and the profits the benefits generated from energy for the production of other goods. The
narrower interpretation adopted in this proof simply helps to import the results from standard
Walrasian theory.

35

https://scholar.google.com/scholar?cluster=14723730117701805949&hl=en&as_sdt=0,5


On the supply side, however, there is a complication to be dealt with: The
constraint that the extraction sequence be non-decreasing. Country i’s problem
on the supply side is to choose a nondecreasing sequence of cumulative extraction
(xit)t=1,...,T so as to maximize the discounted payoffs:∑T

t=1
1

(1+r)t (pt(xit − xit−1) + fixt(xit)− (cit(xit)− cit(xit−1)))

Let us rewrite this by grouping together the terms involving a given xit:

T−1∑
t=1

1

(1 + r)t
((pt−

1

1 + r
pt+1)xit+fixt(xit)−cit(xit)+

1

1 + r
cit+1(xit)))+

1

(1 + r)T
(pT xiT+fixT (xiT )−ciT (xiT ))

(11)

Suppose the global institution were to offer the following reward payment
schemes: In period t pay the amount Fixt to i if i chooses xit and 0 otherwise,
where Fixt is defined as follows

Fixt := (pt− 1
1+rpt+1)(x

∗
it(p)−xit)+(cit(xit)−cit(x

∗
it(p)))+

1
1+r (cit+1(x

∗
it(p))−

cit+1(xit)) for t ∈ {1, ..., T − 1}
FixT := pT (x

∗
iT (p)− xiT ) + (ciT (xiT )− ciT (x

∗
iT (p)))

Recall that by definition 6, (x∗
it(p))t∈{1,...,T} denotes the unique utility max-

imizing extraction path for country i. By equation 11, x∗
it(p) is the unique

value that maximizes the term of the profit in which it appears. Thus we have
Fixt ≥ 0∀i, t. Thereby we have established that the reward payment schemes
we have defined are positive.

Consider the relaxed problem for country i where it ignores the constraint
that (xit)t=1,...,T has to be non-decreasing. From equation 11 it follows that
(xit)t=1,...,T is an optimum for i under the reward payment schemes defined
above. But by assumption, this (xit)t=1,...,T is non-decreasing, so it is also an
optimum of the actual problem that country i faces.

Now we need to show that every reward payment scheme inducing country
i to choose (xit)t=1,...,T must end up paying to i at least the amount Fix :=∑

t=1,...,T
1

(1+r)tFixt in discounted money on rewarding supply reduction. But
for this we simply note that country i always hast the option of ignoring all of
the supply side reward payment schemes altogether. From this and equation 11
the claimed result follows.

The fact that each country always has the option of ignoring the reward pay-
ment schemes also establishes that the global institution does not increase the
minimal required discounted value of reward payment schemes on the demand
or substitute side by restricing itself to using period-by-period reward payment
schemes.

Last, let us show that positive affine linear reward payment schemes are
sufficient to achieve any given supply side allocation with minimal transfers.

Let Vixt(xit−1, (ps)s≥t, (fixs)s≥t) denote the maximal discounted profit that
country i can reap from coal extraction from period t onwards, given that its
cumulative extraction before that is xit−1 and given the continuation world
market price path (ps)s≥t and given the continuation path (fixs)s≥t of reward
payment schemes.
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The individual rationality condition for i to accept xiT conditional on having
accepted (xi1,..., xiT−1) is:

xit = argmaxxpt(x−xit−1)+fixt(x−xit−1)−(cit(x)−cit(xit−1))+
1

1+rVixt+1(x, (ps)s≥t+1, (fixs)s≥t+1)
The corresponding first order condition is:
pt − θixt − c′it(xit) +

1
1+r

∂Vixt+1

∂xit
= 0

Using the envelope theorem, we compute:
∂Vixt+1

∂xit
= −pt+1 + c′it+1(xit)

