Disclosing Preferences to Improve Recommendations

Amir Habibi (Humboldt University of Berlin)

August 2022

Introduction: Models of communication

'Economic models of communication have little to say about real conversations- dynamic exchanges in which people take turns.' ~ Joel Sobel.

Introduction: Models of communication

'Economic models of communication have little to say about real conversations- dynamic exchanges in which people take turns.' ~ Joel Sobel.

- A typical cheap talk game:

1. Message, $m \in \mathcal{M}$

Seller/Sender/Expert
Buyer/Receiver/DM
Private info: θ
2. Action: $a \in A$

Payoff: $V(a, \theta)$
Payoff: $U(a, \theta)$

Introduction: Back and forth cheap talk

- A modified game:

Private info: θ
Private info: β
3. Action: $a \in A$

Payoff: $V(a)$
Payoff: $U(a, \theta, \beta)$

Model set up

Players

- A buyer/receiver/DM (she)
- A seller/sender/expert (he)

Model set up

Players

- A buyer/receiver/DM (she)
- A seller/sender/expert (he)

Information/states of the world

- There are two goods

Model set up

Players

- A buyer/receiver/DM (she)
- A seller/sender/expert (he)

Information/states of the world

- There are two goods
- The quality of goods is determined by a random variable $\theta \in \Theta$

Model set up

Players

- A buyer/receiver/DM (she)
- A seller/sender/expert (he)

Information/states of the world

- There are two goods
- The quality of goods is determined by a random variable $\theta \in \Theta$
- Buyer has a preference parameter given by $\beta \in B$

Model set up

Players

- A buyer/receiver/DM (she)
- A seller/sender/expert (he)

Information/states of the world

- There are two goods
- The quality of goods is determined by a random variable $\theta \in \Theta$
- Buyer has a preference parameter given by $\beta \in B$
- Players share a common prior, $\theta \sim G$ and $\beta \sim F$

Model set up

Model set up

Actions and timing.

(1) The buyer privately learns the realisation of β, and the seller privately learns the realisation of θ

Model set up

Actions and timing.

(1) The buyer privately learns the realisation of β, and the seller privately learns the realisation of θ
(2) The buyer sends a message $m^{b} \in \mathcal{M}^{b}$ to the seller

Model set up

Actions and timing.

(1) The buyer privately learns the realisation of β, and the seller privately learns the realisation of θ
(2) The buyer sends a message $m^{b} \in \mathcal{M}^{b}$ to the seller
(3) The seller sends a message $m^{s} \in \mathcal{M}^{s}$ to the buyer

Model set up

Actions and timing.

(1) The buyer privately learns the realisation of β, and the seller privately learns the realisation of θ
(2) The buyer sends a message $m^{b} \in \mathcal{M}^{b}$ to the seller
(3) The seller sends a message $m^{s} \in \mathcal{M}^{s}$ to the buyer
(4) The buyer learns the value of her outside option $u_{0} \sim U[0,1]$

Model set up

Actions and timing.

(1) The buyer privately learns the realisation of β, and the seller privately learns the realisation of θ
(2) The buyer sends a message $m^{b} \in \mathcal{M}^{b}$ to the seller
(3) The seller sends a message $m^{s} \in \mathcal{M}^{s}$ to the buyer
(4) The buyer learns the value of her outside option $u_{0} \sim U[0,1]$
(5) The buyer takes an action, $a \in\left\{a_{0}, a_{1}, a_{2}\right\}$: her outside option (a_{0}) or one of the two goods $\left(a_{1}\right)$ and $\left(a_{2}\right)$

Model set up

Actions and timing.

