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Abstract

We study the interaction between algorithmic advice and human decisions using
high-resolution hotel-room pricing data. We document that price setting frictions,
arising from adjustment costs of human decision makers, induce a conflict of interest
with the algorithmic advisor. A model of advice with costly price adjustments shows
that, in equilibrium, algorithmic price recommendations are strategically biased and
lead to sub-optimal pricing by human decision makers. We quantify the losses from
this strategic bias in recommendations using a simple structural model and estimate
the potential benefits that would result from a shift to fully automated algorithmic
pricing.
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1 Introduction

Organizations rely increasingly on prediction algorithms for decision making, with appli-
cation ranging from hiring policies at tech firms (Hoffman et al., 2018), bail decisions by
judges (Berk, 2017; Kleinberg et al., 2018; Ludwig and Mullainathan, 2021), to pricing in
online platforms and traditional markets (Chen et al., 2016; Brown and MacKay, forth-
coming; Assad et al., 2020; Calvano et al., 2020; Garcia et al., 2022). In many of these
applications machines augment human decisions by acting as advisors to human managers
who retain the final decision right. It is theoretically well understood that advice can be
successful only to the extent that incentives of the human decision maker and the advisor
are sufficiently aligned.1 The empirical evidence on how algorithmic advice and human
decision making work together in strategic situations is however extremely limited (Athey
et al., 2020; Cowgill and Stevenson, 2020).

In this paper, we study the strategic interaction between algorithmic price recommen-
dations from an independent advisor and actual price setting behavior by human managers
in a hotel-room pricing context. We develop a model of advice to identify a novel source
of misalignment between the algorithmic advisor and the human decision maker originat-
ing from price-adjustment costs humans face. We show that this conflict of interest can
lead to substantially distorted recommendations by the algorithm and suboptimal pric-
ing decisions by human managers in equilibrium. For our empirical analysis, we leverage
a dataset containing millions of algorithmic price recommendations of an independent
revenue management company (the algorithm’s designer), prices set by hotel managers
(human manager), and the corresponding bookings from nine different hotels, see Sec-
tion 3 for details. Using a simple structural model, we quantify the resulting losses from
mispricing. Our main counterfactual experiment shows that full delegation to the recom-
mendation algorithm significantly outperforms the current organizational setting in which
human managers set prices for most hotels in our sample.

In our setting, both the revenue management company and the hotel manager benefit
from maximizing the hotel’s profits.2 The main source of conflict in this paper arises be-

1 See Sobel (2013) for an excellent summary of the literature on advice with an informed sender and
uninformed receivers. We discuss the contributions of our study to this literature in Section 2.

2 This shared objective is motivated by the fact that the revenue management firm compares their
customer’s revenues before and after they started using the recommendation algorithm, and heavily uses
these benchmarks when marketing their product to new and existing customers. Consequently, higher
induced revenues help the revenue management firm to attract new customers and retain existing ones.
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cause the designer of the algorithm, in contrast to the manager, does not incur adjustment
costs when (automically) changing prices and hence would like to implement price updates
more frequently.3 Because larger deviations from the optimal price are more costly to
the hotel manager, the algorithm’s recommendation exaggerates the change in the optimal
price to induce the manager to update prices faster. This, in turn, has two effects. On
the one hand, both agents incur a welfare loss whenever a more biased recommendation is
accepted by the manager. On the other hand, the designer of the algorithm benefits when-
ever the more exaggerated recommendation prompts more frequent price updates from the
manager.

We believe that this type of conflict of interest is likely to arise in most settings where
the decision maker has an easy default or status quo option (e.g. ‘keep current price’) and
deviating from that option (e.g. ‘update price’) incurs some form of adjustment costs.4 An
algorithmic recommendation for an alternative action will have two beneficial effects in
addition to the direct benefit of providing better or more aggregated information. First, it
simplifies the decision maker’s task by offering an easily selectable alternative. Second, its
recommendations may induce the decision maker to more carefully consider other alterna-
tives than the status quo or the algorithm’s recommendation leading to better decisions.
Both effects are likely to also benefit the algorithm’s designer. However, the algorithm’s
designer prefers more frequent decisions than what is privately optimal for the decision
maker, and is hence tempted to bias its recommendations if it can induce faster adjust-
ments away from the default option.

We build a stylized empirical model of advice that captures the key features of the
price-setting interaction of the algorithmic advisor and the manager. In this model, we
assume that human managers display limited attention and incur price-adjustment costs.5

The manager observes costlessly the price and the recommendation of a given product,
defined as a specific room-arrival-date combination. She then decides whether to keep the
current price at no additional cost or devote costly attention to it. If she chooses the latter,

3 The difference in how these two experience adjustment costs is evident from our descriptive analysis
in Section 3 showing that human managers update prices much less frequently than recommended by the
pricing algorithm.

4 For example, a doctor can easily default to the most common cause of the most prominent symptoms
when making a diagnosis, parole boards can keep the inmate locked in, and a store manager can choose
to not restock their inventory.

5 Different interpretations of adjustment costs are discussed in Section 5. There is also a substantial
literature in macroeconomics that studies adjustment and information processing costs in price setting
(e.g. Alvarez et al., 2011).
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she receives an informative signal about the optimal price and then decides whether to copy
the recommended price. If she does not copy, she pays an additional adjustment cost to
learn more information and gets to update prices freely. The assumed timing and cost
structure for adjusting prices is reflected by the pricing interface managers use: accepting
a set of price recommendations is relatively easy and requires only a single click whereas
adjusting prices freely entails accessing different screens and imputing prices manually.

The model of strategic advice with costly price adjustments successfully matches the
key empirical observations of the relationship between algorithmic recommendations and
realized prices. First, we show in Section 4 that actual price updates are relatively rare com-
pared to updates in price recommendations. Over the complete booking horizon, human
managers update prices for a particular product about once a month whereas algorithmic
recommendations are updated four times more frequently. This difference in updating fre-
quencies, together with rarely observed small price changes (within 1.5% of the current
price) by managers, indicate that they are facing considerable price-adjustment costs.

Second, our model shows that, for each realization of the price recommendation, there
exists a cutoff value such that the manager devotes attention to pricing only if her adjust-
ment cost shock is below the cutoff. This cutoff is increasing in the size of the change in
the recommendation. The monotonicity induces a positive correlation between adjustment
costs and the magnitude of the recommendation change, conditional on the manager chang-
ing the price. It follows directly that, in case of updating prices, the manager is more likely
to face higher adjustment costs after a large than a small change in the recommendation. If
the two adjustment costs are correlated, she is more likely to copy the recommended price
rather than adjusting prices manually.6 This is consistent with the empirical observation
that, conditional on changing prices, copying the recommendation becomes more likely
than manual adjustments the larger the change in the recommendation.7 This pattern is
otherwise hard to reconcile with standard models of advice as we discuss in Section 2.

Our third, and most salient reduced-form observation is that managers only partially
incorporate the information contained in the recommendation. When the manager updates
prices manually, a one-percent change to either direction in the recommended prices leads,
on average, to a 0.72 percent change in the same direction in the realized price. In line with

6 Correlation between the two adjustment costs is highly plausible because both represent an oppor-
tunity cost of the manager’s time.

7 For example, the average probability of copying the recommendation conditional on a price change
is 84% and increases to 95% once the change in the recommendation exceeds 10% of the current price.
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this empirical finding, the pass-through of recommendations into actual prices is imperfect
in our model because the human manager expects a biased price recommendation. The
strategically biased recommendation makes it more profitable for the manager to man-
ually update prices whenever the direction of the price change suggested by her private
information contradicts the one recommended by the algorithm. This negative selection of
hotel manager’s private information in case of manually updating prices further decreases
the empirically observed pass-through rate of recommended prices.8 The reason is that
manual price changes are more profitable in situations in which the manager’s information
strongly contradicts the recommender’s signal. Taken together, the model is rich enough
to generate the, at first sight, counterintuitive empirical pattern of (i) a high unconditional
copy rate as well as (ii) a considerably dampened pass-through of recommendations in case
the manager decides to adjust prices manually.

A primary ingredient of our model presented in Section 5 is the perceived bias in the
recommendation. We posit that the algorithm aims to induce revenue-maximizing decisions
and holds correct expectations about the manager’s response to different recommendations.
The algorithm’s designer chooses a reporting strategy that, for tractability, we assume to be
a linear factor, multiplying the change in the privately observed component of the optimal
price. If this factor exceeds one, the algorithm exaggerates its private information. In
equilibrium, the hotel manager is assumed to have correct beliefs about the bias factor,
and therefore forms accurate expectations about the information held by the algorithm.

In section 6, we estimate the model parameters using a minimum distance estimator
while requiring that there are no beneficial deviations for the algorithm’s designer from the
chosen bias factor. For the complete sample of hotels in our data, the bias factor we identify
is 1.2. The bias in recommendations is significantly larger than 1 but lower than the naive
estimate of 1.39 necessary to explain the low pass-through of 0.72% in a model without
selection. Estimating the model at the hotel level, we observe a considerable degree of
heterogeneity across hotels, with estimates of the bias ranging from 1.05 to 1.5. In addition,
we find that hotel managers have access to potentially very precise information but only
rarely acquire it, implying that hotel managers must be facing substantial adjustment
costs. This leads to inaccurate decisions: the standard deviation of the difference between
the optimal price and the actual price is larger than the standard deviation of the price

8 In other words, our model predicts that the actual bias in recommendations is smaller than the gap
between recommended changes and manual price changes.
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observed in the data.
In section 7, we finally address whether full delegation to the algorithm would lead

to better pricing decisions. Delegation to the algorithm has some obvious benefits. It
brings about instantaneous and costless decision making and aligns preferences of the
algorithmic advisor and the human manager. A potential cost of delegation however is that
a hotel manager’s private information is not available as an input for decision making. Our
counterfactual experiment shows that delegation to the algorithm would reduce expected
losses by 8 to 35 percent in the sample. Decomposing these gains shows that the majority
of them stems from increased flexibility due to more frequent pricing decisions (80%).
The remaining gains come from de-biasing recommendations (10%) as well as costless
information processing (10%).