Hence the first order conditions are:
pt − θixt − c′it(xit) +

1
1+r (−pt+1 + c′it+1(xit)) = 0 for t ≤ T − 1

pT − θixT − c′iT (xiT ) = 0 for t = T
Thus in each period t there is a unique θit such that xit satisfies the first

order condition in period t. What remains to be checked is that the second order
conditions hold. For period T , this is true by since ciT is convex by assumption.
For periods t < T , the second order condition for a maximum is:

−c′′it(xit) +
1

1+r c
′′
it+1(xit) ≤ 0

But by assumption 4, this condition holds. In fact, assumption 4 implies
that the function x 7→ pt(x − xit−1) + fixt(x − xit−1) − (cit(x) − cit(xit−1)) +
1

1+rVixt+1(x, (ps)s≥t+1, (fixs)s≥t+1) is concave and thus the first order condition
gives the unique maximum.

Adjusting the reference levels of the positive affine linear reward payment
schemes simply amounts to varying the transfer that a country gets conditional
on accepting the reward payment scheme (instead of ignoring it and maximiz-
ing its payoff without the rewards payments instead). Hence there are unique
reference levels such that the the global institution ends up paying exactly the
minimal transfers.

B.4 Proof of Price Preservation Lemma, Dynamic Version
with Full Commitment 12

Proof. By the Surjectivity Lemma 11, we can view the global institution as
if it was choosing a world market price path (pt)t∈{1,...,T} and an allocation
(xit, yit, zit)i∈I,t∈{1,...,T}. Also by the Surjectivity Lemma the minimal dis-
counted sum of transfers that the global institution has to pay for rewarding
supply reduction is Fix :=

∑
t=1,...,T

1
(1+r)tFixt where Fixt is defined as follows:

Fixt := (pt− 1
1+rpt+1)(x

∗
it(p)−xit)+(cit(xit)−cit(x

∗
it(p)))+

1
1+r (cit+1(x

∗
it(p))−

cit+1(xit)) for t ∈ {1, ..., T − 1}
FixT := pT (x

∗
iT (p)− xiT ) + (ciT (xiT )− ciT (x

∗
iT (p)))

Moreover, the minimal discounted sum of transfers that the global institution
has to pay for inducing the demand reduction and the substitute expansion are
Fiy :=

∑
t=1,...,T

1
(1+r)tFiyt and Fiz :=

∑
t=1,...,T

1
(1+r)tFizt with the following

definitions:
Fiyt := supy bit(y)− pty − (bit(yit)− ptyit)
Fizt := supz ptz − git(z)− (ptzit − git(zit))
Let us use the envelope theorem to compute how the minimal value of dis-

counted aggregate transfer is affected by the world market prices:
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dFix

dpt
= 1

(1+r)t (x
∗
it(p)− xit)− 1

(1+r)t−1
1

1+r (x
∗
it−1(p)− xit−1)

dFix

dpt
= 1

(1+r)t (x
∗
it(p)− x∗

it−1(p)− (xit − xit−1))
d

dpt
(
∑

i∈I,t∈{1,...,T} Fix +Fiy +Fiz) =
∑

i∈I
1

(1+r)t (x
∗
it(p)− x∗

it−1(p)− (xit −
xit−1)− y∗it(p) + yit + z∗it(p)− zit)

By market clearing in period t we deduce from this:
d

dpt
(
∑

i∈I Fix+Fiy+Fiz) =
∑

i∈I,t∈{1,...,T}
1

(1+r)t (x
∗
it(p)−x∗

it−1(p)−y∗it(p)+

z∗it(p))
Optimality of the world market price path for the problem of minimising

discounted aggregate transfers implies that this expression has to be 0 for each
t ∈ {1, .., T}. But this set of conditions is equivalent to the statement that
((xit, yit, zit)i∈I,t∈{1,...,T}, p) be a market equilibrium in the absence of any re-
ward payment schemes. By Lemma 10 there is a unique such market equilib-
rium.