(1) The buyer privately learns the realisation of β, and the seller privately learns the realisation of θ
(2) The buyer sends a message $m^{b} \in \mathcal{M}^{b}$ to the seller
(3) The seller sends a message $m^{s} \in \mathcal{M}^{s}$ to the buyer
(4) The buyer learns the value of her outside option $u_{0} \sim U[0,1]$
(5) The buyer takes an action, $a \in\left\{a_{0}, a_{1}, a_{2}\right\}$: her outside option (a_{0}) or one of the two goods $\left(a_{1}\right)$ and $\left(a_{2}\right)$
(6) The players get their payoffs and the game ends

Model set up

Payoffs.

- The buyer's payoff:

$$
U=\left\{\begin{array}{cl}
u_{1}(\theta, \beta) & \text { if } a=a_{1} \\
u_{2}(\theta, \beta) & \text { if } a=a_{2} \\
u_{0} & \text { if } a=a_{0}
\end{array}\right.
$$

Model set up

Payoffs.

- The buyer's payoff:

$$
U=\left\{\begin{array}{cl}
u_{1}(\theta, \beta) & \text { if } a=a_{1} \\
u_{2}(\theta, \beta) & \text { if } a=a_{2} \\
u_{0} & \text { if } a=a_{0}
\end{array}\right.
$$

- The seller's payoff is state-independent:

$$
V= \begin{cases}1 & \text { if } a=a_{1} \\ 1 & \text { if } a=a_{2} \\ 0 & \text { if } a=a_{0}\end{cases}
$$

Model set up

Equilibrium.

- Solution concept: perfect Bayesian equilibrium

Model set up

Equilibrium.

- Solution concept: perfect Bayesian equilibrium
- Seller preferred equilibrium: An equilibrium which maximises the seller's expected utility among the set of possible equilibrium payoffs

Model set up

Equilibrium.

- Solution concept: perfect Bayesian equilibrium
- Seller preferred equilibrium: An equilibrium which maximises the seller's expected utility among the set of possible equilibrium payoffs
- Beneficial conversation equilibrium: An equilibrium in which the seller gets a strictly higher payoff compared to a (seller preferred) equilibrium where the message space of the buyer is restricted to a single message: $\left|\mathcal{M}^{b}\right|=1$

Model set up

Equilibrium.

- Solution concept: perfect Bayesian equilibrium
- Seller preferred equilibrium: An equilibrium which maximises the seller's expected utility among the set of possible equilibrium payoffs
- Beneficial conversation equilibrium: An equilibrium in which the seller gets a strictly higher payoff compared to a (seller preferred) equilibrium where the message space of the buyer is restricted to a single message: $\left|\mathcal{M}^{b}\right|=1$

Question: When is there a beneficial conversation equilibrium?

Single attribute: Set-up

Single attribute: Set-up

Information and payoffs

- $\theta \in\{0,1\}$, with $\operatorname{Pr}[\theta=1]=1 / 2$

Single attribute: Set-up

Information and payoffs

- $\theta \in\{0,1\}$, with $\operatorname{Pr}[\theta=1]=1 / 2$
- $\beta=\beta_{g} \in[0,1]$, with distribution F_{g}

Single attribute: Set-up

Information and payoffs

- $\theta \in\{0,1\}$, with $\operatorname{Pr}[\theta=1]=1 / 2$
- $\beta=\beta_{g} \in[0,1]$, with distribution F_{g}

$$
U= \begin{cases}\beta_{g} \theta & \text { if } a=a_{1} \\ \left(1-\beta_{g}\right)(1-\theta) & \text { if } a=a_{2} \\ u_{0} & \text { if } a=a_{0}\end{cases}
$$

Single attribute: Set-up

Information and payoffs

- $\theta \in\{0,1\}$, with $\operatorname{Pr}[\theta=1]=1 / 2$
- $\beta=\beta_{g} \in[0,1]$, with distribution F_{g}

$$
U= \begin{cases}\beta_{g} \theta & \text { if } a=a_{1} \\ \left(1-\beta_{g}\right)(1-\theta) & \text { if } a=a_{2} \\ u_{0} & \text { if } a=a_{0}\end{cases}
$$