We discuss the implications and possible other applications of our results on the strate-
gic interaction between algorithmic advice and human decision makers in Section 8.

2 Related Literature

We contribute to a thriving literature studying the interaction between algorithmic advice
and human decisions focusing on an economically relevant application: managerial pricing.
There exists a large theoretical literature on strategic advice in economic organizations (e.g.
Kamenica and Gentzkow, 2011; Sobel, 2013; Kamenica, 2019).9 In the canonical setup, an
informed agent communicates with an uninformed principal who has to make a decision
that affects both the agent and the principal’s payoffs. The agent and the principal have
only partially aligned interests because they disagree on the (ex-post) optimal action.
Instead, we focus on the principal’s attention as the source of disagreement. We believe
this is a relevant consideration in many organizations, whereby generalist managers rely
on information from several specialized experts. In the context of the interaction between
human decision makers and machine advisors, this is almost certainly guaranteed to occur,
as the adjustment cost of the machine is infinitesimal compared with that of humans. In the
spirit of Aghion and Tirole (1997), machines hold real authority because the information-
processing costs of the human decision maker vastly exceed those of the algorithm.

9 Sobel (2013) provides a survey of cheap talk communication and Kamenica (2019) gives an overview
of recent advances in Bayesian persuasion and information design, where the sender can commit in advance
to an information structure. Our model lies somewhere in-between, as the agent chooses a linear reporting
strategy but can secretly deviate from it.
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A similar tension arises in Kartik et al. (2007), which introduces a cheap talk model
in which a fraction of the audience is naive and takes the message at face value. In
equilibrium, senders exaggerate their claims so that the marginal incentive to misrepresent
their information to sophisticated receivers equals the cost they bear on the naive ones.
In our setting, all receivers are sophisticated but behave naively to economize adjustment
costs.

To the best of our knowledge, there exist only two papers that explicitly incorporate
inattentive decision makers in a model of advice. Agrawal et al. (2019) studies the impact
of artificial intelligence in human decision making. In their setting, a principal has to
choose whether to implement a new project with uncertain costs and benefits and has
access to truthful information provided by a machine (à la Aghion and Tirole, 1997).
In the presence of a large number of different projects, the human decision maker tends
to focus her attention on high-stake projects and fully delegates decision making to the
machine in those with low stakes. In our setting, we observe hotel managers choosing a
price which exactly matches the recommendations (akin to delegation, or rubber-stamping)
more often, precisely whenever the recommended price is closer to the current price. The
crucial insight is that also rubber-stamping requires, in contrast to fully automatic decision
making, at least some attention from the human principal.10

Bloedel and Segal (2020) study a persuasion model where the principal is subject to
rational inattention.11 Just like in our setting, inattention induces a moral hazard problem
that leads the advisor to distort her messages to motivate the principal to pay attention.
They show that full disclosure is optimal only if stakes are low, and instead pool medium
and high stakes. In the present study, we consider only linear reporting strategies and
leave the full-fledged analysis of the sender for future work. In any case, note that we do
not observe pooling or bunching in the data. On average, prices set manually by the hotel
manager increase continuously in the recommendation.

More broadly, we contribute to the empirical literature on strategic communication
in organizations.12 We are aware of two papers that use equilibrium analysis to iden-

10 In the algorithmic pricing industry, some companies offer an arrangement similar to the one suggested
in Agrawal et al. (2019); that is, the algorithm directly implements changes if they fall within a given
(target) price range, while human approval is needed if the suggested price falls outside the defined range.

11 There is a very large literature on rational inattention, with some important applications to organi-
zations; see Maćkowiak et al. (forthcoming, esp. Section 3.3).

12 There is a growing literature that empirically studies persuasion, from advertising to mass media,
see DellaVigna and Gentzkow (2010) for an excellent summary. Most of these papers focus on identifying
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tify strategic communication behavior. Backus et al. (2019) provide evidence of strategic
communication in bargaining in a large online marketplace in which impatient sellers use
round numbers in their posted price as a signaling device. Camara and Dupuis (2014)
study movie reviews through the lens of a reputational cheap-talk model, uncovering a sig-
nificant conservative bias. Our setting has several advantages. First, both the sender and
the receiver are professionals and face serious financial consequences from their actions.
Second, there is an obvious mapping between messages and recommended actions in our
data. Third, the action space is sufficiently rich to directly identify the posterior beliefs of
the receiver whenever she chooses a price that departs from the recommendation.

Finally, we also contribute to the literature on algorithmic bias and human decision
making. Most of these papers consider algorithmic predictions as potential substitutes of
human experts, assessing their potential advantages (accuracy, speed) and disadvantages
(algorithmic bias or negative perception of third-parties).13 An exception is Bundorf et al.
(2019) who study the impact of algorithmic recommendations on the purchasing decision
of health insurance plans among the elderly. As in our setup, they find human inertia to
be a major concern, but their algorithmic recommendation is assumed to be non-strategic.
Our study strongly suggests that assuming truthful recommendations as a counterfactual
scenario may be neither optimal nor realistic.

3 Data and Setting

The data for our analysis contains almost 6 million observations of hotel-room pricing
information, including algorithmic recommendations, actual prices set by human decision
makers and the corresponding universe of about 60 thousand bookings, all aggregated
at the daily level. This high-resolution, proprietary data is provided by an anonymous
corporate sponsor, who is based in Europe and provides revenue management services
to hundreds of independent hotels. The pricing and booking data come from 9 different
hotels, eight of which are located at resort destinations (hotels A to H) and one in an urban
area (the hotel I). Our data contains bookings and prices for each hotel over a period of
about 14 months. We observe for each room and each possible arrival day the flow of

the persuasion effect (or lift ratios). Instead, we attempt to uncover the economic incentives underlying
persuasion and explore counterfactual arrangements that may improve decision making.

13 Prominent examples in this stream of literature are Hoffman et al. (2018), Kleinberg et al. (2018),
Ribers and Ullrich (2019), Chan et al. (2022) and Currie and MacLeod (2017).

8



bookings, the recommended price by the revenue management service and the actual price
charged by the hotel. The actual price is an index price which determines, together with
possibly channel-specific discounts or surcharges, the final price of a room. The revenue
management system’s algorithm and the hotel manager rely on the actual price as the
main instrument for price optimization.

A key input for our analysis is the recommended price. The recommendation algorithm
is provided by the revenue management service and aims at maximizing hotel revenue
through optimized pricing. The hotels pay the revenue manager a fixed fee but the revenue
management firm heavily uses its success in increasing its customers’ revenues when it
markets its services to both new and existing customers. Hence, the firm is highly motivated
to increase its customers’ revenues. The algorithm uses all booking information and collects
additional demand-related information including, among others, local variation in weather
conditions, events, public holidays, hotel reputation, and competitor prices. In addition,
the revenue management service and the hotel manager exchange information about local
demand conditions regularly. The algorithm processes all available information and then
generates a price recommendation for each product, i.e. room-arrival-date combination.14

The hotel manager decides every day whether to use the revenue management system to
change prices. If she logs into the system, the dashboard displays for each room the current
recommended price and the actual price. She then decides which price to update and by
how much. Although the hotels in our data are representative of their respective regions,
with about 50 rooms each, they are relatively small by international standards. According
to private communication with the revenue management service, hotels are family-run and
thus managing prices takes only a small fraction of a hotel manager’s weekly workload.
One of the main selling points of the recommendation service is to simplify and reduce
this workload. Appendix B reproduces some of the evidence from Garcia et al. (2022) on
the opportunity cost of adjusting prices faced by the hotel managers and on how accepting
recommendations is less time-consuming than manually adjusting prices. Further evidence
and discussion of the details can be found in Garcia et al. (2022).15

14 Although we do not have access to the proprietary pricing algorithm, it is sufficient for our empirical
analysis that the recommended price of the algorithm contains some relevant information for the hotel
manager.

