# Disclosing Preferences to Improve Recommendations

#### Amir Habibi (Humboldt University of Berlin)

August 2022

Amir Habibi (Humboldt University of Berlin)

# Introduction: Models of communication

'Economic models of communication have little to say about real conversations— dynamic exchanges in which people take turns.'  $\sim$  Joel Sobel.

< □ > < 同 > < 三 > < 三 >

# Introduction: Models of communication

'Economic models of communication have little to say about real conversations— dynamic exchanges in which people take turns.'  $\sim$  Joel Sobel.

• A typical cheap talk game:



### Introduction: Back and forth cheap talk

• A modified game:



#### Players

- A buyer/receiver/DM (she)
- A seller/sender/expert (he)

#### Players

- A buyer/receiver/DM (she)
- A seller/sender/expert (he)

#### Information/states of the world

There are two goods

-

A D M A A A M M

#### Players

- A buyer/receiver/DM (she)
- A seller/sender/expert (he)

#### Information/states of the world

- There are two goods
- The quality of goods is determined by a random variable  $\theta \in \Theta$

< 4 →

∃ >

#### Players

- A buyer/receiver/DM (she)
- A seller/sender/expert (he)

#### Information/states of the world

- There are two goods
- The quality of goods is determined by a random variable  $\theta \in \Theta$
- Buyer has a preference parameter given by  $\beta \in B$

#### Players

- A buyer/receiver/DM (she)
- A seller/sender/expert (he)

#### Information/states of the world

- There are two goods
- The quality of goods is determined by a random variable  $\theta \in \Theta$
- Buyer has a preference parameter given by  $\beta \in B$
- Players share a common prior,  $\theta \sim G$  and  $\beta \sim F$

- A 🖻 🕨

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Amir Habibi (Humboldt University of Berlin)

#### Actions and timing.

• The buyer privately learns the realisation of  $\beta$ , and the seller privately learns the realisation of  $\theta$ 

- The buyer privately learns the realisation of  $\beta$ , and the seller privately learns the realisation of  $\theta$
- 2 The buyer sends a message  $m^b \in \mathcal{M}^b$  to the seller

< 4 →

- The buyer privately learns the realisation of  $\beta$ , and the seller privately learns the realisation of  $\theta$
- ② The buyer sends a message  $m^b \in \mathcal{M}^b$  to the seller
- **③** The seller sends a message  $m^s \in \mathcal{M}^s$  to the buyer

- The buyer privately learns the realisation of  $\beta$ , and the seller privately learns the realisation of  $\theta$
- 2 The buyer sends a message  $m^b \in \mathcal{M}^b$  to the seller
- **③** The seller sends a message  $m^s \in \mathcal{M}^s$  to the buyer
- **③** The buyer learns the value of her outside option  $u_0 \sim U[0, 1]$

- The buyer privately learns the realisation of  $\beta$ , and the seller privately learns the realisation of  $\theta$
- 2 The buyer sends a message  $m^b \in \mathcal{M}^b$  to the seller
- **③** The seller sends a message  $m^{s} \in \mathcal{M}^{s}$  to the buyer
- The buyer learns the value of her outside option  $u_0 \sim U[0, 1]$
- So The buyer takes an action,  $a \in \{a_0, a_1, a_2\}$ : her outside option  $(a_0)$  or one of the two goods  $(a_1)$  and  $(a_2)$

・ロト ・ 同ト ・ ヨト ・ ヨ

- The buyer privately learns the realisation of  $\beta$ , and the seller privately learns the realisation of  $\theta$
- 2 The buyer sends a message  $m^b \in \mathcal{M}^b$  to the seller
- **③** The seller sends a message  $m^s \in \mathcal{M}^s$  to the buyer
- The buyer learns the value of her outside option  $u_0 \sim U[0, 1]$
- So The buyer takes an action,  $a \in \{a_0, a_1, a_2\}$ : her outside option  $(a_0)$  or one of the two goods  $(a_1)$  and  $(a_2)$
- The players get their payoffs and the game ends

#### Payoffs.

• The buyer's payoff:

$$U = \begin{cases} u_1(\theta, \beta) & \text{if } a = a_1 \\ u_2(\theta, \beta) & \text{if } a = a_2 \\ u_0 & \text{if } a = a_0 \end{cases}$$