- $\theta=1$ means that good 1 has high quality and good 2 has low quality

Single attribute: Set-up

Information and payoffs

- $\theta \in\{0,1\}$, with $\operatorname{Pr}[\theta=1]=1 / 2$
- $\beta=\beta_{g} \in[0,1]$, with distribution F_{g}

$$
U= \begin{cases}\beta_{g} \theta & \text { if } a=a_{1} \\ \left(1-\beta_{g}\right)(1-\theta) & \text { if } a=a_{2} \\ u_{0} & \text { if } a=a_{0}\end{cases}
$$

- $\theta=1$ means that good 1 has high quality and good 2 has low quality
- β_{g} represents the preference across goods

Single attribute: Simple example

Single attribute: Simple example

- F_{g} satisfies the following: $\operatorname{Pr}\left[\beta_{g}=\frac{3}{5}\right]=1$

Single attribute: Simple example

- F_{g} satisfies the following: $\operatorname{Pr}\left[\beta_{g}=\frac{3}{5}\right]=1$
- Suppose the seller used an information policy fully revealing θ

$$
m^{s}= \begin{cases}m_{1}^{s} & \text { if } \theta=1 \\ m_{2}^{s} & \text { if } \theta=0\end{cases}
$$

Single attribute: Simple example

- F_{g} satisfies the following: $\operatorname{Pr}\left[\beta_{g}=\frac{3}{5}\right]=1$

Single attribute: Simple example

- F_{g} satisfies the following: $\operatorname{Pr}\left[\beta_{g}=\frac{3}{5}\right]=1$
- Fully revealing θ is not an equilibrium

Single attribute: Simple example

- F_{g} satisfies the following: $\operatorname{Pr}\left[\beta_{g}=\frac{3}{5}\right]=1$
- Fully revealing θ is not an equilibrium
- The following information policy is an equilibrium:

Single attribute: Securability

Single attribute: Securability

- In the example, the seller could secure a payoff of $2 / 5$ by fully revealing the state
- a payoff is secured if it is the lowest payoff across messages sent (posterior beliefs induced)

Single attribute: Securability

- In the example, the seller could secure a payoff of $2 / 5$ by fully revealing the state
- a payoff is secured if it is the lowest payoff across messages sent (posterior beliefs induced)
- To achieve this in equilibrium, the seller can degrade the value from the posterior that achieves a higher payoff

Single attribute: Securability

- In the example, the seller could secure a payoff of $2 / 5$ by fully revealing the state
- a payoff is secured if it is the lowest payoff across messages sent (posterior beliefs induced)
- To achieve this in equilibrium, the seller can degrade the value from the posterior that achieves a higher payoff
- Lipnowski and Ravid (2020) provide a general tool to find possible equilibrium payoffs in state-independent cheap talk games

Single attribute: Securability

- In the example, the seller could secure a payoff of $2 / 5$ by fully revealing the state
- a payoff is secured if it is the lowest payoff across messages sent (posterior beliefs induced)
- To achieve this in equilibrium, the seller can degrade the value from the posterior that achieves a higher payoff
- Lipnowski and Ravid (2020) provide a general tool to find possible equilibrium payoffs in state-independent cheap talk games
- make use of this in my model to solve the seller's problem

Single attribute: Securability

- In the example, the seller could secure a payoff of $2 / 5$ by fully revealing the state
- a payoff is secured if it is the lowest payoff across messages sent (posterior beliefs induced)
- To achieve this in equilibrium, the seller can degrade the value from the posterior that achieves a higher payoff
- Lipnowski and Ravid (2020) provide a general tool to find possible equilibrium payoffs in state-independent cheap talk games
- make use of this in my model to solve the seller's problem
- can find (seller preferred) equilibrium payoff, and then find the seller's policy that achieves this