15 Similarly, Huang (2022) argues that Airbnb hosts face significant adjustment costs when adjusting
their prices. Although our family hotel managers are perhaps more professional and have access to slightly
better sources of price information, their task is also more complex because a hotel typically has multiple
different room types. Consequently, we think that the two settings are fairly comparable in terms of the
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Table 1: Price Updates and Recommendations

Main Sample Full Sample
Min Mean Max Min Mean Max

Update Rate 0.012 0.038 0.045 0.005 0.022 0.048
Update Rate | Rec No Change 0.001 0.006 0.009 0.004 0.016 0.025
Update Rate | Large Rec 0.018 0.143 0.658 0.006 0.046 0.676
Update Copy Rec 0.757 0.840 0.894 0.497 0.665 0.925
Update Copy Rec | Large Rec 0.869 0.950 1.000 0.431 0.860 0.931
Update Size 0.033 0.048 0.066 0.035 0.055 0.228
Update Size | Copy Rec 0.029 0.044 0.061 0.060 0.143 0.208

N 2,017,932 2,017,932 2,017,932 5,916,580 5,916,580 5,916,580

Notes: For all statistics we report the maximum, minimum and average value across hotels for the main
sample and full sample. Update Rate is the proportion of products in which we observe a price update on a
given day. We report in rows 1 to 3 the update rate unconditionally, conditional on the recommendation not
having changed (Rec No Change) and conditional on the recommendation having changed by at least 10%
(Large Rec). Update Copy Rec rate is the proportion of updates in which the updated price matches the
recommendation exactly. We report in rows 4 to 5 the Update Copy Rec unconditionally and conditional on
an absolute change in the recommendation of at least 10% (Large Rec). The Update Size is the average log
change in the realized price following an update. We report in rows 6 to 7 the Update Size unconditionally
and conditional on it matching the recommendation exactly (Copy Rec).

Our analysis relies on recommendation and price changes as the main variables; see
Table 1 for descriptive statistics. From the panel of daily prices, we construct the first
differences in the log price and define an update whenever this difference is non-zero. We
define the change in the recommended price as the change in the logarithm of the al-
gorithmic price recommendation since the last price update. We restrict the sample to
include only those observations whereby the initial price matched the recommended price.
This selection allows us to interpret differences between the final price and the recom-
mendation as differences in the current information processing and removes any feedback
effects from past prices into future price recommendations. The resulting sample includes
approximately 34% of observations and 58% of the price updates.

opportunity and complexity costs of adjusting prices.
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4 Stylized Facts: Recommendations and Prices

In this section, we present a number of novel empirical facts about the relation between
price recommendations by the algorithm and price updates by the human decision maker.
For this descriptive analysis observations of all hotels in our sample are pooled, but our
findings also hold qualitatively for each hotel. The following key observations inform the
choice of our model of price adjustments we present in Section 5.

Observation 1. Price updates are much less frequent than updates in price recommenda-
tions.

The first observation is that hotel managers adjust prices only infrequently, on aver-
age, once every 35 days; with considerable heterogeneity across hotels as shown in Table
1. Because algorithmic recommendations change much more frequently, once every seven
days, the difference in updating frequencies lead inevitably to a divergence between rec-
ommendations and actual prices over time. The inertia in updating prices is also reflected
in the distribution of price changes, shown in Figure 1, and exhibits little mass around
0. This pattern is a first indication that price-setting human managers face considerable
adjustment costs (Nakamura and Steinsson, 2008).

Observation 2. The frequency of a price update is positively related to the size of the
recommended price change.

Larger changes in the recommendation are associated with a higher likelihood of a
price update, as shown in Figure 2. For instance, if the recommended price has remained
unchanged since the last price update of the hotel manager, the probability of a price
update today is less than 1%. However, if the current recommendation is outside a ten-
percent band of the original recommendation, the probability of a price update exceeds
11%. This positive correlation is also confirmed by fixed-effects regressions in Table 2
which account for variation across different products of the same room type (e.g. standard
room), hotel, and arrival-month for a given date.

Observation 3. The probability that a price update copies the recommended price is in-
creasing in the size of the recommended price change.

Conditional on observing a price update, hotel managers are very likely to update
the price to exactly match the price recommendation. On average, around 85% of the
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Figure 1: Distribution of price updates (in log changes)

Notes: The black line plots the empirical cdf of price changes. The blue line depicts the empirical cdf

of manual price changes. The red line plots a normal cdf with the same standard deviation as the black

distribution.

price updates copy the currently recommended price perfectly; with some heterogeneity
across hotels. The probability of copying the recommended price is even higher if one
conditions on a large change in the recommended price as can be seen in Figure 3. In
particular, if the recommendation change exceeds 10%, the hotel manager chooses a price
that exactly matches the recommendation with 95% probability. Table 3 shows that this
positive correlation also remains in a fixed-effects regression that exploits only variation
across neighboring arrival dates for the same booking date. Importantly, the updating
pattern of hotel managers, summarized in Oberservation 2 and 3, is inconsistent with
standard models of advice in which the influence of the (algorithmic) advisor decreases
when making more extreme recommendations.16 Together with the other empirical facts,

16 This updating feature manifests itself in different shapes across different models. In cheap-talk
games, it results in less precise communication. The same comparative static holds in games that introduce
reputational, moral, or strategic concerns of lying (Kartik et al., 2007). Similarly, the principal rubber-
stamps decisions in Aghion and Tirole (1997) under contingent delegation that involve low stakes but
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Table 2: Price Update Probability

Update Probability
Rec Change 0.033∗∗∗ 0.105∗∗∗ 0.109∗∗∗ 0.108∗∗∗

(0.004) (0.003) (0.003) (0.003)

Rec Update 0.110∗∗∗ 0.123∗∗∗ 0.128∗∗∗ 0.128∗∗∗

(0.000) (0.000) (0.000) (0.000)

Hotel × Date FE No Yes No No
Room × Date FE No No Yes No
Room × Date × Month FE No No No Yes
N 2,017,929 2,017,929 2,017,929 2,017,929

Notes: Fixed-effects regressions; Dependent variable is the instantaneous probability
of a price update. Rec Change is the cumulative (log) change in the recommendation
since the last price update. Rec Update is a dummy which takes the value one if the
recommendation has changed since the last price update. Room is the room type,
Date is the booking date and Month refers to the arrival month. Significance levels:
∗∗∗ p < 0.001

we will account for the hotel manager’s distinctive updating behavior in our model in
Section 5.

Observation 4. There is only a partial pass-through of the change in the recommendation
into actual prices.

If the interests of the hotel manager and the recommendation algorithm were perfectly
aligned and the manager’s arrival of private information would be uncorrelated with the
direction of her private information, one would expect that, on average, a one Euro increase
(decrease) in the recommendation would bring about a one Euro increase (decrease) in the
price. The observed difference between the recommendation and the actual price could then
be attributed to the additional, idiosyncratic information held by the manager. Instead,
we observe as shown in Table 4 a much lower pass-through rate of 72.5%. In other words,
when hotel managers manually update their prices, the average price change only partially
reacts to the change in the recommended. Including various controls, such as room type-
arrival week fixed effects and a polynomial of the days before arrival, leads only to a modest

assumes control when stakes are high, thus reducing the influence of the agent.
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Figure 2: Update Rate

Notes: Each point represents a 0.001-sized bin. The horizontal axis captures the log change in the recom-

mendation. The vertical axis contains the average probability for that bin.

increase in the estimated coefficient (73%). It follows that hotel managers must believe
that the pricing algorithm exaggerates the optimal price change on average.

Interestingly, the unconditional relation between recommended prices and actual prices
is continuous and almost linear, see Figure 5. This fact is inconsistent with equilibria in
standard cheap-talk models, which display discontinuities (bunching) to ensure incentive
compatibility. It is also at odds with multi-dimensional models of communication in which
the size of the recommendation change signals the quality (precision) of the information
held by the advisor, thus inducing a higher likelihood of copying when the recommendation
is further from the current price. As the size of the recommendation change increases,
the marginal impact on the posterior belief of the manager should increase, regardless of
whether the manager copies it.
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Figure 3: Matching the Recommendation

Notes: Each point represents a 0.001-sized bin. The horizontal axis captures the log change in the recom-

mendation. The vertical axis represents the proportion of updates that exactly match the recommendation.

5 Model

We introduce in this section a stylized model of price adjustments with algorithmic recom-
mendations and costly information acquisition of the hotel manager that can rationalize the
empirical facts about the relationship between recommendations and pricing decisions. To
ease the mapping of the model to the data, we normalize all variables to refer to percentage
changes since the last update.

5.1 Model Description

We begin by introducing the main elements of the model. A hotel managers intends to
maximize profits, defined as Π = Π0 − η(p − p∗)2, where p is the current price, p∗ is
the optimal price given demand and cost conditions, and η > 0 is a parameter.17 The
optimal price is determined by p∗ = x + y + z. Random variables x, y, and z are drawn
independently from a symmetric distribution with zero mean and variance σ2

i , for i = x, y, z.
In our empirical specification, x, y, and z are assumed to be normally distributed, but our

17 This profit function can be micro-founded assuming a log-linear demand and semi-elasticity η.
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Table 3: Price Update Copy Rates

Copying Probability
Rec Change 0.133∗∗∗ 0.141∗∗∗ 0.151∗∗∗ 0.151∗∗∗

(0.012) (0.011) (0.011) (0.011)

Hotel × Date FE No Yes No No
Room × Date FE No No Yes No
Room × Date × Month FE No No No Yes
N 76,090 76,090 76,090 76,090

Notes: Fixed-effects regressions; the dependent variable is the probability of
copying the recommended price. Data is restricted to neighboring arrival dates
for a given booking day. Rec Change is the cumulative (log) change in the
recommendation since the last update. Room is the room type, Date is the
booking date and Month refers to the arrival month. Significance levels: ∗∗∗

p < 0.001

theoretical results do not depend on this feature.
Figure 4 illustrates the hotel manager’s sequential information-acquisition process and

pricing decision. Once the manager accesses the pricing interface, she learns the current
price, normalized to p = 0, the recommendation r and the realized costs c1 and c2 for learn-
ing information y and z. Information x is the algorithm’s private information regarding
the optimal price but is not known to the hotel manager. The manager only learns about
x by observing the algorithm’s price recommendation r(x).