æ

#### Payoffs.

• The buyer's payoff:

$$U = \begin{cases} u_1(\theta, \beta) & \text{if } a = a_1 \\ u_2(\theta, \beta) & \text{if } a = a_2 \\ u_0 & \text{if } a = a_0 \end{cases}$$

• The seller's payoff is state-independent:

$$V = \begin{cases} 1 & \text{if } a = a_1 \\ 1 & \text{if } a = a_2 \\ 0 & \text{if } a = a_0 \end{cases}$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

• Solution concept: perfect Bayesian equilibrium

イロト イポト イヨト イヨ

- Solution concept: perfect Bayesian equilibrium
- Seller preferred equilibrium: An equilibrium which maximises the seller's expected utility among the set of possible equilibrium payoffs

・ロト ・ 同ト ・ ヨト ・ ヨ

- Solution concept: perfect Bayesian equilibrium
- Seller preferred equilibrium: An equilibrium which maximises the seller's expected utility among the set of possible equilibrium payoffs
- Beneficial conversation equilibrium: An equilibrium in which the seller gets a strictly higher payoff compared to a (seller preferred) equilibrium where the message space of the buyer is restricted to a single message: |M<sup>b</sup>| = 1

- Solution concept: perfect Bayesian equilibrium
- Seller preferred equilibrium: An equilibrium which maximises the seller's expected utility among the set of possible equilibrium payoffs
- Beneficial conversation equilibrium: An equilibrium in which the seller gets a strictly higher payoff compared to a (seller preferred) equilibrium where the message space of the buyer is restricted to a single message: |M<sup>b</sup>| = 1

Question: When is there a beneficial conversation equilibrium?

Amir Habibi (Humboldt University of Berlin)

#### Information and payoffs

•  $\theta \in \{0, 1\}$ , with  $\Pr[\theta = 1] = 1/2$ 

크

#### Information and payoffs

- $\theta \in \{0, 1\}$ , with  $\Pr[\theta = 1] = 1/2$
- $\beta = \beta_g \in [0, 1]$ , with distribution  $F_g$

#### Information and payoffs

•  $\theta \in \{0, 1\}$ , with  $\Pr[\theta = 1] = 1/2$ 

•  $\beta = \beta_g \in [0, 1]$ , with distribution  $F_g$ 

$$U = \begin{cases} \beta_g \theta & \text{if } a = a_1 \\ (1 - \beta_g)(1 - \theta) & \text{if } a = a_2 \\ u_0 & \text{if } a = a_0 \end{cases}$$

#### Information and payoffs

- $\theta \in \{0, 1\}$ , with  $\Pr[\theta = 1] = 1/2$
- $\beta = \beta_g \in [0, 1]$ , with distribution  $F_g$

$$U = \begin{cases} \beta_g \theta & \text{if } a = a_1 \\ (1 - \beta_g)(1 - \theta) & \text{if } a = a_2 \\ u_0 & \text{if } a = a_0 \end{cases}$$

•  $\theta = 1$  means that good 1 has high quality and good 2 has low quality

#### Information and payoffs

- $\theta \in \{0, 1\}$ , with  $\Pr[\theta = 1] = 1/2$
- $\beta = \beta_g \in [0, 1]$ , with distribution  $F_g$

$$U = \begin{cases} \beta_g \theta & \text{if } a = a_1 \\ (1 - \beta_g)(1 - \theta) & \text{if } a = a_2 \\ u_0 & \text{if } a = a_0 \end{cases}$$

- $\theta = 1$  means that good 1 has high quality and good 2 has low quality
- $\beta_g$  represents the preference across goods

Amir Habibi (Humboldt University of Berlin)

2

•  $F_g$  satisfies the following:  $\Pr[\beta_g = \frac{3}{5}] = 1$ 

- $F_g$  satisfies the following:  $\Pr[\beta_g = \frac{3}{5}] = 1$
- Suppose the seller used an information policy fully revealing  $\boldsymbol{\theta}$

$$m^s = \begin{cases} m_1^s & \text{if } \theta = 1 \\ m_2^s & \text{if } \theta = 0 \end{cases}$$



•  $F_g$  satisfies the following:  $\Pr[\beta_g = \frac{3}{5}] = 1$ 

- $F_g$  satisfies the following:  $\Pr[\beta_g = \frac{3}{5}] = 1$
- Fully revealing  $\theta$  is not an equilibrium

- $F_g$  satisfies the following:  $\Pr[\beta_g = \frac{3}{5}] = 1$
- Fully revealing  $\theta$  is not an equilibrium
- The following information policy is an equilibrium:



▲□▶▲圖▶▲≣▶▲≣▶ = 三 のへ(?)