Single attribute: Securability

- In the example, the seller could secure a payoff of $2 / 5$ by fully revealing the state
- a payoff is secured if it is the lowest payoff across messages sent (posterior beliefs induced)
- To achieve this in equilibrium, the seller can degrade the value from the posterior that achieves a higher payoff
- Lipnowski and Ravid (2020) provide a general tool to find possible equilibrium payoffs in state-independent cheap talk games
- make use of this in my model to solve the seller's problem
- can find (seller preferred) equilibrium payoff, and then find the seller's policy that achieves this
- then can consider buyer incentives for communicating her preferences

Single attribute: Results

Proposition 1

With a single attribute, the (unique seller preferred) equilibrium is never a beneficial conversation equilibrium.

Single attribute: Results

Proposition 1

With a single attribute, the (unique seller preferred) equilibrium is never a beneficial conversation equilibrium.

- The buyer always wants to make the seller think that she has no preference for either good ($\beta_{g}=1 / 2$)
- doing so would mean the seller would fully reveal θ

Single attribute: Results

Proposition 1

With a single attribute, the (unique seller preferred) equilibrium is never a beneficial conversation equilibrium.

- The buyer always wants to make the seller think that she has no preference for either good ($\beta_{g}=1 / 2$)
- doing so would mean the seller would fully reveal θ
- This means the buyer cannot credibly disclose her preferences

Two attributes: Set-up

Information and payoffs

- $\theta=\left(\theta_{1}, \theta_{2}\right) \in\{0,1\}^{2}$, with θ_{1} and θ_{2} drawn independently with $\operatorname{Pr}\left[\theta_{i}=1\right]=1 / 2$

Two attributes: Set-up

Information and payoffs

- $\theta=\left(\theta_{1}, \theta_{2}\right) \in\{0,1\}^{2}$, with θ_{1} and θ_{2} drawn independently with $\operatorname{Pr}\left[\theta_{i}=1\right]=1 / 2$
- $\beta=\beta_{a} \in[0,1]$, with distribution F_{a}

Two attributes: Set-up

Information and payoffs

- $\theta=\left(\theta_{1}, \theta_{2}\right) \in\{0,1\}^{2}$, with θ_{1} and θ_{2} drawn independently with $\operatorname{Pr}\left[\theta_{i}=1\right]=1 / 2$
- $\beta=\beta_{a} \in[0,1]$, with distribution F_{a}

$$
U= \begin{cases}\frac{1}{2}\left(\beta_{a} \theta_{1}+\left(1-\beta_{a}\right) \theta_{2}\right) & \text { if } a=a_{1} \\ \frac{1}{2}\left(\beta_{a}\left(1-\theta_{1}\right)+\left(1-\beta_{a}\right)\left(1-\theta_{2}\right)\right) & \text { if } a=a_{2} \\ u_{0} & \text { if } a=a_{0}\end{cases}
$$

Two attributes: Set-up

Information and payoffs

- $\theta=\left(\theta_{1}, \theta_{2}\right) \in\{0,1\}^{2}$, with θ_{1} and θ_{2} drawn independently with $\operatorname{Pr}\left[\theta_{i}=1\right]=1 / 2$
- $\beta=\beta_{a} \in[0,1]$, with distribution F_{a}

$$
U= \begin{cases}\frac{1}{2}\left(\beta_{a} \theta_{1}+\left(1-\beta_{a}\right) \theta_{2}\right) & \text { if } a=a_{1} \\ \frac{1}{2}\left(\beta_{a}\left(1-\theta_{1}\right)+\left(1-\beta_{a}\right)\left(1-\theta_{2}\right)\right) & \text { if } a=a_{2} \\ u_{0} & \text { if } a=a_{0}\end{cases}
$$

- $\theta_{j}=1$ means that for attribute j, good 1 has high quality and good 2 has low quality