The manager then decides whether to allocate attention to adjusting prices. If she does
not, she maintains the current price, p = 0, which incurs no cost. In case she does, she
acquires information y for the simple adjustment cost c1. We think of y as information
which is directly available from the hotel manager’s knowledge of events about a particular
product, e.g. the hotel’s chef called in sick. Given the hotel manager decides to learn y,
she can choose to (i) update the price by copying the recommendation resulting in p = r,
or (ii) to acquire additional information z for the complex adjustment cost c2. Only in
the case of learning z for cost c2, the manager can update the price freely, such that,
p = E(p∗ | r, y, z) = E(x | r) + y + z.

For parsimony, we assume that costs c1 and c2 are determined by a common cost shock
c, drawn from a distribution F (c). In particular, we assume that ci = bic, with bi > 0.
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Table 4: Pass-Through Rates of Recommendation

Change in actual price
All Manually Updated

Rec Change 0.974∗∗∗ 0.725∗∗∗ 0.733∗∗∗ 0.738∗∗∗

(0.002) (0.005) (0.006) (0.006)

Days ahead Polynomial No No Yes Yes
Room × Month FE No No No Yes
N 76,090 76,090 76,090 76,090

Notes: Linear regression model. The dependent variable is the cumulative
change in the actual price since the last price update. Recommendation
is the cumulative (log) change in the recommendation since the last price
update. All regressions include all updates. Coefficients for Manually
Updated correspond to the interaction term of recommendation × manual.
Room is the room type and Month refers to the arrival month. Significance
levels: ∗∗∗ p < 0.001

Although we are agnostic about exact psychological nature of the two adjustment costs,
simple and complex, the cost structure lends itself to two different interpretations. Pa-
rameter c can be understood as the opportunity cost of a unit of time for the manager
and bi as the time required to learn the information. Alternatively, c can be thought of as
cognitive costs with bi measuring the complexity of the task.18 Intuitively, it seems easier
to decide whether the recommendation is satisfactory than to fully determine the optimal
price manually. This structure is reinforced by the pricing interface, which allows accepting
recommendations with a single click, while freely adjusting prices requires the hotel man-
ager to access an additional screen and enter each price manually. Nevertheless, neither
our theoretical nor empirical model imposes any assumption on which cost is bigger.19

18 This interpretation is consistent with decision models of limited attention (e.g. Dean et al., 2017),
which show that status quo bias is more likely in larger choice sets (in our case if the manager can choose
between copying the recommendation and manually setting any price p).

19 Another interpretation for these adjustment costs is that they may originate from the belief that
consumers may react negatively to price variation, see Rotemberg (2005). If this was indeed the origin of
adjustment costs, they should be directly incorporated into profits and the sluggishness of price adjustments
may be profit-maximizing. Consumers, however, do not know whether price changes are the result of a
change in the recommendation (c1) or a manual adjustment (c2). Thus, if the estimated cost component
of the manual price adjustment (b2) is significantly larger than that of copying (b1), it is reasonable to
conclude that the bulk of the costs stems from managerial inattention.
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Figure 4: Information acquisition and pricing of hotel manager

A key ingredient of the model is the algorithmic price recommendation. We assume that
the algorithm’s designer cares about the hotel’s profits, Π = Π0 − η(p− p∗)2. The crucial
difference between the algorithm’s designer and the hotel manager is that the algorithm
does not face any adjustment costs because recommendations are fully automatized. This
difference creates a strategic conflict of interest between the designer and the manager:
the designer would like the hotel manager to update more frequently than what is optimal
to the manager. The hotel manager’s update frequency can be influenced by strategically
choosing recommendations r(x). We analyze the perfect Bayesian equilibria of this game,
restricting the algorithm’s message space to linear functions of its posterior belief about
the optimal price, r = 1

λ
x with the bias factor of the recommendation λ > 0.20

Although the hotel manager does not directly observe λ, in any perfect Bayesian equi-
librium she will form correct expectations about it. Notice that a further exaggeration
from any given λ has two effects. First, given the hotel manager’s (equilibrium) beliefs,
she will incorrectly think that the optimal price has changed more than it really has, which
induces a higher probability of the hotel manager changing the price manually. For small
deviations this benefits the algorithmic designer. However, the hotel manager may also
copy the recommended price. The larger is the total exaggeration, the larger is the hotel
manager’s pricing mistake in this case. In equilibrium, λ exactly equates this trade-off
between more frequent updates and larger mistakes when copying recommendations at the
margin.

20 This restriction on the algorithm’s strategy space makes both the theoretical model and the empirical
model more tractable. Furthermore, we illustrate in Appendix D that the loss from restricting oneself to
a linear reporting strategy is negligible for the algorithm’s designer.
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5.2 Analysis

We will next describe a set of theoretical results from the model which will then be matched
with the stylized facts from the data. All proofs are relegated to Appendix A. We begin
our analysis with the problem of the hotel manager. Upon observing (r, c), she decides
whether to initiate the information-acquisition process or maintain the current price. In
the latter case, she expects a loss of (x̃(r))2 + σ2

y + σ2
z , where x̃(r) is her belief about x

given the observed recommendation r. In case she decides to continue her information
acquisition, she expects a loss l(r, c).

To characterize the expected loss l(r, c), we need to calculate the hotel manager’s payoff
once she acquires information y. In this case, she will choose to copy the recommendation
as along as (r− x̃(r)−y)2+σ2

z < c2. Let Y0(r, c) denote the set of values of y for which this
inequality holds. Notice also that Y0(r, c) is an interval centered at r− x̃(r). The expected
loss is then,

l(r, c) = c1 +

∫
y∈Y0(r,c)

(
(r − x̃(r)− y)2 + σ2

z

)
dΨy(y) +

∫
y/∈Y0(r,c)

c2dΨy(y),

where Ψy is the cumulative distribution function of a mean-zero normal distribution with
variance σ2

y . The first lemma shows that larger costs and changes in the recommendation
increase the hotel manager’s expected loss when continuing the information acquisition
past the status quo.

Lemma 1. The continuation loss function l(r, c) satisfies l(r, c) = l(−r, c), increasing in
c and non-decreasing in |r|. Furthermore,

0 ≤ lr(r, c) ≤ 2r(1− λ̃)2
∫
y∈Y0(r,c)

dΨy(y) for all r > 0.

If σy > 0 and λ̃ < 1, the loss function is strictly increasing in |r| and both inequalities are
strict.

Because l(r, c) is continuous and increasing in c, for every r there exists cost realization
c(r) such that a hotel manager continues to acquire information for costs lower than c(r)

and prefers to keep the current price for costs larger than c(r). Notice that c(r) is an even
function. Conversely, for a given cost, the set of recommendations such that an update
occurs can be written as the union of two intervals (−∞,−r̄(c)) and (r̄(c),∞), for some
function r̄(c). The following lemma provides a condition such that that both r̄(c) and c(r)

are strictly increasing functions.
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Lemma 2. Suppose that 1
2
≤ λ̃ < 1 and σy > 0. Then r̄(c) is strictly increasing.

The lemma says that higher cost realizations require larger deviations in the recom-
mendation before the hotel manager considers re-evaluating the current price.

Notice then that the probability of choosing a price that exactly matches the recommen-
dation depends on the combination of two forces. First, the mass at Y0(r, c) is decreasing
in |r|. This shows that, conditional on an update of the price, the probability of depart-
ing from the recommendation is higher at lower values of |r|, contradicting the empirical
observations described above. Importantly, however, the probability of a price update is
increasing in |r|. This implies that larger changes in the recommendation are associated
with a higher chance that the hotel manager considers copying the recommendation in
the first place. The resulting relationship between the size of the recommendation change
and the probability of copying depends on the relative strength of these two forces. Let
µ(r) denote the likelihood of matching the recommendation conditional on an update. The
following proposition characterizes these effects formally.

Proposition 1. If b2σ2
y < b1σ

2
z , then µ(r) = 0 for all r. Else, µ(0) > 0, limr→0 µ(r) = 0,

and there exists some r∗ > 0 such that µr(r) ≥ 0 for all r ∈ (0, r∗). In addition, µ(r) is
(weakly) increasing if λ̃ = 1 and (weakly) decreasing if F (c(0)) = 1.

The two special cases highlighted in the proposition are instructive. First, if λ = 1,
higher values of r induce hotel managers with higher opportunity costs of time to put
attention to the price. This translates into a higher likelihood of copying the recommen-
dation since there is no additional selection. In other words, a model with unbiased advice
the hotel manager will be more likely to copy the recommendation, the bigger is the change
in the recommendation. Second, if the hotel manager updates prices in every period (i.e.
if F (c(0)) = 1), there is no inertia and higher r makes copying the recommendation less
appealing because it is associated with a higher loss. This type of comparative static holds
in models of strategic delegation where the hotel manager, the principal, is more likely to
rubber-stamp low recommendations from the agent (Aghion and Tirole, 1997).

We now focus on the distribution of prices conditional on a departure from the recom-
mendation. The expectation of such a price can be written as

E(p | r, y /∈ Y0(r, c)) = x̃(r) + E(y | r, y /∈ Y0(r, c)). (1)

Since, Y0(r, c) is centered at r − x̃(r), E(y | r, y /∈ Y0(r, c)) depends on λ̃. If λ̃ = 1, then
r − x̃ = 0, Y0(r, c) is centered at the origin and hence E(p | r, y /∈ Y0(r, c)) = x̃(r) = r.
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Instead, if λ̃ ∈ (0.5, 1), then the conditional covariance of (x̃, y) given that y /∈ Y0(r, c) is
negative, resulting in a dampening of the pass-through rate below λ̃.