Amir Habibi (Humboldt University of Berlin)

- In the example, the seller could secure a payoff of 2/5 by fully revealing the state
  - a payoff is secured if it is the lowest payoff across messages sent (posterior beliefs induced)

イロト イポト イヨト イヨ

- In the example, the seller could secure a payoff of 2/5 by fully revealing the state
  - a payoff is secured if it is the lowest payoff across messages sent (posterior beliefs induced)
- To achieve this in equilibrium, the seller can degrade the value from the posterior that achieves a higher payoff

- In the example, the seller could secure a payoff of 2/5 by fully revealing the state
  - a payoff is secured if it is the lowest payoff across messages sent (posterior beliefs induced)
- To achieve this in equilibrium, the seller can degrade the value from the posterior that achieves a higher payoff
- Lipnowski and Ravid (2020) provide a general tool to find possible equilibrium payoffs in state-independent cheap talk games

イロト イポト イヨト イヨ

- In the example, the seller could secure a payoff of 2/5 by fully revealing the state
  - a payoff is secured if it is the lowest payoff across messages sent (posterior beliefs induced)
- To achieve this in equilibrium, the seller can degrade the value from the posterior that achieves a higher payoff
- Lipnowski and Ravid (2020) provide a general tool to find possible equilibrium payoffs in state-independent cheap talk games
  - make use of this in my model to solve the seller's problem

イロト イポト イヨト イヨ

- In the example, the seller could secure a payoff of 2/5 by fully revealing the state
  - a payoff is secured if it is the lowest payoff across messages sent (posterior beliefs induced)
- To achieve this in equilibrium, the seller can degrade the value from the posterior that achieves a higher payoff
- Lipnowski and Ravid (2020) provide a general tool to find possible equilibrium payoffs in state-independent cheap talk games
  - make use of this in my model to solve the seller's problem
  - can find (seller preferred) equilibrium payoff, and then find the seller's policy that achieves this

- In the example, the seller could secure a payoff of 2/5 by fully revealing the state
  - a payoff is secured if it is the lowest payoff across messages sent (posterior beliefs induced)
- To achieve this in equilibrium, the seller can degrade the value from the posterior that achieves a higher payoff
- Lipnowski and Ravid (2020) provide a general tool to find possible equilibrium payoffs in state-independent cheap talk games
  - make use of this in my model to solve the seller's problem
  - can find (seller preferred) equilibrium payoff, and then find the seller's policy that achieves this
  - then can consider buyer incentives for communicating her preferences

< ロ > < 同 > < 回 > < 回 >

### **Proposition 1**

With a single attribute, the (unique seller preferred) equilibrium is never a beneficial conversation equilibrium.

イロト イポト イヨト イヨ

### **Proposition 1**

With a single attribute, the (unique seller preferred) equilibrium is never a beneficial conversation equilibrium.

- The buyer always wants to make the seller think that she has no preference for either good ( $\beta_g = 1/2$ )
  - doing so would mean the seller would fully reveal  $\theta$

### **Proposition 1**

With a single attribute, the (unique seller preferred) equilibrium is never a beneficial conversation equilibrium.

- The buyer always wants to make the seller think that she has no preference for either good ( $\beta_g = 1/2$ )
  - doing so would mean the seller would fully reveal  $\theta$
- This means the buyer cannot credibly disclose her preferences

### Information and payoffs

# • $\theta = (\theta_1, \theta_2) \in \{0, 1\}^2$ , with $\theta_1$ and $\theta_2$ drawn independently with $\Pr[\theta_i = 1] = 1/2$

イロト イポト イヨト イヨト

### Information and payoffs

•  $\theta = (\theta_1, \theta_2) \in \{0, 1\}^2$ , with  $\theta_1$  and  $\theta_2$  drawn independently with  $\Pr[\theta_i = 1] = 1/2$ 

•  $\beta = \beta_a \in [0, 1]$ , with distribution  $F_a$ 

イロト イポト イヨト イヨト

### Information and payoffs

•  $\theta = (\theta_1, \theta_2) \in \{0, 1\}^2$ , with  $\theta_1$  and  $\theta_2$  drawn independently with  $\Pr[\theta_i = 1] = 1/2$ 