B.5 Proof of Constrained Efficiency Lemma, Dynamic Ver-
sion 13

Proof. The global institution’s objective is to maximize global welfare:
W =

∑
i Ui((xit, yit, zit)t=1,...,T )− η(

∑
∈I xi1, ...,

∑
xiT )

under the constraint the that total amount of required transfers does not
exceed the available intertemporal budget:∑

i

∑
t=1,...,T

1
(1+r)tFit ≤ F

Consider a fixed value for the total climate change damages, η(
∑

∈I xi1, ...,
∑

xiT ) =
η̃. How should the global institution optimally choose the allocation (xit, yit, zit)t=1,...,T

under the constraint that η(
∑

∈I xi1, ...,
∑

xiT ) = η̃? There are two considera-
tions: The institution should try to reduce the transfers it needs to pay. For this
it is best to maximize the countries’ aggregate utility,

∑
i Ui((xit, yit, zit)t=1,...,T ),

since the required transfers are determined so as to make up for the utility loss
that countries occur relative to ignoring the reward payment schemes and op-
timizing given the market price vector p. The global institution also cares in-
trinsically about the countries utilities. Hence the two considerations perfectly
align and the global institution should choose the allocation so as to maximize∑

i Ui((xit, yit, zit)t=1,...,T ) under the constraint that η(
∑

∈I xi1, ...,
∑

xiT ) =
η̃.

B.6 Proof of Monotone Mitigation Lemma 14
Proof. By the Constrained Efficiency Lemma 13 we know that the allocation
at the optimal mechanism must maximize global welfare under the constraint
that the eventual cumulative coal extraction be some fixed value X. For X =∑

i x
∗
iT (p) the optimum is xit = x∗

it(p) by the first Welfare Theorem.
From now on we shall reason about how to optimally choose the xt :=∑

i xit, it being understood that the aggregate quantities are split up across
countries so as to maximize global welfare. This is justified by the Constrained
Efficiency Lemma 13 . We use the definition of aggregate costs: ct(xt) :=
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min(xit)i

∑
cit(xit). For better readability I will now assume that there is no

substitute (i.e. no renewable energy). It is straightforward to generalise the
proof that I will now give.

Let us denote (xt(X), yt(X), zt(X))t∈{1,...,T} the optimal allocation under
the constraint that xT = X. We shall now prove that 0 < dx1

dX < ... < dx1

dX < 1.
For this, we note that by optimality we have:

∂W
∂xt

= 0∀t ≤ T − 1
Differentiating this with respect to X and noting that xt only affects coal

combustion in period t and t+ 1 yields :
∂2W

∂xt∂xt−1

dxt−1

dX + ∂2W
∂x2

t

dxt

dX + ∂2W
∂xt∂xt+1

dxt+1

dX = 0∀t ∈ {2, ..., T − 2}
∂2W
∂x2

1

dx1

dX + ∂2W
∂x1∂x2

dx2

dX = 0

∂2W
∂x2

T−1

dxT−1

dX + ∂2W
∂xT−1∂X

= 0

Rearranging yields:

dxt+1

dX
= −

∂2W
∂xt∂xt−1

∂2W
∂xt∂xt+1

dxt−1

dX
−

∂2W
∂x2

t

∂2W
∂xt∂xt+1

dxt

dX
∀t ∈ {2, ..., T − 2} (12)

dx2

dX
=

−∂2W
∂x2

1

∂2W
∂x1∂x2

dx1

dX
(13)

dxT−1

dX
=

∂2W
∂xT−1∂xT

− ∂2W
∂x2

T−1

(14)

We have:
∂W
∂xt

= 1
(1+r)t (b

′
t(xt − xt−1)− 1

1+r b
′
t+1(xt+1 − xt)− c′t(xt) +

1
1+r c

′
t+1(xt))

∂2W
∂x2

t
= 1

(1+r)t (b
′′
t (xt − xt−1) +

1
1+r b

′′
t+1(xt+1 − xt)− c′′t (xt) +

1
1+r c

′′
t+1(xt))

∂2W
∂xt∂xt+1

= 1
(1+r)t (−

1
1+r b

′′
t+1(xt+1 − xt))

Since by assumption 4, we have c′′t (xt) − 1
1+r c

′′
t+1(xt) > 0, so we obtain in

particular:

0 <
∂2W

∂xt∂xt+1
< −∂2W

∂x2
t

(15)

From 15 and 14 we deduce that 0 < dxT−1

dX < 1.
Let us now assume that 0 < dx1

dX . From this we will now deduce that dxt

dX <
dxt+1

dX ∀t ∈ {1, ..., T − 2} by mathematical induction on t.
Now we prove the induction step. For this, suppose that the claim holds for

t, i.e suppose that dxt

dX > dxt−1

dX > 0. By 12, we have:
dxt+1

dX = −
∂2W

∂xt∂xt−1

∂2W
∂xt∂xt+1

dxt−1

dX −
∂2W

∂x2
t

∂2W
∂xt∂xt+1

dxt

dX
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Now using the induction hypothesis according to which dxt

dX > dxt−1

dX and the
fact ∂2W

∂xt∂xt+1
= 1

(1+r)t (−
1

1+r b
′′
t+1(xt+1−xt)) > 0 and ∂2W

∂xt∂xt−1
= 1

(1+r)t (−b′′t (xt−
xt−1)) > 0, we deduce:

dxt+1

dX > −
∂2W

∂xt∂xt−1

∂2W
∂xt∂xt+1

dxt

dX −
∂2W

∂x2
t

∂2W
∂xt∂xt+1

dxt

dX =
− ∂2W

∂x2
t
− ∂2W

∂xt∂xt−1

∂2W
∂xt∂xt+1

dxt

dX

Substituting in yields:
dxt+1

dX >
− 1

1+r b
′′
t+1(xt+1−xt)+c′′t (xt)− 1

1+r c
′′
t+1(xt)

− 1
1+r b

′′
t+1(xt+1−xt)

dxt

dX

But by assumption 4, we have c′′t (xt)− 1
1+r c

′′
t+1(xt) > 0, so this implies that

that dxt+1

dX > dxt

dX

Thus we have shown that if we assume that if 0 < dx1

dX then by induction it
follows that dxt

dX < dxt+1

dX ∀t ∈ {1, ..., T − 2}.
Now we will show that 0 ≥ dx1

dX would lead to a contradiction. In fact, the
same inductive argument just provided would in this case imply that dxT−1

dX ≤
... ≤ dx1

dX ≤ 0. But we already showed above that 0 < dxT−1

dxT
< 1.

Thus we have shown that 0 < dx1

dX < ... < dx1

dX < 1. In particular, we have
xt(X) <

∑
i x

∗
it(p)∀t∀W as long as X <

∑
i x

∗
iT (p).

B.7 Proof of the Time Inconsistency Corollary 6
Proof. Consider the situation at time T , assuming that to all countries’ surprise
at that time the global institution announces the new reoptimized mechanism.
By the first part of the Monotone Mitigation Lemma 14, until time T less coal
has been extracted than what would have been extracted in the absence of any
mechanism. Let p#T denote the price that would occur if for the time period
T no more mechanism was used and given that the cumulative coal extraction
by the end of period t − 1 was (xiT−1)i∈I . Let p̂T denote the price arising in
period T if there was not any mechanism at any period. We have p#T < p̂T ,

since otherwise there would be an excess coal supply under p#T .
By the Dynamic Price Preservation Lemma 12, p̂T is also the price arising

under the optimal mechanism under full commitment. Thus if the global in-
stitution reneges on the announced mechanism at period T and reoptimizes, it
will spend less on rewarding supply reduction.

C Tax-based implementation in the dynamic model
Let us now study in the dynamic model how the global institution can best re-
ward countries on the basis of their tax/subsidy rates. As throughout this paper,
let us assume that the global institution has an exogenous intertemporal budget
and that it can fully commit. Of course it is impossible to achieve more global
welfare than using quantity-based reward payment schemes as studied in sec-
tion 6, given any intertemporal budget at the global institution’s disposal. Let
us now consider this optimal allocation that the global institution can achieve
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for a given budget using quantity-based reward payment schemes and let us
characterize the corresponding tax and subsidy rates.