Proposition 2. The expectated price conditional on the price departing from the recom-
mendation satisfies

E(p | r, y /∈ Y0(r, c)) ≤ λ̃r, for all r > 0

and
E(p | r, y /∈ Y0(r, c)) ≥ λ̃r, for all r < 0

with strict inequalities whenever σ2
y > 0 and 0.5 < λ̃ < 1.

The proposition implies that there is negative selection in unobservables and we cannot
directly identify λ̃ from the pass-through rate.

Corollary 1. Conditional on the hotel manager not copying the recommendation but up-
dating the price, her private information is negatively correlated with the recommendation,
i.e.

Cov(y, r | y /∈ Y0(r, c)) ≤ 0.

We finally address the problem of the algorithm. The algorithm chooses λ to maximize
expected profits but this ‘bias factor’ is not directly observed by the hotel manager. An
equilibrium is a triple (λ, c(r), Y0(c, r)) such that λ maximizes profits given (c(r), Y0(c, r))

and (c(r), Y0(c, r)) are optimal given x̃ = λr. In general, a marginal increase in λ brings
about three changes in the distribution of prices. First, it leads to a reduction in the vari-
ance in the distribution of recommendations, which necessarily induces the hotel manager
to change prices less frequently. Second, it has an ambiguous impact on the probability
that the hotel manager chooses a price that exactly matches the recommendation, because
the function µ(r) is non-monotone. Third, it reduces the distance between the recommen-
dation and the optimal price which translates directly into increased profits.

6 Estimation and Results

For the empirical implementation of the model presented in Section 5, we assume that the
information-acquisition cost c of the hotel manager follows a lognormal distribution with
parameters (0, σc). We have then 6 structural parameters: three of them govern the infor-
mational environment (σx, σy, σz) and three that correspond to the distribution of shocks
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Table 5: Targets for Pooled Data

Moment Data Model√
V ar(p|Update) 0.074 0.074√
V ar(r|Update) 0.068 0.067√
V ar(p− r|Update) 0.035 0.035√
E(p · r|Update) 0.068 0.066

Pr(Copy|Update) 0.840 0.842

Pr(Copy|Update,Large Rec) 0.947 0.951

Pr(Update) 0.038 0.040

Notes: The first two rows report the standard devia-
tion of the price (p) and the recommendation (r), both
conditional on an Update. The third row reports the
standard deviation of the difference between the price
and the recommendation and the fourth reports the
square root of the covariance (both variables have zero
mean), all conditional on an update. Rows five and six
report the copy rate, both unconditionally and condi-
tional on the recommendation change exceeding 10%

(Large Rec). The last row reports the unconditional
update rate.

(σc, b1, b2). Additionally, we need to infer the reduced-form parameter λ̃ which measures
the equilibrium bias in the algorithmic recommendation. To estimate these parameters,
we use a method of simulated moments, minimum distance estimator with seven target
moments that additionally imposes the restriction that there is no (secret) profitable devi-
ation from the recommendation for the algorithm. Four of those targets, see row 1 to 4 in
Table 5, depend directly on the joint distribution of recommendation and price updates.
In addition, we match the likelihood of the price matching the recommendation, both un-
conditionally and conditionally on the recommendation change exceeding 10% as well as
the average update rate.

Our estimation algorithm is implemented as follows. We first fix a level of the recom-
mendation bias λ̃ and simulate the model to find structural parameter values that minimize
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the distance between the simulated moments and their observed targets. We then check
whether a local deviation from λ̃ increases the revenue management company’s payoff. If
such a profitable deviation λ̃′ exists, we pick it as the new starting value and re-estimate
the structural parameters. We repeat this process until we find a λ̃ and a set of distance
minimizing parameters such that local deviations are not beneficial. We also try multiple
starting values. In the case the algorithm finds two different equilibria with different pa-
rameter configurations, we choose the one with the smallest distance between simulated
moments and target moments. The model is estimated both for the pooled data and for
each hotel individually.

To discuss identification, it is instructive to consider a special case of the model in
which σy = 0.21 Because there is no selection into updating based on payoff-relevant
information, the difference between the price and the recommendation directly determines
the standard deviation of z, the covariance between r and p directly pins down λ, and the
standard deviation of r determines the standard deviation of x for a given λ. Likewise, the
ratio of the copy rate for large changes in the recommendation over the average copy rate
determines the standard deviation of the cost distribution. The two remaining parameters
can be directly obtained by matching the update rate and the average copy rate. While
things are more complicated when σy 6= 0, each of these parameters is closely linked to
the corresponding moment, with the standard deviation of price changes now helping to
determine the non-zero σy.

We first run the routine on the pooled dataset. Results are summarized in the first row
of Table 6, including bootstrapped standard errors. We find that the private information
of hotel managers accounts for less than 20% in the total variance of the optimal price.
This means that managers’ private information is at least five times as valuable as that
of the algorithm. Unfortunately, accessing this information requires substantial effort by
hotel managers. We estimate a mean adjustment cost for c1 of approximately 0.2, with
a standard deviation of 1.10.22 The cost of acquiring further information is estimated
to be an order of magnitude larger, with mean 3.06 and standard deviation of 4.24. As
a consequence, there is considerable dispersion between actual prices and counterfactual
optimal prices. This disparity also implies that adjustment costs do indeed reflect costly

21 A proof of identification for this case, as well as a discussion of why this assumption is unlikely to
hold, is provided in Appendix C.

22 Given our parametrization, the mean of the distribution is exp(ln b1 + σ2
c/2).
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Figure 5: Model Fit: Recommendations and Prices
Notes: Each point represents a price update that does not match the recommendation. The horizontal
axis is the log change in the recommendation and vertical axis is the log change in the price. The blue line
shows a linear fit of the data with a 95% confidence interval, the purple line shows a linear fit to simulated
data with our estimated parameters and the dashed red line plots the 45-degree line.

managerial attention rather than fear of consumer backlash (Rotemberg, 2005).
Our estimates also suggest a significant bias in recommendations, with λ = 0.83. Be-

cause most price updates match the recommendation exactly, this bias implies biased (sub-
optimal) prices. Nevertheless, the welfare impact of the recommendation bias is amelio-
rated by the fact that the manager selects into the decision to match the recommendation,
see Proposition 2.

Table 5 shows that the model is able to fit the target moments well. It also does a
reasonably good job at replicating the empirical facts regarding the relationship betweeen
price updates and recommendations described in Section 4. For instance, it predicts an
update rate of about 15% when the recommendation exceeds 5%, which is slightly higher,
but reasonably close to the data. It also generates a relation between recommendations
and prices, conditional on observing a price update, that it is consistent with the data (see
Figure 5).

We further evaluate the fit of the model by performing an alternative estimation pro-
cedure in which we take λ as a primitive of the data and minimize the same distance
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estimator with seven targets and seven moments. The estimated parameters are similar
and, in particular, the estimated λ across different hotels, while somewhat larger, is highly
correlated with the one obtained from the baseline estimation (see Figure 6).

On average, we find that the current regime does a relatively poor job at exploiting the
available pricing information and is able to reduce losses from mispricing by less than 4%.
This is, however, not very surprising because managers only rarely update prices and, in
case they do, they often copy the recommendation.

We then run our estimation routine separately for each hotel. Results are summarized
for hotel A to H in Table 6. Most hotels are well-represented by the pooled data. The
variance of x accounts for around 20-30% of the total variance for all hotels. There is,
however, considerable heterogeneity in the precision of the freely available information
(measured by σy) relative to the total information available to the manager (σy + σz). In
order to perform counterfactuals in the next section, we compute the expected loss in profit
for each hotel with the current institutional setting, relative to the profit loss they would
experience if they never updated their prices. This metric is independent of parameter η

and takes into consideration that some hotels experience a more volatile environment than
others. Formally, this loss in profit is given by

wi =
1

σ2
x + σ2

y + σ2
z

∫ (∫ c
(
x
λ

)
0

l
(x
λ
, c
)
dF (c) +

∫ ∞

c
(
x
λ

)(x2 + σ2
y + σ2

z)

)
dΨ(x). (2)

Notice that lower values correspond to more efficient outcomes, with wi = 0 being the
first-best outcome.

7 Counterfactual Delegation

In light of the estimation results presented in Section 6 it appears that a majority of hotels
would benefit from fully delegating decision making to the algorithm. Delegation of pricing
decisions to a fully automated algorithmic system has a number of advantages. It com-
pletely eliminates information processing and menu costs of hotel managers and thereby
also removes delay in decision making. It should also lead to truthful recommendations
because we identified the inertia of the hotel manager as a source of conflict with the algo-
rithm in our application. A potential downside of the full delegation is that the algorithm
does not have access to the realizations of signals y and z, which are even more valuable
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than signal x according to our data. The key insight, however, is that the manager’s inertia
reveals that these informative signals come at significant costs, which greatly reduces their
value for decision making.

Our parameter estimates directly allows us to compute the residual losses under del-
egation. We consider two extreme cases. Assuming that the algorithm has no incentives
under full delegation to distort her recommendations, and consequently her decisions, we
expect p = x and thus

wi =
σ2
y + σ2

z

σ2
x + σ2

y + σ2
z

.