•  $\beta = \beta_a \in [0, 1]$ , with distribution  $F_a$ 

$$U = \begin{cases} \frac{1}{2} (\beta_a \theta_1 + (1 - \beta_a) \theta_2) & \text{if } a = a_1 \\ \frac{1}{2} (\beta_a (1 - \theta_1) + (1 - \beta_a) (1 - \theta_2)) & \text{if } a = a_2 \\ u_0 & \text{if } a = a_0 \end{cases}$$

イロト イポト イヨト イヨト

### Information and payoffs

•  $\theta = (\theta_1, \theta_2) \in \{0, 1\}^2$ , with  $\theta_1$  and  $\theta_2$  drawn independently with  $\Pr[\theta_i = 1] = 1/2$ 

•  $\beta = \beta_a \in [0, 1]$ , with distribution  $F_a$ 

$$U = \begin{cases} \frac{1}{2} (\beta_a \theta_1 + (1 - \beta_a) \theta_2) & \text{if } a = a_1 \\ \frac{1}{2} (\beta_a (1 - \theta_1) + (1 - \beta_a) (1 - \theta_2)) & \text{if } a = a_2 \\ u_0 & \text{if } a = a_0 \end{cases}$$

•  $\theta_j = 1$  means that for attribute *j*, good 1 has high quality and good 2 has low quality

### Information and payoffs

•  $\theta = (\theta_1, \theta_2) \in \{0, 1\}^2$ , with  $\theta_1$  and  $\theta_2$  drawn independently with  $\Pr[\theta_i = 1] = 1/2$ 

•  $\beta = \beta_a \in [0, 1]$ , with distribution  $F_a$ 

$$U = \begin{cases} \frac{1}{2} (\beta_a \theta_1 + (1 - \beta_a) \theta_2) & \text{if } a = a_1 \\ \frac{1}{2} (\beta_a (1 - \theta_1) + (1 - \beta_a) (1 - \theta_2)) & \text{if } a = a_2 \\ u_0 & \text{if } a = a_0 \end{cases}$$

- $\theta_j = 1$  means that for attribute *j*, good 1 has high quality and good 2 has low quality
- $\beta_a$  represents the preference across attributes

#### Buyer only interested in one (unknown) attribute:

Amir Habibi (Humboldt University of Berlin)

#### Buyer only interested in one (unknown) attribute:

•  $\beta_a \in \{0, 1\}$  with  $\Pr[\beta_a = 1] = p \in [0, 1]$ 

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### Buyer only interested in one (unknown) attribute:

- $\beta_a \in \{0, 1\}$  with  $\Pr[\beta_a = 1] = p \in [0, 1]$
- In equilibrium the seller fully reveals the state

イロト イ理ト イヨト イヨト

#### Buyer only interested in one (unknown) attribute:

- $\beta_a \in \{0, 1\}$  with  $\Pr[\beta_a = 1] = p \in [0, 1]$
- In equilibrium the seller fully reveals the state
  - having revealed the quality of one attribute, the seller has no reason to not truthfully reveal the quality of the other attribute

イロト イ押ト イヨト イヨト

#### Buyer only interested in one (unknown) attribute:

- $\beta_a \in \{0, 1\}$  with  $\Pr[\beta_a = 1] = p \in [0, 1]$
- In equilibrium the seller fully reveals the state
  - having revealed the quality of one attribute, the seller has no reason to not truthfully reveal the quality of the other attribute



#### Buyer only interested in one (unknown) attribute:

- $\beta_a \in \{0, 1\}$  with  $\Pr[\beta_a = 1] = p \in [0, 1]$
- In equilibrium the seller fully reveals the state
  - having revealed the quality of one attribute, the seller has no reason to not truthfully reveal the quality of the other attribute



 There is **no benefit** from the buyer communicating her preferences (β<sub>a</sub>)

Amir Habibi (Humboldt University of Berlin)

#### Buyer potentially interested in both attributes:

•  $\beta_a \in \{0, \frac{1}{2}, 1\}$  with  $\Pr[\beta_a = 1] = \Pr[\beta_a = 0] = p \in (0, \frac{1}{2})$ 

### Buyer potentially interested in both attributes:

- $\beta_a \in \{0, \frac{1}{2}, 1\}$  with  $\Pr[\beta_a = 1] = \Pr[\beta_a = 0] = p \in (0, \frac{1}{2})$
- With no buyer communication, there is no longer an equilibrium in which the seller fully reveals the state