Let τixt denote the tax that country i charges coal producers per unit of coal
extraction, τiyt the tax that it charges coal users per unit of coal combustion and
τizt the subsidy that it pays renewable energy producers per unit of renewable
energy produced. From the Constrained Efficiency Lemma 13 we obtain the
following 3 conditions:

Condition 1. τixt = τjxt∀i, j, τiyt = τjyt∀i, j, τizt = τjzt∀i, j

Condition 2. τizt = τiyt∀i, t

Condition 3. τixt+1 + τiyt+1 = (1 + r)(τixt + τiyt)∀i, j, t

Condition 2) states that the marginal cost of reducing fossil fuel demand via
reduced energy use has to equal the marginal cost of reducing it via expanded
renewable energy production.

Condition 3) states that the total wedge between the consumer and the
producer price for coal has to increase at the rate r at which countries discount
the future.

From the Price Preservation Lemma we obtain:

Condition 4. Market clearing under preserved price path:∑
i∈I x

∗
it(p− τix) + z∗it(pt + τizt)− y∗it(pt + τiyt) = 0∀i, t

where p denotes the price path in the absence of any reward payment schemes
and τix denotes the path of tax rates on coal extraction.

The conditions 1), 2), 3) leave T degrees of freedom, corresponding to the
split of the total wedge τixt + τiyt between extraction-level tax and combus-
tion level tax on coal. These T degrees of freedom are pinned down by the T
requirements provided by condition 4).

In the model, given our assumption of complete information, the global
institution could simply compute these paths of tax rates and make countries
take-it-or-leave-it offers for exactly adopting these paths. Given our assumption
that the global institution only has an intertemporal budget constraint (i.e. that
it can freely save from and borrow against the exogenous flow of funding that it
receives), the global institution could offer these conditional reward payments
in the last period.

With that, the global institution can clearly implement the above paths
of tax rates. However, in practice it would presumably be much better for
the global institution to make reward payments in each period. Ideally, these
reward payments should only depend on the choices made by the country in
that period, thus making the link between the choice and the reward payment
more transparent.

For the case of quantity-based reward payment schemes, we saw in section 6
that nothing is lost by restricting the global institution to such period-by-period
reward payment schemes. For the demand side and the substitute side, these
results trivially also hold for the tax-based reward payment schemes.
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However, for the supply side a potential complication arises if one restricts
the global institution to using period-by-period tax-based reward payment schemes:
The effect of a country’s period t tax rate on coal extraction on its utility de-
pends on its extraction tax rates in previous periods. For example, if a country
subsidizes coal extraction in early periods then it might not mind taxing coal
extraction at a high rate in later periods since it might not extract any coal any
more in any case.

This complication suggests that the global institution should in each pe-
riod only pay supply side reward payments to countries whose cumulative coal
extraction by the end of the preceding period did not exceed the cumulative
coal extraction that it would have had in the absence of any reward payment
schemes. In the model, it turns out that with this qualification nothing is lost
by restricting the global institution to paying on the supply side each period
each country solely on the basis of the country’s tax rate in that period. A
formal proof of this result is available upon request.

Now in practice the global institution has only imperfect information about
the countries’ counterfactual extraction paths in the absence of any reward
payment schemes. In fact, this predicament has been the main motivation for
considering alternatives to the quantity-based reward payment schemes in the
first place, as I explained in section 5. However, the approach I have proposed
in the previous paragraphs does not require the estimates of the counterfactual
extraction paths in the absence of any reward payment schemes to be very
precise. In fact, these estimates only need to be low enough to avoid creating
perverse incentives for countries to subsidize coal extraction early on to reap
reward payments for taxing it later on and high enough to exceed the cumulative
extraction paths that countries get when they implement the proposed tax rates.
Between these two failure modes there is a margin of error.

D Mathematica notebooks
A Mathematica notebook for the numerical computations under constant elas-
ticity specifications can be downloaded here.

A Mathematica notebook computing the spending paths on the three ap-
proaches by the global institution at the optimal mechanism with full commit-
ment and no borrowing or saving constraints can be downloaded here.