Alternatively, we assume that the algorithm does not fully re-optimize and but continues
to misrepresent her information. In this worst-case scenario, we have p = x/λ and

wi =
(1− λ)2

λ2

σ2
x

σ2
x + σ2

y + σ2
z

.

Table 7 summarizes our counterfactual estimation results. For all hotels, we estimate
that the status quo can mitigate only 1 − 4% of the profit loss from complete inaction
in a volatile environment. These gains are even lower if the adjustment and information
acquisition costs a manager incurs for achieving these gains are taken into account. This
finding is in line with our observations that managers update prices only rarely, with delay,
and are very likely to just copy the recommendation.

Overall, delegating pricing to the algorithm is likely to improve outcomes significantly.
We estimate that a hotel which fully delegates to an unbiased algorithm would see a reduc-
tion of 8 to 50 percentage points in the losses accrued from mispricing as shown in Table
7. Roughly 80% of this improvement comes from more frequent price adjustments, while
10% depends on the algorithm reporting truthfully. The potential gains from delegation
are however not the same for each hotel. For hotels A, B and I, for example, delegation
would leave significant surplus on the table because we estimate that most of the variation
in optimal pricing can only be discovered by the local hotel manager.

8 Conclusion

Algorithmic recommendations are used extensively to support decision making in organi-
zations. In this paper, we provide a framework to understand the strategic interactions
between automatic recommendations and human decisions. The crucial friction in our

26



model originates in managerial inattention, leading to biased communication and deci-
sions. Applying our model of information processing to a dataset containing millions of
hotel-room price recommendations, we demonstrate that full delegation to the algorithm is
likely to be welfare-improving, even if it forgoes the potential benefits of richer information.

Our findings point to a novel element in the intricate relationship between algorithmic
advisors and human decision makers. Previous work has studied the impact of hetero-
geneous preferences and skills, as well as potential bias in the processing of algorithmic
advice by humans. We show that humans may become a bottleneck in the decision making
process as they struggle to keep up with the arrival of frequently changing information,
thereby severely limiting the benefits of advice. This insight is likely relevant in a variety
of other economic settings and especially important in environments in which the decision
maker has a status quo option that does not require active participation. Examples of such
settings include recommendations systems for parole decision (Berk, 2017), monitoring ad-
herence to government regulation (Glaeser et al., 2021) and restocking inventory (Shang
et al., 2008).

As Ludwig and Mullainathan (2021) argue, even best-practice algorithmic design has
been unable to efficiently incorporate both preferences and information of human decision
makers into recommendation algorithms (also known as the override problem). Our work
demonstrates that the problem can be further complicated by strategic considerations.
In our setting, human actors who perceive recommendations as distorted, strategically
counterbalance those distortions. Strategically responding to algorithmic recommendations
can be especially important for human decision makers in judicial decisions (Kleinberg et
al., 2018) or hiring decisions (Hoffman et al., 2018) where the designer of the algorithm
would like to correct for underlying human biases, while the biased decision maker may
have incentives to strategically ‘correct’ the recommendation given that she understands
that the recommendation is attempting to debias her decisions.

There are many potential avenues for future research. An obvious extension of the
present paper would involve an explicit, fully dynamic model of price adjustment. The
challenge here is to handle strategic communication when managers may be tempted to
wait for further information before acting. Another question that we have not attempted
to answer is why recommendation systems are not substituted with delegation to the
algorithmic advisor, even when this would potentially benefit both economic agents. We
believe the answer has to do with the perception that algorithmic systems are biased, as in
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our case, and that they are likely to make costly mistakes. Dietvorst et al. (2015) argues
that human decision makers have a low tolerance for machine errors, and would rather rely
on less precise human advice. Relatedly, in a recommendation system the responsibility for
mistakes typically rests with the final decision maker while the designer of the algorithm
largely escapes liability for poor advice. This is likely to be a significant reason for using
recommendation systems especially in revenue management and other economic consulting
where disentangling the effect of poor pricing advice from poor general management can be
difficult. Finally, it would be interesting to study strategic communication in environments
in which the decision problem is better described as a prediction problem and the researcher
has access to the ex-post optimal choice. This would allow to directly measure the degree
of bias in communication, rather than relying on the equilibrium response of the decision
maker, thereby enabling model validation.
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Table 6: Parameter Estimates of Model

Hotel σx σy σz σc b1 b2

Pooled 0.038 0.053 0.019 2.28 0.090 0.897

(0.001) (0.001) (0.003) (0.03) (0.015) (0.029)

A 0.038 0.100 0.007 1.34 0.038 0.354

(0.001) (0.004) (0.009) (0.03) (0.010) (0.021)

B 0.023 0.056 0.024 2.06 0.032 0.644

(0.001) (0.002) (0.008) (0.05) (0.011) (0.028)

C 0.026 0.034 0.026 2.25 0.039 0.383

(0.001) (0.001) (0.001) (0.02) (0.006) (0.017)

D 0.017 0.037 0.014 2.64 0.035 0.676

(0.001) (0.001) (0.003) (0.06) (0.012) (0.027)

E 0.028 0.032 0.040 1.79 0.016 0.273

(0.001) (0.001) (0.002) (0.02) (0.002) (0.009)

F 0.019 0.036 0.001 1.84 0.027 0.397

(0.001) (0.001) (0.005) (0.04) (0.007) (0.025)

G 0.032 0.026 0.035 2.54 0.078 0.809

(0.001) (0.001) (0.002) (0.03) (0.008) (0.025)

H 0.035 0.067 0.063 1.47 0.007 0.516

(0.002) (0.004) (0.009) (0.03) (0.005) (0.015)

I 0.034 0.083 0.08 1.54 0.034 0.644

(0.002) (0.003) (0.005) (0.03) (0.011) (0.024)

Notes: Estimated parameter values for each hotel, A to I, and pooled
across hotels. Bootstrapped standard errors in parenthesis.
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Figure 6: Bias Parameter Validation

Notes: Each point represents a hotel. The x-axis gives the bias parameter identified using the optimality

condition for the algorithm and the y-axis gives the bias parameter using only information of the hotel

manager.
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Table 7: Counterfactuals

Hotel Benchmark Profit Loss Delegation Biased

A 0.991 0.973 0.874 0.875

B 0.990 0.977 0.875 0. 880

C 0.984 0.967 0.727 0.734

D 0.984 0.970 0.835 0.851

E 0.986 0.970 0.761 0.779

F 0.996 0.990 0.774 0.800

G 0.984 0.968 0.643 0.673

H 0.990 0.976 0.872 0.891

I 0.994 0.983 0.920 0.921

Notes: The value in the first column (Benchmark) corresponds
to the welfare loss in the status quo relative to the welfare
loss under complete inaction. The value in the second column
(Profit Loss) is the implied accounting profit loss, disregard-
ing adjustment costs, relative to inaction. The third column
(Delegation) represents the welfare loss in the counterfactual
exercise of full delegation to the algorithm, again relative to
inaction. The last column (Biased) describes the expected wel-
fare loss from a counterfactual where the decision is delegated
to the algorithm which continues to produce biased recommen-
dations relative to complete inaction.
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A Proofs

Proof of Lemma 1. We first establish that 0 ≤ lr(r, c) ≤ 2(1 − λ̃)2
∫
y∈Y0(r,c)

dΨy(y)r, for
r > 0 (and vice versa). Since the integrand of the first element is exactly equal to c2 at
the boundaries, only the derivative of the integrand matters. Hence,

lr(r, c) = 2(1− λ̃)

∫
y∈Y0(r,c)

(r − x̃(r)− y)dΨy(y). (3)

Consider any r > 0. Since x̃ = λ̃r and Y0(r, c) is an interval centered at r − x̃(r), then
the symmetry of the normal distribution about zero implies that 0 ≤

∫
y∈Y0(r,c)

ydΨy(y) ≤
(1 − λ̃)r. The inequalities are strict if σy > 0 and λ̃ < 1. Substituting the end points of
this interval into (3) yields both, that l is increasing in r for r > 0, and the first claimed
inequality in the lemma. When r < 0, an analogous argument shows that (1 − λ̃)r ≤∫
y∈Y0(r,c)

ydΨy(y) ≤ 0 and hence the inequalities are reversed, which proves the second
inequality in the lemma and that l is increasing in |r|.

Taking a derivative with respect to c we have simply lc(r, c) = b2
∫
y/∈Y0(r,c)

dΨy(y) >

0.

Proof of Lemma 2. The set of values of r and c for which the hotel manager is indifferent
between keeping the old price and gathering gathering additional information is implicitly
defined by the identity

(λ̃r)2 + σ2
y + σ2

z ≡ l(r, c)

An application of the implicit function theorem to the positive root of this identity then
implies that

r̄c(c) =
l2(r̄, c)

2λ̃2r̄ − l1(r̄, c)
,
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This is positive, since the numerator is positive and, when r̄ > 0, the denominator satisfies

2λ̃2r̄ − lr(r̄, c) > 2λ̃2r̄ − 2r̄(1− λ̃)2
∫
y∈Y0(r̄,c)

dΨy(y)

≥ 2λ̃2r̄ − 2(1− λ̃)2r̄ ≥ 0,

where the first inequality follows from the previous lemma, the last from the assumption
that λ̃ ≥ 1

2
.