### Two attributes: Another example

#### Buyer potentially interested in both attributes:

- $\beta_a \in \{0, \frac{1}{2}, 1\}$  with  $\Pr[\beta_a = 1] = \Pr[\beta_a = 0] = p \in (0, \frac{1}{2})$
- With no buyer communication, there is no longer an equilibrium in which the seller fully reveals the state
  - Suppose for attribute 1, the seller (truthfully) reveals that  $\theta_1 = 1$
  - for attribute 2, the seller now has a strict preference for revealing that θ<sub>2</sub> = 1

A (10) × A (10) × A (10) ×

### Buyer potentially interested in both attributes:

- $\beta_a \in \{0, \frac{1}{2}, 1\}$  with  $\Pr[\beta_a = 1] = \Pr[\beta_a = 0] = p \in (0, \frac{1}{2})$
- With no buyer communication, there is no longer an equilibrium in which the seller fully reveals the state
  - ▶ suppose for attribute 1, the seller (truthfully) reveals that  $\theta_1 = 1$
  - for attribute 2, the seller now has a strict preference for revealing that θ<sub>2</sub> = 1
- With no buyer communication, the seller can only fully reveal the quality of one attribute and partially reveal for the other attribute

< □ > < □ > < □ > < □ > < □ > < □ >

### Buyer potentially interested in both attributes:

- $\beta_a \in \{0, \frac{1}{2}, 1\}$  with  $\Pr[\beta_a = 1] = \Pr[\beta_a = 0] = p \in (0, \frac{1}{2})$
- With no buyer communication, there is no longer an equilibrium in which the seller fully reveals the state
  - ▶ suppose for attribute 1, the seller (truthfully) reveals that  $\theta_1 = 1$
  - for attribute 2, the seller now has a strict preference for revealing that θ<sub>2</sub> = 1
- With no buyer communication, the seller can only fully reveal the quality of one attribute and partially reveal for the other attribute
- There is a benefit from buyer communicating her preferences (β<sub>a</sub>)
  - intuition: seller can provide more tailored recommendation for the buyer by providing information on buyer's preferred attribute

・ロト ・ 四ト ・ ヨト ・ ヨト

### Assumption 1

The support of  $F_a$  has positive mass in each of the intervals  $(0, \frac{1}{2})$  and  $(\frac{1}{2}, 1)$ .

### Proposition 2

With two attributes and no bias towards either good, there is a (seller preferred) equilibrium that takes the following form:

- the buyer sends the message  $m_1^b$  if  $\beta_a \ge \frac{1}{2}$  and  $m_2^b$  if  $\beta_a < \frac{1}{2}$ ;
- following the message  $m_j^b$ , the seller sends the message  $m_1^s$  if  $\theta_j = 1$  and  $m_2^s$  if  $\theta_j = 0$ .

If the distribution F satisfies Assumption 1, the equilibrium is a beneficial conversation equilibrium. Furthermore, the equilibrium above is unique iff  $\Pr[\beta_a = \frac{1}{2}] = 0$ .

・ロト ・ 四ト ・ ヨト ・ ヨト

- In words:
  - buyer reveals which attribute she is most interested in

イロト イ理ト イヨト イヨト

- In words:
  - buyer reveals which attribute she is most interested in
  - seller fully reveals best good for that attribute and nothing about other attribute

イロト イポト イヨト イヨ

- In words:
  - buyer reveals which attribute she is most interested in
  - seller fully reveals best good for that attribute and nothing about other attribute
- Intuition:
  - this is an equilibrium: both buyer and seller follow equilibrium strategy
  - note given the information from the buyer, the seller cannot do better than to reveal information about the preferred attribute

- In words:
  - buyer reveals which attribute she is most interested in
  - seller fully reveals best good for that attribute and nothing about other attribute
- Intuition:
  - this is an equilibrium: both buyer and seller follow equilibrium strategy
  - note given the information from the buyer, the seller cannot do better than to reveal information about the preferred attribute
  - an equilibrium in which the buyer requests (partial) information about both attributes is strictly worse for seller

< ロ > < 同 > < 回 > < 回 >

- Study a back and forth cheap talk model with two-sided private information
  - very little research on this topic
- Application to buyer-seller both for online and offline interactions
  - relevant to debate on consumer privacy
- Key result: if an expert wants to convince a decision maker to take one of several non-default actions
  - single attribute: eliciting DM's preferences between options can only be harmful
  - multiple attributes: eliciting DM's preferences between different attributes is helpful for tailoring recommendations