Two attributes: Set-up

Information and payoffs

- $\theta=\left(\theta_{1}, \theta_{2}\right) \in\{0,1\}^{2}$, with θ_{1} and θ_{2} drawn independently with $\operatorname{Pr}\left[\theta_{i}=1\right]=1 / 2$
- $\beta=\beta_{a} \in[0,1]$, with distribution F_{a}

$$
U= \begin{cases}\frac{1}{2}\left(\beta_{a} \theta_{1}+\left(1-\beta_{a}\right) \theta_{2}\right) & \text { if } a=a_{1} \\ \frac{1}{2}\left(\beta_{a}\left(1-\theta_{1}\right)+\left(1-\beta_{a}\right)\left(1-\theta_{2}\right)\right) & \text { if } a=a_{2} \\ u_{0} & \text { if } a=a_{0}\end{cases}
$$

- $\theta_{j}=1$ means that for attribute j, good 1 has high quality and good 2 has low quality
- β_{a} represents the preference across attributes

Two attributes: Simple example

Buyer only interested in one (unknown) attribute:

Two attributes: Simple example

Buyer only interested in one (unknown) attribute:

- $\beta_{a} \in\{0,1\}$ with $\operatorname{Pr}\left[\beta_{a}=1\right]=p \in[0,1]$

Two attributes: Simple example

Buyer only interested in one (unknown) attribute:

- $\beta_{a} \in\{0,1\}$ with $\operatorname{Pr}\left[\beta_{a}=1\right]=p \in[0,1]$
- In equilibrium the seller fully reveals the state

Two attributes: Simple example

Buyer only interested in one (unknown) attribute:

- $\beta_{a} \in\{0,1\}$ with $\operatorname{Pr}\left[\beta_{a}=1\right]=p \in[0,1]$
- In equilibrium the seller fully reveals the state
- having revealed the quality of one attribute, the seller has no reason to not truthfully reveal the quality of the other attribute

Two attributes: Simple example

Buyer only interested in one (unknown) attribute:

- $\beta_{a} \in\{0,1\}$ with $\operatorname{Pr}\left[\beta_{a}=1\right]=p \in[0,1]$
- In equilibrium the seller fully reveals the state
- having revealed the quality of one attribute, the seller has no reason to not truthfully reveal the quality of the other attribute

Two attributes: Simple example

Buyer only interested in one (unknown) attribute:

- $\beta_{a} \in\{0,1\}$ with $\operatorname{Pr}\left[\beta_{a}=1\right]=p \in[0,1]$
- In equilibrium the seller fully reveals the state
- having revealed the quality of one attribute, the seller has no reason to not truthfully reveal the quality of the other attribute

- There is no benefit from the buyer communicating her preferences $\left(\beta_{a}\right)$

Two attributes: Another example

Buyer potentially interested in both attributes:

- $\beta_{a} \in\left\{0, \frac{1}{2}, 1\right\}$ with $\operatorname{Pr}\left[\beta_{a}=1\right]=\operatorname{Pr}\left[\beta_{a}=0\right]=p \in\left(0, \frac{1}{2}\right)$

Two attributes: Another example

Buyer potentially interested in both attributes:

- $\beta_{a} \in\left\{0, \frac{1}{2}, 1\right\}$ with $\operatorname{Pr}\left[\beta_{a}=1\right]=\operatorname{Pr}\left[\beta_{a}=0\right]=p \in\left(0, \frac{1}{2}\right)$
- With no buyer communication, there is no longer an equilibrium in which the seller fully reveals the state

Two attributes: Another example

Buyer potentially interested in both attributes:

- $\beta_{a} \in\left\{0, \frac{1}{2}, 1\right\}$ with $\operatorname{Pr}\left[\beta_{a}=1\right]=\operatorname{Pr}\left[\beta_{a}=0\right]=p \in\left(0, \frac{1}{2}\right)$
- With no buyer communication, there is no longer an equilibrium in which the seller fully reveals the state
- suppose for attribute 1, the seller (truthfully) reveals that $\theta_{1}=1$
- for attribute 2, the seller now has a strict preference for revealing that $\theta_{2}=1$