Proof of Proposition 1. Notice first that

(r − x̃(r)− y)2 + σ2
z < b2c

⇔ x− r −
√

b2c− σ2
z < y < x− r +

√
b2c− σ2

z .

Denote d(c) :=
√

min{b2c− σ2
z , 0}. Then we can write

µ(r) =

∫ c(r)

0
(Ψy(r − x̃(r) + d(c))−Ψy(r − x̃− d(c))) dF (c)

F (c(r))
.

If b2σ
2
y < b1σ

2
z , then b2c(0) < σ2

z , d(c(0)) = 0, and, therefore, the hotel manager will
acquire signal z even if r = 0 and y = 0. Hence, µ(r) = 0 for all r. Instead if b2σ2

y > b1σ
2
z ,

d(c(0)) > 0, and hence µ(0) > 0. In addition, as r → ∞, the integrand vanishes, while the
denominator converges to 1. Hence, limr→∞ µ(r) = 0. Finally, to see that µ(r) is increasing
in a neighborhood of r = 0 observe that

µr(r) =
1

F (c(r))

(
F ′(c(r))c′(r)η(r − x̃, d(c(r))) + 2

∫ c(r)

0

η1(r − x̃, d(c))(1− λ̃)dF (c)

)

− 1

F (c(r))2
F ′(c(r))c′(r)

∫ c(r)

0

η(r − x̃, d(c(r)))dF (c)

=
F ′(c(r))c′(r)

F (c(r))2

∫ c(r)

0

(
η(r − x̃, d(c(r)))− η(r − x̃, d(c))

)
dF (c)

+
2(1− λ̃)

F (c(r))

∫ c(r)

0

η1(r − x̃, d(c))dF (c),

with η(a, b) = Ψy(a + b) − Ψy(a − b) is decreasing in a and increasing in b. Hence, the
first term in the last step are weakly positive and the second is weakly negative. Since
c′(0) = 0, both terms are zero at r = 0 and the sign of µ(r) depends on the second
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derivative. Disregarding terms that vanish at r = 0, we have

µrr(0) =
F ′(c(0))c′′(0)

F (c(0))2

∫ c(0)

0

(
η(0, d(c(0)))− η(0, d(c))

)
dF (c)

=
F ′(c(0))c′′(0)

F (c(0))2

∫ c(0)

σ2
z

b2

(
η(0, d(c(0)))− η(0, d(c))

)
dF (c) > 0,

by the assumption above. For λ = 1, the second term is zero and the first term is weakly
positive so µ(r) is weakly increasing. If F (c(0)) = 1, the first term is always zero and hence
µ(r) is weakly decreasing.

Proof of Proposition 2. Assume first that r > 0. By (1), it is sufficient to establish that
x̃(r) + E(y | r, y /∈ Y0(r, c)) ≤ x̃, i.e. that E(y | r, y /∈ Y0(r, c)) ≤ 0. Now,

E(y | r, y /∈ Y0(r, c)) =
1

A

∫ c(r)

0

∫
y/∈Y0(c,r)

ydΨy(y)dF (c)

=
1

A

∫ c(r)

0

(∫ r−x̃(r)−d(c)

−∞
ydΨy(y) +

∫ ∞

r−x̃(r)+d(c)

ydΨy(y)

)
dF (c), (4)

where
A =

∫ c(r)

0

∫
y/∈Y0(c,r)

dΨy(y)dF (c) > 0.

Notice then that,∫ r−x̃(r)−d(c)

−∞
ydΨy(y) +

∫ ∞

r−x̃(r)+d(c)

ydΨy(y)

=

∫ −(r−x̃(r))−d(c)

−∞
ydΨy(y) +

∫ (r−x̃(r))−d(c)

−(r−x̃(r))−d(c)

rydΨy(y) +

∫ ∞

r−x̃(r)+d(c)

ydΨy(y)

=

∫ r−x̃(r)−d(c)

−(r−x̃(r))−d(c)

ydΨy(y) ≤ 0 (5)

where the inequality follows, since r − x̃(r) = ( 1
λ
− 1)r > 0 by assumption, d(c) > 0,

and hence the interval of integration is centered on a negative number while the normal
distribution is symmetric about zero. Furthermore, the inequality is strict whenever σ2

y > 0

and 0.5 < λ̃ < 1. Consequently, the whole integral in (4) must be negative. When r < 0

the inequality in (5) is simply reversed proving the proposition.

Proof of Corollary 1. It is enough to show that

1

A′

∫ ∞

−∞

∫ c(r)

0

∫
y/∈Y0(c,r)

r(x)ydΨy(y)dF (c)dΨx(x) ≤ 0, (6)
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where
A′ =

∫ ∞

−∞

∫ c(r)

0

∫
y/∈Y0(c,r)

dΨy(y)dF (c)dΨx(x) > 0

and Ψx is the cumulative distribution function of a zero-mean standard normal distribution
with variance equal to σ2

x. It can be verified that multiplying the integrand in the proof of
the previous proposition by r does not change inequality (5) when r is positive and reverses
it when r is negative. Consequently, the inner double integral in (6) is always less than
zero proving the corollary.

Lemma 3. r(x) is weakly increasing.

Proof. Let π(r, x) denote the interim expected profits of the algorithm given a signal x and
a report r. Recall that

π(r, x) =

∫
c(r)

(∫
y∈Y0(r,c)

(
(x+ y − r)2 + σ2

z

)
dΨy(y) +

∫
y/∈Y0(r,c)

(x̃(r)− x)2dΨy(y)

)
dG(c)

+(1−G(c(r)))x2

Rewritting we have

π(r, x) =

∫
c(r)

(∫
y∈Y0

(
(y − r)2 + σ2

z + 2(y − r)x
)
dΨy(y) +

∫
y/∈Y0

(
x̃(r)2 − 2xx̃(r)

)
dΨy(y)

)
dG(c)

+x2

= A(r)−B(r)x+ x2,

for some non-negative functions A(r) and B(r). It follows that for every pair r, r′, the set
X(r) := {x ≥ 0 : π(r, x) ≥ π(r′, x)} is convex (and analogous for x < 0). This rules out
the existence of a triple x0 < x1 < x2 with r(x0) = r(x2) 6= r(x1). Hence, we can assume
that for any x belonging to a decreasing segment of r(x), (x0, x1), x̃(r(x0)) = x. Hence,

B(r) =

∫
c(r)

(∫
y∈Y0

2(r − y)dΨy(y) +

∫
y/∈Y0

2r−1(x)dΨy(y)

)
> 0

B Evidence on adjustment costs

Here we reproduce for ease of access some of the evidence already shown in Garcia et al.
(2022) arguing that the hotel managers’ behavior is consistent with them facing adjustment
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Figure 7: Frequency of Updates in Prices and Recommended Rates Across Weekdays for
Hotel 6 and 175. Source: Garcia et al. (2022).

costs when changing prices. The hotels in that paper are the same as in our sample, we
only changed their labels to retain the hotels’ anonymity.

First, Figure 7 plots the relative frequency of price changes and recommendation
changes for the two biggest hotels in the sample. The main takeaway from this picture is
that the hotel managers seem to have clear workday patterns that are not mirrored in the
frequency with which the recommendations change. For example, the manager at Hotel
6 seems to concentrate on other tasks than pricing on Thursdays and Sundays, and does
a lion’s share of her pricing decisions on Tuesdays and Saturdays. This pattern suggests
that the opportunity cost of time used on pricing is significant and varying over time. The
pattern is consistent across all hotels in the sample as is evident from Table 8 which shows
what share of all price updates are done on each weekday in each of the hotels. As can be
seen from the table, most hotels have at least one day on which they update next to no
prices and often another day on which they do a large share of their updates.

Furthermore, Garcia et al. (2022) argue that Figure 10 strongly suggests that copying
prices is less costly for the hotel manager than manually adjusting them. In that figure we
see the distribution of the logarithm of total number of price updates separately for days
when the manager copies the recommendation for at least a full arrival week for at least
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Table 8: Distribution of Actual Rate Updates

Hotel ID Monday Tuesday Wednesday Thursday Friday Saturday Sunday

6 0.19 0.25 0.11 0.04 0.12 0.22 0.04
10 0.19 0.06 0.27 0.09 0.07 0.16 0.17
11 0.17 0.47 0.02 0.04 0.18 0.12 0.00
23 0.14 0.14 0.19 0.12 0.24 0.10 0.08
30 0.22 0.10 0.17 0.25 0.16 0.06 0.03
131 0.14 0.15 0.16 0.07 0.16 0.17 0.16
175 0.22 0.16 0.12 0.19 0.19 0.08 0.04
192 0.12 0.16 0.30 0.04 0.14 0.11 0.13
208 0.07 0.31 0.07 0.08 0.36 0.03 0.06

Notes: Numbers in bold indicate the day with maximal or minimal density of actual rate updates
for each hotel. Rate updates for each hotel sum to 1, rounding errors may apply. Data includes
only products for which we observe T ≥ 100 days before arrival. Source: Garcia et al. (2022).

one room type and for days when this does not happen. We see that on days when the
manager copies recommendations she adjusts considerably more prices. This suggests that
manually adjusting prices takes significantly more of the manager’s time and effort.

More evidence and discussion about the adjustment costs is provided in Garcia et al.
(2022).

C Identification

In this section we show that a restricted version of the model is directly identified. In
particular, we assume here that σy = 0. Because the manager obtains no information
additional to r prior to paying r, Corr(p, r | p 6= r) = λ and

E
(
(p− E(p | r, p 6= r))2 | r, p 6= r

)
= σ2

z .