A Mathematica notebook computing the surfaces shown in section E about
the loss from misallocation can be downloaded here.

E Robustness checks about the loss from misal-
location

In section 4 I showed for a particular combination of elasticity estimates how
welfare depends on the budget split. One takeaway was that the loss from
misallocation is relatively small: as long as each of the three approaches gets at
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least 50% its optimal proportion of the budget, welfare losses are at most 10%.
It suggests that it might not be so important to get the budget split exactly
right and thus weighs in favor of decentralized funding mechanisms that have no
guarantee for allocative efficiency but that create strong participation incentives
by giving participating countries the opportunity to influence the allocation of
funding across the different approaches to curbing fossil fuels.

We should expect countries’ allocation decisions in such mechanisms to be
guided by a mixture of concern for global welfare and their own payoffs. Large
fossil fuel exporters will strongly prefer money to go to the supply reduction ap-
proach since this will raise fossil fuel world market prices. Fossil fuel importers,
on the other hand, will prefer money to go to the demand reduction and substi-
tute expansion approaches. Those countries primarily concerned about climate
change will prefer money to go at the margin to whatever of the three approaches
is underfunded relative to the others. Thus we should expect the overall alloca-
tion to be somewhat responsive to what actually turns out to be good for global
welfare. Based on this, I now assume for concreteness that for any given overall
budget each of the three approaches gets at least half its optimal proportion.

Under this constraint, the worst outcome in terms of global welfare occurs
when two of the three approaches each get only half their optimal proportion
of the budget, with the third approach getting the rest. I refer to the three cor-
responding cases as “supply-side-heavy”, “demand-side-heavy” and “substitute-
side-heavy”. I plot below the proportion of welfare realised under these three
cases relative to the welfare that would be realised if the budget was split op-
timally across the three approaches. For these numerical simulations I assume
constant-elasticity specifications for coal supply, energy demand and renewable
energy supply. Throughout I assume that the overall budget is small. It turns
out that all the results change little with the size of the budget. The plots ex-
plore the entire range of elasticity estimates that I have found in the literature,
as I detail in the following subsections.

E.1 Estimates of long run price elasticities of demand for
energy

Espey and Espey (2004) carried out a meta-analysis about residential electricity
demand. of price and income elasticity estimates from 36 studies published over
the period 1947 to 1997. The 125 estimates of long-run price elasticity fell in the
range from −2.25 to −0.04 with a mean of −0.85. All the more recent studies
that I have seen have estimates falling in this range16 I thus consider the range
-2.25 to -0.04 in the plots shown below.

16E.g. Burke & Abayasekara (2018) find -1.
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E.2 Estimates of price elasticities of supply of renewable
energy

I have only found a single study, namely Johnson (2011), which gives an estimate
of 2.7. In the plots shown below I consider the range from 0.1 to 3 for the price
elasticity of supply of renewables.

E.3 Estimates of the price elasticity of supply of coal
Daubanes, J., Henriet, F., & Schubert, K. (2020). note that the empirical
literature on the price elasticity of coal supply—e.g., Labys et al. (1979), Beck
et al. (1991), Light (1999), Light et al. (1999), and Dahl (2009)—finds estimates
ranging from 0.1 and 1.9. Based on this, I consider the range from 0.1 to 1.9.

E.4 Results
Here is the case where the price elasticity of supply of coal is 0.1:

Figure 3: εSC
= 0.1

substitute-sided-heavy

demand-side-heavy

supply-side-heavy

sHere is the case where the price elasticity of supply of coal is 1.9:

Figure 4: εSC
= 1.9

substitute-sided-heavy

demand-side-heavy

supply-side-heavy

Whilst the estimates for the price elasticity of supply of coal range from 0.1
to 1.9, we presumably cannot rule out potentially much large value for it in the
long term. For illustration, consider the case where the price elasticity of supply
of coal is 8:

Figure 5: εSC
= 8

substitute-sided-heavy

demand-side-heavy

supply-side-heavy
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Overall, these results suggest that the conclusion that the welfare losses from
misallocation are likely to be small is robust.
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