Two attributes: Another example

Buyer potentially interested in both attributes:

- $\beta_{a} \in\left\{0, \frac{1}{2}, 1\right\}$ with $\operatorname{Pr}\left[\beta_{a}=1\right]=\operatorname{Pr}\left[\beta_{a}=0\right]=p \in\left(0, \frac{1}{2}\right)$
- With no buyer communication, there is no longer an equilibrium in which the seller fully reveals the state
- suppose for attribute 1, the seller (truthfully) reveals that $\theta_{1}=1$
- for attribute 2, the seller now has a strict preference for revealing that $\theta_{2}=1$
- With no buyer communication, the seller can only fully reveal the quality of one attribute and partially reveal for the other attribute

Two attributes: Another example

Buyer potentially interested in both attributes:

- $\beta_{a} \in\left\{0, \frac{1}{2}, 1\right\}$ with $\operatorname{Pr}\left[\beta_{a}=1\right]=\operatorname{Pr}\left[\beta_{a}=0\right]=p \in\left(0, \frac{1}{2}\right)$
- With no buyer communication, there is no longer an equilibrium in which the seller fully reveals the state
- suppose for attribute 1 , the seller (truthfully) reveals that $\theta_{1}=1$
- for attribute 2, the seller now has a strict preference for revealing that $\theta_{2}=1$
- With no buyer communication, the seller can only fully reveal the quality of one attribute and partially reveal for the other attribute
- There is a benefit from buyer communicating her preferences $\left(\beta_{a}\right)$
- intuition: seller can provide more tailored recommendation for the buyer by providing information on buyer's preferred attribute

Two attributes: Results

Assumption 1

The support of F_{a} has positive mass in each of the intervals $\left(0, \frac{1}{2}\right)$ and $\left(\frac{1}{2}, 1\right)$.

Proposition 2

With two attributes and no bias towards either good, there is a (seller preferred) equilibrium that takes the following form:

- the buyer sends the message m_{1}^{b} if $\beta_{a} \geq \frac{1}{2}$ and m_{2}^{b} if $\beta_{a}<\frac{1}{2}$;
- following the message m_{j}^{b}, the seller sends the message m_{1}^{s} if $\theta_{j}=1$ and m_{2}^{s} if $\theta_{j}=0$.
If the distribution F satisfies Assumption 1, the equilibrium is a beneficial conversation equilibrium. Furthermore, the equilibrium above is unique iff $\operatorname{Pr}\left[\beta_{a}=\frac{1}{2}\right]=0$.

Two attributes: Results

- In words:
- buyer reveals which attribute she is most interested in

Two attributes: Results

- In words:
- buyer reveals which attribute she is most interested in
- seller fully reveals best good for that attribute and nothing about other attribute

Two attributes: Results

- In words:
- buyer reveals which attribute she is most interested in
- seller fully reveals best good for that attribute and nothing about other attribute
- Intuition:
- this is an equilibrium: both buyer and seller follow equilibrium strategy
- note given the information from the buyer, the seller cannot do better than to reveal information about the preferred attribute

Two attributes: Results

- In words:
- buyer reveals which attribute she is most interested in
- seller fully reveals best good for that attribute and nothing about other attribute
- Intuition:
- this is an equilibrium: both buyer and seller follow equilibrium strategy
- note given the information from the buyer, the seller cannot do better than to reveal information about the preferred attribute
- an equilibrium in which the buyer requests (partial) information about both attributes is strictly worse for seller

Summary

- Study a back and forth cheap talk model with two-sided private information
- very little research on this topic
- Application to buyer-seller both for online and offline interactions
- relevant to debate on consumer privacy
- Key result: if an expert wants to convince a decision maker to take one of several non-default actions
- single attribute: eliciting DM's preferences between options can only be harmful
- multiple attributes: eliciting DM's preferences between different attributes is helpful for tailoring recommendations