Similarly, λ2σ2
x = V ar(r). We need only show that with this information we can now iden-

tify the parameters of the cost functions. First, let q1 denote the unconditional probability
of a manual price adjustment. It follows that∫

G

((
1− λ

λ

)2

x2 + σ2
z

)
dΨx(x) = q1,
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where G(x) is the distribution of c2. Similarly, let q2 denote the probability conditional on
the recommendation exceeding some value r0 = λx0. It follows that,

1

1−Ψx(λx0)

∫
λx0

G

((
1− λ

λ

)2

x2 + σ2
z

)
dΨx(x) = q2.

Since G()̇ is a two-parameter distribution (b2, σc) and these two moments pin it down.
Finally, recall that c(λx) is the maximum cost such that a manager who observes a recom-
mendation r = λx adjusts the price. The function c(r) can now be computed in closed-form
using the estimated parameters. In particular,

c(r) =
(1− λ)2r2 + σ2

z

b1 + b2
1r<r0 +

(1− (1− λ)2)r2

b1
1r>r0 ,

with r0 such that
(1− λ)2r20 + σ2

z

b1 + b2
=

(1− (1− λ)2)r20
b1

It follows that ∫
G

(
b1c
(
x
λ

)
b2

)
dΨx(x) = q0,

where q0 is the unconditional probability of a price change and we use the fact that b1 and
b2 are the respective scalers of the distribution.

Introducing σy > 0 represents a substantial increase in complexity but it is necessary
to reconcile the data. First, for some hotels the implied bias is larger than 1/2, meaning
that, conditional on r, p = 0 is closer to the ideal price than p = r. This would then be
inconsistent with a substantial fraction of prices that match the recommendation. Second,
the empirical distribution of p − E(p | p 6= r) is double-peaked and has a valley around
zero. This suggests that managers are less likely to change the price manually whenever
some privately observed shock is small in magnitude, which is precisely what we capture
with the variable Y .

D Gains from best responding

To gauge the restrictiveness of limiting the algorithm’s strategy space to linear strategies
we simulate the loss for the algorithm’s designer, were she to privately deviate to her non-
linear best response, assuming that the hotel manager still believes that the algorithm is
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using its linear strategy. We then compare this to the loss from the linear strategy. The
expected payoffs are calculated as averages of payoff realizations over 10000 draws from the
distribution of signals which we estimated for the pooled sample in the main text (see the
first row in Table 6). We consider best responses to revenue manger’s signal realizations
for 10 evenly split percentiles starting from the 50th percentile. The results are reported in
Table 9. Notice that due to symmetric signal distributions the payoff losses for percentiles
below the 50th percentile will be symmetric to the ones presented here. The results are
calculated as percentage of the best response outcome. Since, high signal realizations are
the ones where the algorithm already has a very high chance of inducing the hotel to revise
its price even without exaggeration, we also estimate the results for the 99th percentile.

Table 9: Percentage changes in actions and losses relative to best reponse

Percentile of Fx

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.99

∆ r 100% 1.0% 3.3% -15.4% 2.5% -2.6% -4.9% -0.8% -14.0% -16.4% -19.1%
∆ loss -0.00% -0.00% -0.02% -0.01% -0.00% -0.00% -0.00% -0.02% -0.01% -0.19% -0.52%

Notes: The table compares advisor’s best responses and payoffs relative to actions and payoffs implied by the
linear strategy. If r∗(x;λ) is the best response given signal x and the hotel managers actions, the first row reports
100%× r∗(x;λ)− x

λ
r∗(x;λ) where λ is the bias estimated in the main section. Because the linear recommendation is always

zero at the 50th precentile (0/λ = 0), the percentage change when deviating to the best response will mechanically
be +/ − 100%. Similarly, if p(r∗(x)) is the random variable that represents the price realization given the hotel
manager’s strategy from the baseline model and the advisor best responding to it, and if p(x/λ) is the implemented
price without a deviation, then the second row reports the reduction in expected losses for the algorithm’s designer

from best responding, i.e. 100%×
E
[
(p(r∗(x))−p∗)2

]
−E

[
(p(x/λ)−p∗)2

]
E
[
(p(r∗(x))−p∗)2

] .

For most signal realizations the difference in the advisor’s payoff when best responding
compared to when playing the linear strategy is negligible. For all but the two highest per-
centiles signals in the table, best responding reduces the advisor’s losses by at most 0.02%.
As mentioned above, for the higher signal realizations the advisor would like to reduce her
lying by a significant margin but even this reduction will increase her payoff by only 0.19%
at the 95th percentile of signals and by 0.52% in the 99th percentile. We conclude that the
restriction to linear strategies does not seem generate significant incentives for deviating
and hence is likely to have a negligible quantitative impact on the results.
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E Alternative Models

We define a recommendation r(x) to be unbiased if

E[p∗ | x] = r.

We now discuss a handful of alternative models to the one presented in the main text.

• Suppose that p∗ is normally distributed with mean zero and standard deviation σ.
Furthermore, assume that the manager observes signal y and the advisor observes
signal x, which conditional on p∗, are independent and both normally distributed
with mean p∗ and standard deviation σi, i ∈ {x, y}. The unbiased recommendation
is r(x) = E[p∗] = σ2

σ2+σ2
x
x and p∗ conditional on r(x) is distributed normally with

mean equal to r(x). That is, an unbiased recommender does not “naively” report x

but instead deflates her signal. Notice that “naively” sending one’s signal without
deflating it is highly costly in our setting because the hotel manager often copies the
recommendation. If the advisor truly shows a low level of sophistication and passes
on its signal the model would correspond to the alternative specification in Section
6 where λ is a primitive of the data and not a choice parameter. The counterfactual
results for this model remain qualitatively similar to the original ones due to the high
correlation between the bias estimated in the baseline model and the bias that would
result from this low level of sophistication (see Figure 6).

• Consider the model above but assume that the hotel manager’s signal is fully infor-
mative and she copies the recommendation when the difference between the recom-
mendation and the truth does not warrant a manual adjustment cost and otherwise
sets the price optimally. In other words, assume that p = r if p∗ ∈ (r − c, r + c) for
some c > 0 and p = p∗ otherwise. Under the hypothesis that the recommendation is
unbiased

E[p∗ | p 6= r, r] = E[p∗ | p = r, r] := r.

In our data E[p∗ | p 6= r] = γr for some γ < 1 which contradicts the equality above.

• Truth-noise model: Suppose that the information held by the algorithm is strictly
worse than that of the manager. In particular, x = y = p∗ with probability q

and otherwise x is an imperfect predictor of y = p∗. In particular, assume that,
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E[p∗ | x, x 6= p∗] = γx. In this case, we have that the recommendation is unbiased
only if r = (q + (1− q)γ)x in which case

E[p∗ | p 6= r] =
q(1− γ)

q + (1− q)γ
r.

A prediction of this model is that, immediately upon observing p 6= r, the algorithm’s
recommendation should change to r′ = p. In the data, we observe the algorithm
updating immediately after a price change that does not match the recommendation
with 83% probability, see Figure 8, but only 13% of these updates result in r′ =

p and E(r′ | p, p < r) > p, i.e. the recommendation does not fully react to the
change in price as shown in Figure 9. Together these suggest that there is persistent
”disagreement” between the algorithm’s designer and the hotel manager.

• Intrinsic Attention: Our model assumes that recommendations drive attention al-
location. An alternative hypothesis is that the manager devotes attention to those
products she obtained some information about and uses the recommendation as a
confirmation/shortcut. That is, the manager first observes y and decides whether
to pay attention and if so then observes r, choosing whether to accept or reject the
recommendation. We contend that this model is implausible for a number of rea-
sons. First, if the manager only puts attention when observing extreme values of y
(because of attention and adjustment costs), then the expectation of the difference
between the recommendation and y conditional on the manager putting attention
to a price would be large (even if we allow for x to be correlated with y) resulting
in a low likelihood of copying the recommendation. To match this moment, it then
should be the case that r is very close to y almost always, rendering the informa-
tion held by the manager useless. Instead, our timing assumes the manager devotes
attention when r draws an extreme value and the manager accepts if y is relatively
small which occurs much more often. Second, we observe hotel managers accepting
hundreds of recommendations in one day (see Figure 10) while not changing a single
price manually.

• Revenue vs. profits: Since the revenue management company is benchmarked on
revenue but the hotel manager should care about profits, there could be a directional
disagreement between them based on this difference in payoffs. Indeed, theoreti-
cally, the revenue-maximizing price is always lower than the profit-maximizing price.

44



0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 10
Days since last price change

P
ro

ba
bi

lit
y 

of
 r

ec
om

m
en

da
tio

n 
ch

an
gi

ng

Figure 8: Probability of the recommendation changing after the price manually changed
to not equal the recommendation. Ticks represent the 95% confidence intervals.

Huang (2022) shows that Airbnb’s recommendations to hosts are downward biased,
consistent with their preference for revenue-maximization. By contrast, we do not
observe a significant directional bias in our setting: the algorithm exaggerates both
price hikes and drops by approximately the same amount.
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Figure 9: Probability of the algorithm copying the current price after the price manually
changed to not equal the recommendation. Ticks represent the 95% confidence intervals.
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Figure 10: Number of Rate Updates (in Log) Conditional on Copying and Not Copying
Recommended Rates. Source: Garcia et al. (2022).
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